Abstract

Over 2 mW of continuous-wave tunable 194-nm light is produced by sum-frequency mixing approximately 500 mW of 792-nm and 500 mW of 257-nm radiation in beta-barium borate (BBO). The powers in both fundamental beams are enhanced in separate ring cavities whose optical paths overlap in the Brewster-cut BBO crystal. Due to the higher circulating fundamental powers, the sum-frequency-generated power is nearly 2 orders of magnitude greater than previously reported values.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano, D. J. Wineland, “Ionic crystals in a linear Paul trap,” Phys. Rev. A 45, 6493–6501 (1992).
    [Crossref] [PubMed]
  2. J. Miller, D. Berkeland, F. Cruz, J. Bergquist, W. Itano, D. Wineland, “Cryogenic linear trap for accurate spectroscopy,” in Proceedings of the 1996 IEEE International Frequency Control Symposium (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 1086–1088.
    [Crossref]
  3. The crystal Sr2Be2B2O7 (SBBO) has produced wavelengths as short as 177.3 nm by SHG. C. Chen, B. Wu, W. Zeng, Y. Wang, N. Ye, L. Yu, “New nonlinear optical crystal Sr2Be2B2O7: growth and properties,” in Quantum Electronics & Laser Science Conference, Vol. 10 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C.), pp. 229–230. The crystal KBe2BO3F2(KBBF) has produced 184.7-nm SHG output. C. Chen, Z. Xu, D. Deng, J. Zhang, G. K. L. Wong, B. Wu, N. Ye, D. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930–2932 (1996).
  4. H. Hemmati, J. C. Bergquist, W. M. Itano, “Generation of continuous-wave 194-nm radiation by sum-frequency mixing in an external ring cavity,” Opt. Lett. 8, 73–75 (1983).
    [Crossref] [PubMed]
  5. M. Watanabe, K. Hayasaka, H. Imago, S. Urabe, “Continuous-wave sum-frequency generation near 194 nm with a collinear double enhancement cavity,” Opt. Commun. 97, 225–227 (1993).
    [Crossref]
  6. J. C. Bergquist, H. Hemmati, W. M. Itano, “High power second harmonic generation of 257 nm radiation in an external ring cavity,” Opt. Commun. 43, 437–442 (1982).
    [Crossref]
  7. T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
    [Crossref]
  8. A. Steinbach, M. Rauner, F. C. Cruz, J. C. Bergquist, “CW second harmonic generation with elliptical Gaussian beams,” Opt. Commun. 123, 207–214 (1996).
    [Crossref]
  9. W. J. Kozlovsky, C. D. Nabors, R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
    [Crossref]
  10. E. S. Polzik, H. J. Kimble, “Frequency doubling with KNbO3 in an external cavity,” Opt. Lett. 16, 1400–1402 (1991).
    [Crossref] [PubMed]
  11. G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
    [Crossref]
  12. M. G. Boshier, “Precise laser spectroscopy of the hydrogen 1S-2S transition,” Ph.D. dissertation. (University of Oxford, Oxford, England, 1988).
  13. F. C. Cruz, M. Rauner, J. H. Marquardt, L. Hollberg, J. C. Bergquist, “An all solid-state Hg+ optical frequency standard,” in Proceedings of the Fifth Symposium on Frequency Standards and Metrology, J. C. Bergquist, ed. (World Scientific, Singapore, 1996), pp. 511–513.
  14. SDL-8630; the mention of brand names in this paper is for information purposes only and does not constitute an endorsement of the product by the authors or their institutions.

1996 (1)

A. Steinbach, M. Rauner, F. C. Cruz, J. C. Bergquist, “CW second harmonic generation with elliptical Gaussian beams,” Opt. Commun. 123, 207–214 (1996).
[Crossref]

1993 (1)

M. Watanabe, K. Hayasaka, H. Imago, S. Urabe, “Continuous-wave sum-frequency generation near 194 nm with a collinear double enhancement cavity,” Opt. Commun. 97, 225–227 (1993).
[Crossref]

1992 (1)

M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano, D. J. Wineland, “Ionic crystals in a linear Paul trap,” Phys. Rev. A 45, 6493–6501 (1992).
[Crossref] [PubMed]

1991 (1)

1988 (1)

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[Crossref]

1983 (1)

1982 (1)

J. C. Bergquist, H. Hemmati, W. M. Itano, “High power second harmonic generation of 257 nm radiation in an external ring cavity,” Opt. Commun. 43, 437–442 (1982).
[Crossref]

1980 (1)

T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[Crossref]

1968 (1)

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

Bergquist, J.

J. Miller, D. Berkeland, F. Cruz, J. Bergquist, W. Itano, D. Wineland, “Cryogenic linear trap for accurate spectroscopy,” in Proceedings of the 1996 IEEE International Frequency Control Symposium (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 1086–1088.
[Crossref]

Bergquist, J. C.

A. Steinbach, M. Rauner, F. C. Cruz, J. C. Bergquist, “CW second harmonic generation with elliptical Gaussian beams,” Opt. Commun. 123, 207–214 (1996).
[Crossref]

M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano, D. J. Wineland, “Ionic crystals in a linear Paul trap,” Phys. Rev. A 45, 6493–6501 (1992).
[Crossref] [PubMed]

H. Hemmati, J. C. Bergquist, W. M. Itano, “Generation of continuous-wave 194-nm radiation by sum-frequency mixing in an external ring cavity,” Opt. Lett. 8, 73–75 (1983).
[Crossref] [PubMed]

J. C. Bergquist, H. Hemmati, W. M. Itano, “High power second harmonic generation of 257 nm radiation in an external ring cavity,” Opt. Commun. 43, 437–442 (1982).
[Crossref]

F. C. Cruz, M. Rauner, J. H. Marquardt, L. Hollberg, J. C. Bergquist, “An all solid-state Hg+ optical frequency standard,” in Proceedings of the Fifth Symposium on Frequency Standards and Metrology, J. C. Bergquist, ed. (World Scientific, Singapore, 1996), pp. 511–513.

Berkeland, D.

J. Miller, D. Berkeland, F. Cruz, J. Bergquist, W. Itano, D. Wineland, “Cryogenic linear trap for accurate spectroscopy,” in Proceedings of the 1996 IEEE International Frequency Control Symposium (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 1086–1088.
[Crossref]

Boshier, M. G.

M. G. Boshier, “Precise laser spectroscopy of the hydrogen 1S-2S transition,” Ph.D. dissertation. (University of Oxford, Oxford, England, 1988).

Boyd, G. D.

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

Byer, R. L.

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[Crossref]

Chen, C.

The crystal Sr2Be2B2O7 (SBBO) has produced wavelengths as short as 177.3 nm by SHG. C. Chen, B. Wu, W. Zeng, Y. Wang, N. Ye, L. Yu, “New nonlinear optical crystal Sr2Be2B2O7: growth and properties,” in Quantum Electronics & Laser Science Conference, Vol. 10 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C.), pp. 229–230. The crystal KBe2BO3F2(KBBF) has produced 184.7-nm SHG output. C. Chen, Z. Xu, D. Deng, J. Zhang, G. K. L. Wong, B. Wu, N. Ye, D. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930–2932 (1996).

Couillaud, B.

T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[Crossref]

Cruz, F.

J. Miller, D. Berkeland, F. Cruz, J. Bergquist, W. Itano, D. Wineland, “Cryogenic linear trap for accurate spectroscopy,” in Proceedings of the 1996 IEEE International Frequency Control Symposium (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 1086–1088.
[Crossref]

Cruz, F. C.

A. Steinbach, M. Rauner, F. C. Cruz, J. C. Bergquist, “CW second harmonic generation with elliptical Gaussian beams,” Opt. Commun. 123, 207–214 (1996).
[Crossref]

F. C. Cruz, M. Rauner, J. H. Marquardt, L. Hollberg, J. C. Bergquist, “An all solid-state Hg+ optical frequency standard,” in Proceedings of the Fifth Symposium on Frequency Standards and Metrology, J. C. Bergquist, ed. (World Scientific, Singapore, 1996), pp. 511–513.

Gilligan, J. M.

M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano, D. J. Wineland, “Ionic crystals in a linear Paul trap,” Phys. Rev. A 45, 6493–6501 (1992).
[Crossref] [PubMed]

Hänsch, T. W.

T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[Crossref]

Hayasaka, K.

M. Watanabe, K. Hayasaka, H. Imago, S. Urabe, “Continuous-wave sum-frequency generation near 194 nm with a collinear double enhancement cavity,” Opt. Commun. 97, 225–227 (1993).
[Crossref]

Hemmati, H.

H. Hemmati, J. C. Bergquist, W. M. Itano, “Generation of continuous-wave 194-nm radiation by sum-frequency mixing in an external ring cavity,” Opt. Lett. 8, 73–75 (1983).
[Crossref] [PubMed]

J. C. Bergquist, H. Hemmati, W. M. Itano, “High power second harmonic generation of 257 nm radiation in an external ring cavity,” Opt. Commun. 43, 437–442 (1982).
[Crossref]

Hollberg, L.

F. C. Cruz, M. Rauner, J. H. Marquardt, L. Hollberg, J. C. Bergquist, “An all solid-state Hg+ optical frequency standard,” in Proceedings of the Fifth Symposium on Frequency Standards and Metrology, J. C. Bergquist, ed. (World Scientific, Singapore, 1996), pp. 511–513.

Imago, H.

M. Watanabe, K. Hayasaka, H. Imago, S. Urabe, “Continuous-wave sum-frequency generation near 194 nm with a collinear double enhancement cavity,” Opt. Commun. 97, 225–227 (1993).
[Crossref]

Itano, W.

J. Miller, D. Berkeland, F. Cruz, J. Bergquist, W. Itano, D. Wineland, “Cryogenic linear trap for accurate spectroscopy,” in Proceedings of the 1996 IEEE International Frequency Control Symposium (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 1086–1088.
[Crossref]

Itano, W. M.

M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano, D. J. Wineland, “Ionic crystals in a linear Paul trap,” Phys. Rev. A 45, 6493–6501 (1992).
[Crossref] [PubMed]

H. Hemmati, J. C. Bergquist, W. M. Itano, “Generation of continuous-wave 194-nm radiation by sum-frequency mixing in an external ring cavity,” Opt. Lett. 8, 73–75 (1983).
[Crossref] [PubMed]

J. C. Bergquist, H. Hemmati, W. M. Itano, “High power second harmonic generation of 257 nm radiation in an external ring cavity,” Opt. Commun. 43, 437–442 (1982).
[Crossref]

Kimble, H. J.

Kleinman, D. A.

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

Kozlovsky, W. J.

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[Crossref]

Marquardt, J. H.

F. C. Cruz, M. Rauner, J. H. Marquardt, L. Hollberg, J. C. Bergquist, “An all solid-state Hg+ optical frequency standard,” in Proceedings of the Fifth Symposium on Frequency Standards and Metrology, J. C. Bergquist, ed. (World Scientific, Singapore, 1996), pp. 511–513.

Miller, J.

J. Miller, D. Berkeland, F. Cruz, J. Bergquist, W. Itano, D. Wineland, “Cryogenic linear trap for accurate spectroscopy,” in Proceedings of the 1996 IEEE International Frequency Control Symposium (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 1086–1088.
[Crossref]

Nabors, C. D.

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[Crossref]

Polzik, E. S.

Raizen, M. G.

M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano, D. J. Wineland, “Ionic crystals in a linear Paul trap,” Phys. Rev. A 45, 6493–6501 (1992).
[Crossref] [PubMed]

Rauner, M.

A. Steinbach, M. Rauner, F. C. Cruz, J. C. Bergquist, “CW second harmonic generation with elliptical Gaussian beams,” Opt. Commun. 123, 207–214 (1996).
[Crossref]

F. C. Cruz, M. Rauner, J. H. Marquardt, L. Hollberg, J. C. Bergquist, “An all solid-state Hg+ optical frequency standard,” in Proceedings of the Fifth Symposium on Frequency Standards and Metrology, J. C. Bergquist, ed. (World Scientific, Singapore, 1996), pp. 511–513.

Steinbach, A.

A. Steinbach, M. Rauner, F. C. Cruz, J. C. Bergquist, “CW second harmonic generation with elliptical Gaussian beams,” Opt. Commun. 123, 207–214 (1996).
[Crossref]

Urabe, S.

M. Watanabe, K. Hayasaka, H. Imago, S. Urabe, “Continuous-wave sum-frequency generation near 194 nm with a collinear double enhancement cavity,” Opt. Commun. 97, 225–227 (1993).
[Crossref]

Wang, Y.

The crystal Sr2Be2B2O7 (SBBO) has produced wavelengths as short as 177.3 nm by SHG. C. Chen, B. Wu, W. Zeng, Y. Wang, N. Ye, L. Yu, “New nonlinear optical crystal Sr2Be2B2O7: growth and properties,” in Quantum Electronics & Laser Science Conference, Vol. 10 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C.), pp. 229–230. The crystal KBe2BO3F2(KBBF) has produced 184.7-nm SHG output. C. Chen, Z. Xu, D. Deng, J. Zhang, G. K. L. Wong, B. Wu, N. Ye, D. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930–2932 (1996).

Watanabe, M.

M. Watanabe, K. Hayasaka, H. Imago, S. Urabe, “Continuous-wave sum-frequency generation near 194 nm with a collinear double enhancement cavity,” Opt. Commun. 97, 225–227 (1993).
[Crossref]

Wineland, D.

J. Miller, D. Berkeland, F. Cruz, J. Bergquist, W. Itano, D. Wineland, “Cryogenic linear trap for accurate spectroscopy,” in Proceedings of the 1996 IEEE International Frequency Control Symposium (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 1086–1088.
[Crossref]

Wineland, D. J.

M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano, D. J. Wineland, “Ionic crystals in a linear Paul trap,” Phys. Rev. A 45, 6493–6501 (1992).
[Crossref] [PubMed]

Wu, B.

The crystal Sr2Be2B2O7 (SBBO) has produced wavelengths as short as 177.3 nm by SHG. C. Chen, B. Wu, W. Zeng, Y. Wang, N. Ye, L. Yu, “New nonlinear optical crystal Sr2Be2B2O7: growth and properties,” in Quantum Electronics & Laser Science Conference, Vol. 10 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C.), pp. 229–230. The crystal KBe2BO3F2(KBBF) has produced 184.7-nm SHG output. C. Chen, Z. Xu, D. Deng, J. Zhang, G. K. L. Wong, B. Wu, N. Ye, D. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930–2932 (1996).

Ye, N.

The crystal Sr2Be2B2O7 (SBBO) has produced wavelengths as short as 177.3 nm by SHG. C. Chen, B. Wu, W. Zeng, Y. Wang, N. Ye, L. Yu, “New nonlinear optical crystal Sr2Be2B2O7: growth and properties,” in Quantum Electronics & Laser Science Conference, Vol. 10 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C.), pp. 229–230. The crystal KBe2BO3F2(KBBF) has produced 184.7-nm SHG output. C. Chen, Z. Xu, D. Deng, J. Zhang, G. K. L. Wong, B. Wu, N. Ye, D. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930–2932 (1996).

Yu, L.

The crystal Sr2Be2B2O7 (SBBO) has produced wavelengths as short as 177.3 nm by SHG. C. Chen, B. Wu, W. Zeng, Y. Wang, N. Ye, L. Yu, “New nonlinear optical crystal Sr2Be2B2O7: growth and properties,” in Quantum Electronics & Laser Science Conference, Vol. 10 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C.), pp. 229–230. The crystal KBe2BO3F2(KBBF) has produced 184.7-nm SHG output. C. Chen, Z. Xu, D. Deng, J. Zhang, G. K. L. Wong, B. Wu, N. Ye, D. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930–2932 (1996).

Zeng, W.

The crystal Sr2Be2B2O7 (SBBO) has produced wavelengths as short as 177.3 nm by SHG. C. Chen, B. Wu, W. Zeng, Y. Wang, N. Ye, L. Yu, “New nonlinear optical crystal Sr2Be2B2O7: growth and properties,” in Quantum Electronics & Laser Science Conference, Vol. 10 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C.), pp. 229–230. The crystal KBe2BO3F2(KBBF) has produced 184.7-nm SHG output. C. Chen, Z. Xu, D. Deng, J. Zhang, G. K. L. Wong, B. Wu, N. Ye, D. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930–2932 (1996).

IEEE J. Quantum Electron. (1)

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[Crossref]

J. Appl. Phys. (1)

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[Crossref]

Opt. Commun. (4)

M. Watanabe, K. Hayasaka, H. Imago, S. Urabe, “Continuous-wave sum-frequency generation near 194 nm with a collinear double enhancement cavity,” Opt. Commun. 97, 225–227 (1993).
[Crossref]

J. C. Bergquist, H. Hemmati, W. M. Itano, “High power second harmonic generation of 257 nm radiation in an external ring cavity,” Opt. Commun. 43, 437–442 (1982).
[Crossref]

T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[Crossref]

A. Steinbach, M. Rauner, F. C. Cruz, J. C. Bergquist, “CW second harmonic generation with elliptical Gaussian beams,” Opt. Commun. 123, 207–214 (1996).
[Crossref]

Opt. Lett. (2)

Phys. Rev. A (1)

M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano, D. J. Wineland, “Ionic crystals in a linear Paul trap,” Phys. Rev. A 45, 6493–6501 (1992).
[Crossref] [PubMed]

Other (5)

J. Miller, D. Berkeland, F. Cruz, J. Bergquist, W. Itano, D. Wineland, “Cryogenic linear trap for accurate spectroscopy,” in Proceedings of the 1996 IEEE International Frequency Control Symposium (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 1086–1088.
[Crossref]

The crystal Sr2Be2B2O7 (SBBO) has produced wavelengths as short as 177.3 nm by SHG. C. Chen, B. Wu, W. Zeng, Y. Wang, N. Ye, L. Yu, “New nonlinear optical crystal Sr2Be2B2O7: growth and properties,” in Quantum Electronics & Laser Science Conference, Vol. 10 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C.), pp. 229–230. The crystal KBe2BO3F2(KBBF) has produced 184.7-nm SHG output. C. Chen, Z. Xu, D. Deng, J. Zhang, G. K. L. Wong, B. Wu, N. Ye, D. Tang, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930–2932 (1996).

M. G. Boshier, “Precise laser spectroscopy of the hydrogen 1S-2S transition,” Ph.D. dissertation. (University of Oxford, Oxford, England, 1988).

F. C. Cruz, M. Rauner, J. H. Marquardt, L. Hollberg, J. C. Bergquist, “An all solid-state Hg+ optical frequency standard,” in Proceedings of the Fifth Symposium on Frequency Standards and Metrology, J. C. Bergquist, ed. (World Scientific, Singapore, 1996), pp. 511–513.

SDL-8630; the mention of brand names in this paper is for information purposes only and does not constitute an endorsement of the product by the authors or their institutions.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Optical layout. DBS, dichroic beam splitter; CL, cylindrical lens; PD, photodiode; PZT, piezoelectric transducer. Not shown are optics and electronics for stabilizing and analyzing laser frequencies or for stabilizing enhancement cavities.

Fig. 2
Fig. 2

Theoretically expected values of SHG efficiency from Eq. (1) (solid curve) and measured values (filled circles). Calculated values use η = 6.0 × 10-5 W-1, L = 0.007 m, and T = 0.015.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε=4TηP5152-1-T2-L-εηP5152,
ξ=-w0w02πw01/4 exp-x2w0212w0dx2=0.89,

Metrics