Abstract

The capability of two-tone frequency-modulation spectroscopy (TTFMS) in deriving spectral line-shape information was investigated. Two oxygen A-band transitions at 760 nm were selected, and the Voigt profile and two different collisionally narrowed line profiles were employed in their analysis. By means of a least-squares fitting procedure, we obtained accurate information regarding transition strengths and pressure-induced broadening, shift, and narrowing coefficients. Both TTFMS and direct absorption line shapes were modeled with deviations as small as 0.3% over a wide pressure range by use of the collisionally narrowed line profiles. Line parameters measured with TTFMS showed excellent agreement with the parameters measured with direct absorption. The experimental technique used constant-current fast-wavelength scanning, which improved measurement accuracy.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Bloch, R. W. Fied, G. H. Hall, T. J. Sears, “Time-resolved frequency modulation spectroscopy of photochemical transients,” J. Chem. Phys. 101, 1717–1720 (1994).
    [CrossRef]
  2. D. S. Baer, R. K. Hanson, M. E. Newfield, N. K. J. M. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
    [CrossRef]
  3. P. Kauranen, I. Harwigsson, B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tuneable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98, 1411–1415 (1994).
    [CrossRef]
  4. P. Kauranen, H. M. Hertz, S. Svanberg, “Tomographic imaging of fluid flows by the use of two-tone frequency-modulation spectroscopy,” Opt. Lett. 19, 1498–1500 (1994).
    [CrossRef]
  5. D. A. Glenar, D. E. Jennings, S. Nadler, “Electrooptic modulation methods for high sensitivity tunable diode laser spectroscopy,” Appl. Opt. 29, 2282–2288 (1990).
    [CrossRef] [PubMed]
  6. H. Riris, C. B. Carlisle, L. W. Carr, D. E. Cooper, R. U. Martinelli, R. J. Menna, “Design of an open path near-infrared diode laser sensor: application to oxygen, water, and carbon dioxide vapor detection,” Appl. Opt. 33, 7059–7066 (1994).
    [CrossRef] [PubMed]
  7. E. G. Moses, C. L. Tang, “High-sensitivity laser wavelength-modulation spectroscopy,” Opt.Lett. 1, 115–117 (1977).
  8. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
    [CrossRef] [PubMed]
  9. G. R. Janik, C. B. Carlisle, T. F. Gallagher, “Two-tone frequency-modulation spectroscopy,” J.Opt. Soc. Am. B 3, 1070–1074 (1986).
    [CrossRef]
  10. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
    [CrossRef] [PubMed]
  11. P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Quantum-limited FM spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
    [CrossRef]
  12. C. B. Carlisle, D. E. Cooper, H. Preier, “Quantum noise-limited FM spectroscopy with a lead-salt diode laser,” Appl. Opt. 28, 2567–2576 (1989).
    [CrossRef] [PubMed]
  13. N. C. Wong, J. L. Hall, “High-resolution measurement of water-vapor overtone absorption in the visible by frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 6, 2300–2308 (1989).
    [CrossRef]
  14. P. Kauranen, V. G. Avetisov, “Determination of absorption line parameters using two-tone frequency-modulation spectroscopy with diode lasers,” Opt. Commun. 106, 213–217 (1994).
    [CrossRef]
  15. V. G. Avetisov, P. Kauranen, “Two-tone frequency-modulation spectroscopy for quantitative measurements of gaseous species: theoretical, numerical, and experimental investigation of line shapes,” Appl. Opt. 35, 4705–4723 (1996).
    [CrossRef] [PubMed]
  16. M. P. Arroyo, S. Langlois, R. K. Hanson, “Diode-laser absorption technique for simultaneous measurements of multiple gasdynamic parameters in high-speed flows containing water vapor,” Appl. Opt. 33, 3296–3307 (1994).
    [CrossRef] [PubMed]
  17. L. C. Philippe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993).
    [CrossRef] [PubMed]
  18. J. M. Supplee, E. A. Whittaker, W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994).
    [CrossRef] [PubMed]
  19. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers: comparison of experiment and theory,” Appl.Phys. B 26, 203–210 (1981).
  20. N. Goldstein, S. Adler-Golden, J. Lee, F. Bien, “Measurement of molecular concentrations and line parameters using line-locked second harmonic spectroscopy with an AlGaAs diode laser,” Appl. Opt. 31, 3409–3415 (1992).
    [CrossRef] [PubMed]
  21. K. Y. Lau, A. Yariv, “Intermodulation distortion in a directly modulated semiconductor injection laser,” Appl. Phys. Lett. 45, 1034–1036 (1984).
    [CrossRef]
  22. G. P. Agrawal, N. K. Dutta, Long-wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986).
    [CrossRef]
  23. S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in GaAlAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
    [CrossRef]
  24. V. G. Avetisov, P. Kauranen, “A software method for improving the performance characteristics of a conventional digitizing oscilloscope,” Lund Reports on Atom. Phys. 158 (1994).
  25. Y. V. Kosichkin, A. I. Nadezhdinskii, E. V. Stepanov, “Diode laser spectroscopy of collisional broadening in the spectra of polyatomic molecules,” J. Quant. Spectrosc. Radiat. Transfer 43, 499–509 (1990).
    [CrossRef]
  26. V. G. Avetisov, A. I. Nadezhdinskii, A. N. Khusnutdinov, P. M. Omarova, M. V. Zyrianov, “Diode laser spectroscopy of water vapor in 1.8 µm: line profile measurements,” J. Mol. Spectrosc. 160, 326–334 (1993).
    [CrossRef]
  27. D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
    [CrossRef] [PubMed]
  28. L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral shapes,” Phys. Rev. 122, 1218–1223 (1961).
    [CrossRef]
  29. S. G. Rautian, I. I. Sobelman, “Effect of collisions on the Doppler broadening of spectral lines,” Sov. Phys. Usp. 9, 701–716 (1967).
    [CrossRef]
  30. F. Herbert, “Spectrum line profiles: a generalized Voigt function including collisional narrowing,” J. Quant. Spectrosc. Radiat. Transfer 14, 943–951 (1974).
    [CrossRef]
  31. P. L. Varghese, R. K. Hanson, “Collisional narrowing effects on spectral line shapes measured at high resolution,” Appl. Opt. 23, 2376–2385 (1984).
    [CrossRef] [PubMed]
  32. G. Morthier, F. Libbrecht, K. David, P. Vankwikelberge, R. G. Baets, “Theoretical investigation of the second-order harmonic distortion in the AM response of 1.55 µm F-P and DFB lasers,” IEEE J. Quantum Electron. 27, 1990–2002 (1991).
    [CrossRef]
  33. K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A band,” J. Mol. Spectrosc. 121, 1–19 (1987).
    [CrossRef]
  34. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
    [CrossRef]
  35. K. J. Ritter, “A high resolution spectroscopic study of absorption line profiles in the A-band of molecular oxygen,” Ph.D. dissertation (University of Maryland, College Park, Md., 1986).

1996 (1)

1994 (9)

M. P. Arroyo, S. Langlois, R. K. Hanson, “Diode-laser absorption technique for simultaneous measurements of multiple gasdynamic parameters in high-speed flows containing water vapor,” Appl. Opt. 33, 3296–3307 (1994).
[CrossRef] [PubMed]

J. M. Supplee, E. A. Whittaker, W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994).
[CrossRef] [PubMed]

H. Riris, C. B. Carlisle, L. W. Carr, D. E. Cooper, R. U. Martinelli, R. J. Menna, “Design of an open path near-infrared diode laser sensor: application to oxygen, water, and carbon dioxide vapor detection,” Appl. Opt. 33, 7059–7066 (1994).
[CrossRef] [PubMed]

D. S. Baer, R. K. Hanson, M. E. Newfield, N. K. J. M. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
[CrossRef]

P. Kauranen, I. Harwigsson, B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tuneable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98, 1411–1415 (1994).
[CrossRef]

P. Kauranen, H. M. Hertz, S. Svanberg, “Tomographic imaging of fluid flows by the use of two-tone frequency-modulation spectroscopy,” Opt. Lett. 19, 1498–1500 (1994).
[CrossRef]

J. C. Bloch, R. W. Fied, G. H. Hall, T. J. Sears, “Time-resolved frequency modulation spectroscopy of photochemical transients,” J. Chem. Phys. 101, 1717–1720 (1994).
[CrossRef]

P. Kauranen, V. G. Avetisov, “Determination of absorption line parameters using two-tone frequency-modulation spectroscopy with diode lasers,” Opt. Commun. 106, 213–217 (1994).
[CrossRef]

V. G. Avetisov, P. Kauranen, “A software method for improving the performance characteristics of a conventional digitizing oscilloscope,” Lund Reports on Atom. Phys. 158 (1994).

1993 (2)

V. G. Avetisov, A. I. Nadezhdinskii, A. N. Khusnutdinov, P. M. Omarova, M. V. Zyrianov, “Diode laser spectroscopy of water vapor in 1.8 µm: line profile measurements,” J. Mol. Spectrosc. 160, 326–334 (1993).
[CrossRef]

L. C. Philippe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993).
[CrossRef] [PubMed]

1992 (4)

1991 (1)

G. Morthier, F. Libbrecht, K. David, P. Vankwikelberge, R. G. Baets, “Theoretical investigation of the second-order harmonic distortion in the AM response of 1.55 µm F-P and DFB lasers,” IEEE J. Quantum Electron. 27, 1990–2002 (1991).
[CrossRef]

1990 (2)

D. A. Glenar, D. E. Jennings, S. Nadler, “Electrooptic modulation methods for high sensitivity tunable diode laser spectroscopy,” Appl. Opt. 29, 2282–2288 (1990).
[CrossRef] [PubMed]

Y. V. Kosichkin, A. I. Nadezhdinskii, E. V. Stepanov, “Diode laser spectroscopy of collisional broadening in the spectra of polyatomic molecules,” J. Quant. Spectrosc. Radiat. Transfer 43, 499–509 (1990).
[CrossRef]

1989 (3)

1987 (1)

K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

1986 (1)

G. R. Janik, C. B. Carlisle, T. F. Gallagher, “Two-tone frequency-modulation spectroscopy,” J.Opt. Soc. Am. B 3, 1070–1074 (1986).
[CrossRef]

1984 (2)

K. Y. Lau, A. Yariv, “Intermodulation distortion in a directly modulated semiconductor injection laser,” Appl. Phys. Lett. 45, 1034–1036 (1984).
[CrossRef]

P. L. Varghese, R. K. Hanson, “Collisional narrowing effects on spectral line shapes measured at high resolution,” Appl. Opt. 23, 2376–2385 (1984).
[CrossRef] [PubMed]

1982 (1)

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in GaAlAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
[CrossRef]

1981 (1)

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers: comparison of experiment and theory,” Appl.Phys. B 26, 203–210 (1981).

1980 (1)

1977 (1)

E. G. Moses, C. L. Tang, “High-sensitivity laser wavelength-modulation spectroscopy,” Opt.Lett. 1, 115–117 (1977).

1974 (1)

F. Herbert, “Spectrum line profiles: a generalized Voigt function including collisional narrowing,” J. Quant. Spectrosc. Radiat. Transfer 14, 943–951 (1974).
[CrossRef]

1967 (1)

S. G. Rautian, I. I. Sobelman, “Effect of collisions on the Doppler broadening of spectral lines,” Sov. Phys. Usp. 9, 701–716 (1967).
[CrossRef]

1961 (1)

L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral shapes,” Phys. Rev. 122, 1218–1223 (1961).
[CrossRef]

Adler-Golden, S.

Agrawal, G. P.

G. P. Agrawal, N. K. Dutta, Long-wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986).
[CrossRef]

Arroyo, M. P.

Avetisov, V. G.

V. G. Avetisov, P. Kauranen, “Two-tone frequency-modulation spectroscopy for quantitative measurements of gaseous species: theoretical, numerical, and experimental investigation of line shapes,” Appl. Opt. 35, 4705–4723 (1996).
[CrossRef] [PubMed]

P. Kauranen, V. G. Avetisov, “Determination of absorption line parameters using two-tone frequency-modulation spectroscopy with diode lasers,” Opt. Commun. 106, 213–217 (1994).
[CrossRef]

V. G. Avetisov, P. Kauranen, “A software method for improving the performance characteristics of a conventional digitizing oscilloscope,” Lund Reports on Atom. Phys. 158 (1994).

V. G. Avetisov, A. I. Nadezhdinskii, A. N. Khusnutdinov, P. M. Omarova, M. V. Zyrianov, “Diode laser spectroscopy of water vapor in 1.8 µm: line profile measurements,” J. Mol. Spectrosc. 160, 326–334 (1993).
[CrossRef]

Baer, D. S.

Baets, R. G.

G. Morthier, F. Libbrecht, K. David, P. Vankwikelberge, R. G. Baets, “Theoretical investigation of the second-order harmonic distortion in the AM response of 1.55 µm F-P and DFB lasers,” IEEE J. Quantum Electron. 27, 1990–2002 (1991).
[CrossRef]

Benner, D. C.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Bien, F.

Bjorklund, G. C.

Bloch, J. C.

J. C. Bloch, R. W. Fied, G. H. Hall, T. J. Sears, “Time-resolved frequency modulation spectroscopy of photochemical transients,” J. Chem. Phys. 101, 1717–1720 (1994).
[CrossRef]

Bomse, D. S.

Bräuchle, C.

P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Quantum-limited FM spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[CrossRef]

Brown, L. R.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Camy-Peyret, C.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Carlisle, C. B.

Carr, L. W.

Cooper, D. E.

David, K.

G. Morthier, F. Libbrecht, K. David, P. Vankwikelberge, R. G. Baets, “Theoretical investigation of the second-order harmonic distortion in the AM response of 1.55 µm F-P and DFB lasers,” IEEE J. Quantum Electron. 27, 1990–2002 (1991).
[CrossRef]

Devi, V. M.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Dutta, N. K.

G. P. Agrawal, N. K. Dutta, Long-wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986).
[CrossRef]

Fied, R. W.

J. C. Bloch, R. W. Fied, G. H. Hall, T. J. Sears, “Time-resolved frequency modulation spectroscopy of photochemical transients,” J. Chem. Phys. 101, 1717–1720 (1994).
[CrossRef]

Flaud, J.-M.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Galatry, L.

L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral shapes,” Phys. Rev. 122, 1218–1223 (1961).
[CrossRef]

Gallagher, T. F.

G. R. Janik, C. B. Carlisle, T. F. Gallagher, “Two-tone frequency-modulation spectroscopy,” J.Opt. Soc. Am. B 3, 1070–1074 (1986).
[CrossRef]

Gamache, R. R.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Gehrtz, M.

P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Quantum-limited FM spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[CrossRef]

Glenar, D. A.

Goldman, A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Goldstein, N.

Gopaul, N. K. J. M.

Hall, G. H.

J. C. Bloch, R. W. Fied, G. H. Hall, T. J. Sears, “Time-resolved frequency modulation spectroscopy of photochemical transients,” J. Chem. Phys. 101, 1717–1720 (1994).
[CrossRef]

Hall, J. L.

Hanson, R. K.

Harwigsson, I.

P. Kauranen, I. Harwigsson, B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tuneable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98, 1411–1415 (1994).
[CrossRef]

Herbert, F.

F. Herbert, “Spectrum line profiles: a generalized Voigt function including collisional narrowing,” J. Quant. Spectrosc. Radiat. Transfer 14, 943–951 (1974).
[CrossRef]

Hertz, H. M.

P. Kauranen, H. M. Hertz, S. Svanberg, “Tomographic imaging of fluid flows by the use of two-tone frequency-modulation spectroscopy,” Opt. Lett. 19, 1498–1500 (1994).
[CrossRef]

Ito, M.

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in GaAlAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
[CrossRef]

Janik, G. R.

G. R. Janik, C. B. Carlisle, T. F. Gallagher, “Two-tone frequency-modulation spectroscopy,” J.Opt. Soc. Am. B 3, 1070–1074 (1986).
[CrossRef]

Jennings, D. E.

Jönsson, B.

P. Kauranen, I. Harwigsson, B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tuneable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98, 1411–1415 (1994).
[CrossRef]

Kauranen, P.

V. G. Avetisov, P. Kauranen, “Two-tone frequency-modulation spectroscopy for quantitative measurements of gaseous species: theoretical, numerical, and experimental investigation of line shapes,” Appl. Opt. 35, 4705–4723 (1996).
[CrossRef] [PubMed]

P. Kauranen, H. M. Hertz, S. Svanberg, “Tomographic imaging of fluid flows by the use of two-tone frequency-modulation spectroscopy,” Opt. Lett. 19, 1498–1500 (1994).
[CrossRef]

P. Kauranen, I. Harwigsson, B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tuneable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98, 1411–1415 (1994).
[CrossRef]

V. G. Avetisov, P. Kauranen, “A software method for improving the performance characteristics of a conventional digitizing oscilloscope,” Lund Reports on Atom. Phys. 158 (1994).

P. Kauranen, V. G. Avetisov, “Determination of absorption line parameters using two-tone frequency-modulation spectroscopy with diode lasers,” Opt. Commun. 106, 213–217 (1994).
[CrossRef]

Khusnutdinov, A. N.

V. G. Avetisov, A. I. Nadezhdinskii, A. N. Khusnutdinov, P. M. Omarova, M. V. Zyrianov, “Diode laser spectroscopy of water vapor in 1.8 µm: line profile measurements,” J. Mol. Spectrosc. 160, 326–334 (1993).
[CrossRef]

Kimura, T.

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in GaAlAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
[CrossRef]

Kobayashi, S.

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in GaAlAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
[CrossRef]

Kosichkin, Y. V.

Y. V. Kosichkin, A. I. Nadezhdinskii, E. V. Stepanov, “Diode laser spectroscopy of collisional broadening in the spectra of polyatomic molecules,” J. Quant. Spectrosc. Radiat. Transfer 43, 499–509 (1990).
[CrossRef]

Labrie, D.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers: comparison of experiment and theory,” Appl.Phys. B 26, 203–210 (1981).

Langlois, S.

Lau, K. Y.

K. Y. Lau, A. Yariv, “Intermodulation distortion in a directly modulated semiconductor injection laser,” Appl. Phys. Lett. 45, 1034–1036 (1984).
[CrossRef]

Lee, J.

Lenth, W.

Libbrecht, F.

G. Morthier, F. Libbrecht, K. David, P. Vankwikelberge, R. G. Baets, “Theoretical investigation of the second-order harmonic distortion in the AM response of 1.55 µm F-P and DFB lasers,” IEEE J. Quantum Electron. 27, 1990–2002 (1991).
[CrossRef]

Martinelli, R. U.

Massie, S. T.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Menna, R. J.

Morthier, G.

G. Morthier, F. Libbrecht, K. David, P. Vankwikelberge, R. G. Baets, “Theoretical investigation of the second-order harmonic distortion in the AM response of 1.55 µm F-P and DFB lasers,” IEEE J. Quantum Electron. 27, 1990–2002 (1991).
[CrossRef]

Moses, E. G.

E. G. Moses, C. L. Tang, “High-sensitivity laser wavelength-modulation spectroscopy,” Opt.Lett. 1, 115–117 (1977).

Nadezhdinskii, A. I.

V. G. Avetisov, A. I. Nadezhdinskii, A. N. Khusnutdinov, P. M. Omarova, M. V. Zyrianov, “Diode laser spectroscopy of water vapor in 1.8 µm: line profile measurements,” J. Mol. Spectrosc. 160, 326–334 (1993).
[CrossRef]

Y. V. Kosichkin, A. I. Nadezhdinskii, E. V. Stepanov, “Diode laser spectroscopy of collisional broadening in the spectra of polyatomic molecules,” J. Quant. Spectrosc. Radiat. Transfer 43, 499–509 (1990).
[CrossRef]

Nadler, S.

Newfield, M. E.

Omarova, P. M.

V. G. Avetisov, A. I. Nadezhdinskii, A. N. Khusnutdinov, P. M. Omarova, M. V. Zyrianov, “Diode laser spectroscopy of water vapor in 1.8 µm: line profile measurements,” J. Mol. Spectrosc. 160, 326–334 (1993).
[CrossRef]

Perrin, A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Philippe, L. C.

Preier, H.

Rautian, S. G.

S. G. Rautian, I. I. Sobelman, “Effect of collisions on the Doppler broadening of spectral lines,” Sov. Phys. Usp. 9, 701–716 (1967).
[CrossRef]

Reid, J.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers: comparison of experiment and theory,” Appl.Phys. B 26, 203–210 (1981).

Rinsland, C. P.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Riris, H.

Ritter, K. J.

K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

K. J. Ritter, “A high resolution spectroscopic study of absorption line profiles in the A-band of molecular oxygen,” Ph.D. dissertation (University of Maryland, College Park, Md., 1986).

Rothman, L. S.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Sears, T. J.

J. C. Bloch, R. W. Fied, G. H. Hall, T. J. Sears, “Time-resolved frequency modulation spectroscopy of photochemical transients,” J. Chem. Phys. 101, 1717–1720 (1994).
[CrossRef]

Silver, J. A.

Slemr, F.

P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Quantum-limited FM spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[CrossRef]

Smith, M. A. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Sobelman, I. I.

S. G. Rautian, I. I. Sobelman, “Effect of collisions on the Doppler broadening of spectral lines,” Sov. Phys. Usp. 9, 701–716 (1967).
[CrossRef]

Stanton, A. C.

Stepanov, E. V.

Y. V. Kosichkin, A. I. Nadezhdinskii, E. V. Stepanov, “Diode laser spectroscopy of collisional broadening in the spectra of polyatomic molecules,” J. Quant. Spectrosc. Radiat. Transfer 43, 499–509 (1990).
[CrossRef]

Supplee, J. M.

Svanberg, S.

P. Kauranen, H. M. Hertz, S. Svanberg, “Tomographic imaging of fluid flows by the use of two-tone frequency-modulation spectroscopy,” Opt. Lett. 19, 1498–1500 (1994).
[CrossRef]

Tang, C. L.

E. G. Moses, C. L. Tang, “High-sensitivity laser wavelength-modulation spectroscopy,” Opt.Lett. 1, 115–117 (1977).

Tipping, R. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Toth, R. A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Vankwikelberge, P.

G. Morthier, F. Libbrecht, K. David, P. Vankwikelberge, R. G. Baets, “Theoretical investigation of the second-order harmonic distortion in the AM response of 1.55 µm F-P and DFB lasers,” IEEE J. Quantum Electron. 27, 1990–2002 (1991).
[CrossRef]

Varghese, P. L.

Werle, P.

P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Quantum-limited FM spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[CrossRef]

Whittaker, E. A.

Wilkerson, T. D.

K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

Wong, N. C.

Yamamoto, Y.

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in GaAlAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
[CrossRef]

Yariv, A.

K. Y. Lau, A. Yariv, “Intermodulation distortion in a directly modulated semiconductor injection laser,” Appl. Phys. Lett. 45, 1034–1036 (1984).
[CrossRef]

Zyrianov, M. V.

V. G. Avetisov, A. I. Nadezhdinskii, A. N. Khusnutdinov, P. M. Omarova, M. V. Zyrianov, “Diode laser spectroscopy of water vapor in 1.8 µm: line profile measurements,” J. Mol. Spectrosc. 160, 326–334 (1993).
[CrossRef]

Appl. Opt. (11)

P. L. Varghese, R. K. Hanson, “Collisional narrowing effects on spectral line shapes measured at high resolution,” Appl. Opt. 23, 2376–2385 (1984).
[CrossRef] [PubMed]

C. B. Carlisle, D. E. Cooper, H. Preier, “Quantum noise-limited FM spectroscopy with a lead-salt diode laser,” Appl. Opt. 28, 2567–2576 (1989).
[CrossRef] [PubMed]

D. A. Glenar, D. E. Jennings, S. Nadler, “Electrooptic modulation methods for high sensitivity tunable diode laser spectroscopy,” Appl. Opt. 29, 2282–2288 (1990).
[CrossRef] [PubMed]

J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
[CrossRef] [PubMed]

D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
[CrossRef] [PubMed]

N. Goldstein, S. Adler-Golden, J. Lee, F. Bien, “Measurement of molecular concentrations and line parameters using line-locked second harmonic spectroscopy with an AlGaAs diode laser,” Appl. Opt. 31, 3409–3415 (1992).
[CrossRef] [PubMed]

L. C. Philippe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993).
[CrossRef] [PubMed]

M. P. Arroyo, S. Langlois, R. K. Hanson, “Diode-laser absorption technique for simultaneous measurements of multiple gasdynamic parameters in high-speed flows containing water vapor,” Appl. Opt. 33, 3296–3307 (1994).
[CrossRef] [PubMed]

J. M. Supplee, E. A. Whittaker, W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994).
[CrossRef] [PubMed]

H. Riris, C. B. Carlisle, L. W. Carr, D. E. Cooper, R. U. Martinelli, R. J. Menna, “Design of an open path near-infrared diode laser sensor: application to oxygen, water, and carbon dioxide vapor detection,” Appl. Opt. 33, 7059–7066 (1994).
[CrossRef] [PubMed]

V. G. Avetisov, P. Kauranen, “Two-tone frequency-modulation spectroscopy for quantitative measurements of gaseous species: theoretical, numerical, and experimental investigation of line shapes,” Appl. Opt. 35, 4705–4723 (1996).
[CrossRef] [PubMed]

Appl. Phys. B (1)

P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Quantum-limited FM spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[CrossRef]

Appl. Phys. Lett. (1)

K. Y. Lau, A. Yariv, “Intermodulation distortion in a directly modulated semiconductor injection laser,” Appl. Phys. Lett. 45, 1034–1036 (1984).
[CrossRef]

Appl.Phys. B (1)

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers: comparison of experiment and theory,” Appl.Phys. B 26, 203–210 (1981).

IEEE J. Quantum Electron. (2)

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in GaAlAs semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 582–595 (1982).
[CrossRef]

G. Morthier, F. Libbrecht, K. David, P. Vankwikelberge, R. G. Baets, “Theoretical investigation of the second-order harmonic distortion in the AM response of 1.55 µm F-P and DFB lasers,” IEEE J. Quantum Electron. 27, 1990–2002 (1991).
[CrossRef]

J. Chem. Phys. (1)

J. C. Bloch, R. W. Fied, G. H. Hall, T. J. Sears, “Time-resolved frequency modulation spectroscopy of photochemical transients,” J. Chem. Phys. 101, 1717–1720 (1994).
[CrossRef]

J. Mol. Spectrosc. (2)

V. G. Avetisov, A. I. Nadezhdinskii, A. N. Khusnutdinov, P. M. Omarova, M. V. Zyrianov, “Diode laser spectroscopy of water vapor in 1.8 µm: line profile measurements,” J. Mol. Spectrosc. 160, 326–334 (1993).
[CrossRef]

K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

P. Kauranen, I. Harwigsson, B. Jönsson, “Relative vapor pressure measurements using a frequency-modulated tuneable diode laser, a tool for water activity determination in solutions,” J. Phys. Chem. 98, 1411–1415 (1994).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (3)

Y. V. Kosichkin, A. I. Nadezhdinskii, E. V. Stepanov, “Diode laser spectroscopy of collisional broadening in the spectra of polyatomic molecules,” J. Quant. Spectrosc. Radiat. Transfer 43, 499–509 (1990).
[CrossRef]

F. Herbert, “Spectrum line profiles: a generalized Voigt function including collisional narrowing,” J. Quant. Spectrosc. Radiat. Transfer 14, 943–951 (1974).
[CrossRef]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

J.Opt. Soc. Am. B (1)

G. R. Janik, C. B. Carlisle, T. F. Gallagher, “Two-tone frequency-modulation spectroscopy,” J.Opt. Soc. Am. B 3, 1070–1074 (1986).
[CrossRef]

Lund Reports on Atom. Phys. (1)

V. G. Avetisov, P. Kauranen, “A software method for improving the performance characteristics of a conventional digitizing oscilloscope,” Lund Reports on Atom. Phys. 158 (1994).

Opt. Commun. (1)

P. Kauranen, V. G. Avetisov, “Determination of absorption line parameters using two-tone frequency-modulation spectroscopy with diode lasers,” Opt. Commun. 106, 213–217 (1994).
[CrossRef]

Opt. Lett. (3)

Opt.Lett. (1)

E. G. Moses, C. L. Tang, “High-sensitivity laser wavelength-modulation spectroscopy,” Opt.Lett. 1, 115–117 (1977).

Phys. Rev. (1)

L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral shapes,” Phys. Rev. 122, 1218–1223 (1961).
[CrossRef]

Sov. Phys. Usp. (1)

S. G. Rautian, I. I. Sobelman, “Effect of collisions on the Doppler broadening of spectral lines,” Sov. Phys. Usp. 9, 701–716 (1967).
[CrossRef]

Other (2)

G. P. Agrawal, N. K. Dutta, Long-wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986).
[CrossRef]

K. J. Ritter, “A high resolution spectroscopic study of absorption line profiles in the A-band of molecular oxygen,” Ph.D. dissertation (University of Maryland, College Park, Md., 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the experimental setup for combined TTFMS and direct absorption measurements.

Fig. 2
Fig. 2

Comparison of the power spectra of a two-tone frequency modulated laser, which is wavelength scanned with (a) a current ramp and (b) a current pulse. The FM index changes with the laser intensity during the current ramp, whereas a constant FM index is maintained over the wavelength scan induced by the current pulse. The free-spectral range of the Fabry–Perot interferometer was 7.5 GHz.

Fig. 3
Fig. 3

Demonstration of the efficiency of the dual-beam subtraction scheme. (a) Intensity transmitted through the reference beam showing two atmospheric oxygen lines. The peak absorbance of the stronger line is 1.3%. (b) Signal after subtraction multiplied by 103.

Fig. 4
Fig. 4

(a) Direct absorption and (b) TTFMS spectra of oxygen at 200 torr recorded with constant-current wavelength scanning and dual-beam subtraction. (c) Corresponding throughput from the solid étalon.

Fig. 5
Fig. 5

Typical results of least-squares fits to data recorded by use of direct absorption at three different pressures. The spectra are normalized to their peak amplitudes. The fitted line profiles are the Voigt, Galatry, and Rautian–Sobelman, labeled V, G, and R, respectively.

Fig. 6
Fig. 6

Typical results of least-squares fits to experimental data recorded by use of TTFMS with measurement conditions corresponding to those in Fig. 5. The modulation indices were β = 0.73 and M = 0.004, and the modulation frequencies were 585 ± 5.4 MHz. Each spectrum is normalized to its peak-to-peak amplitude.

Fig. 7
Fig. 7

Collision half-width Γ and standardized broadening y versus integrated intensity S for the R15Q16 line. The traces, labeled 1, 2, and 3, are results of multiple least-squares fits of three TTFMS spectra recorded with different unknown FM indices. The intersection points yield accurate estimations of the collision half-width Γ, the integrated intensity S, and the FM indices. The rectangles pointed out by arrows indicate the accuracy in determining the line parameters. For comparison, data (open circles) retrieved from direct absorption spectra are shown together with a fitted straight line.

Fig. 8
Fig. 8

Collision half-width versus pressure, retrieved from direct absorption and TTFMS line shapes. For clarity the upper plot shows only the direct absorption data with fitted straight lines, and the values for the R17R17 line are offset. The lower plot shows the difference between the retrieved collision half-widths and the straight line fitted to the retrieved collision half-widths of the R15Q16 line (open squares).

Fig. 9
Fig. 9

Integrated intensities retrieved by TTFMS versus integrated intensities retrieved by direct absorption. The lower plot is the difference.

Fig. 10
Fig. 10

Self-induced line shifts measured by TTFMS versus pressure. The values for the R17R17 line are offset for clarity.

Fig. 11
Fig. 11

Error dy of the broadening parameter induced by an FM index error dβ versus the broadening parameter y for different normalized modulation frequencies ν̅ m . In the regions where the error dy is nearly constant, an FM index error only offsets the pressure dependence of retrieved broadening parameters.

Tables (1)

Tables Icon

Table 1 Line Parameters Determined in This Study at T = 296 K and Literature Dataa

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ISν=I0νexp-αcν-αaν-I0νexp-αaν,
αcν=-ln1+ISν/Iairν,
Iairν=I0νexp-αaν
IΩ=2I0 cosθn,m ReRn,mexp-1/2αn,m+αn+1,m-1,
Rn,m=rnrmr*n+1r*m-1+Jn+1βJm-1βAn,m+JnβJmβA*n+1,m-1,
rnβ, M, ΨJn(β)+M/2iJn-1βexpiΨ-Jn+1βexp-iΨ.
An,mJmβδn+Jnβδm,
δnβ, ζ, ϑJ1ζJn-2βexpiϑ-Jn+2βexp-iϑ.
IΩ=2I0 cosθn,m ReRn,mexp-αaνc+n+mνm×exp-1/2αcn,m+αcn+1,m-1-1,
ανSgν-ν0.
ανS/σ πKx, y, z,
dyβ-Qβy1+yβ1.5dβ,
dSβ/S-2.2+QβSβ1.5dβ/β,

Metrics