Abstract

A precise measuring method for detecting the in situ distortion profile of a high-heat-load mirror for synchrotron radiation by use of a pentaprism long trace profiler (LTP) is presented. A maximum distortion of 0.47 µm across a length of 180 mm was measured for an internally water-cooled mirror on an undulator beam line at ELETTRA while exposed to a total emitted power of 600 W. This first successfully tested in situ distortion profile points out the importance and need for this method. Two configurations for performing in situ LTP tests are discussed. For this measurement the configuration with all the equipment external to the vacuum chamber was used. The experiment has an accuracy and a repeatability of 0.04 µm. Suggestions for improving the accuracy and stability are presented.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. M. Anthony, “High heat load optics: an historical overview,” Opt. Eng. 34, 313–320 (1995).
    [CrossRef]
  2. D. M. Mills, “High heat load synchrotron optics,” in High Heat Flux Engineering, A. M. Khounsary, ed., Proc. SPIE1739, 456–463 (1992).
    [CrossRef]
  3. J. L. Stapp, “Thermal distortion test facility,” Opt. Eng. 34, 330–334 (1995).
    [CrossRef]
  4. J. Susini, R. Baker, M. Krumrey, W. Schwegle, Å. Kvick, “Adaptive x-ray mirror prototype: first result,” Rev. Sci. Instrum. 66, 2048–2052 (1995).
    [CrossRef]
  5. J. Susini, “X-ray mirrors for high brilliance synchrotron beamlines: R&D at the ESRF,” in Optics for High-Brightness Synchrotron Radiation Beamlines, J. Arthur, ed., Proc. SPIE1740, 44–57 (1992).
    [CrossRef]
  6. J. Schulte in den Bäumen, “Detect 16 wavefront sensor,” Zeiss Information with Jena Review 3(4), 29 (1994).
  7. S. Qian, H. Rarback, D. Shu, P. Z. Takacs, “In situ shearing interferometry of National Synchrotron Light source mirrors,” in Metrology: Figure and Finish, B. Truax, ed., Proc. SPIE749, 30–36 (1987).
  8. S. Qian, W. Jark, P. Z. Takacs, K. J. Randall, W. Yun, “In situ surface profiler for high heat load mirror measurement,” Opt. Eng. 34, 396–402, (1995).
    [CrossRef]
  9. S. Qian, W. Jark, P. Z. Takacs, “The pentaprism LTP: A long-trace-profiler with stationary optical head and moving pentaprism,” Rev. Sci. Instrum. 66, 2562–2569 (1995).
    [CrossRef]
  10. K. Von Bieren, “Pencil beam interferometer for aspherical optical surfaces,” in Laser Diagnostics, S. Holly, ed., Proc. SPIE343, 101–108 (1982).
    [CrossRef]
  11. K. Von Bieren, “Interferometry of wave fronts reflected off conical surfaces,” Appl. Opt. 22, 2109–2114 (1983).
    [CrossRef] [PubMed]
  12. P. Z. Takacs, S. Qian, “Design of a long trace surface profiler,” in Metrology: Figure and Finish, B. E. Truax, ed., Proc. SPIE749, 59–64 (1987).
  13. P. Z. Takacs, S. Qian, “Surface profile interferometer,” U.S. Patent4,884,697 (5December1989).
  14. S. C. Irick, W. R. Mckinney, D. L. J. Lunt, P. Z. Takacs, “Using a straightness reference in obtaining more accurate surface profiles from a long trace profiler,” Rev. Sci. Instrum. 63 (Part IIB), 1436–1438 (1992).
  15. S. Qian, G. Sostero, W. Jark, “Operation experience with the long-trace-profiler LTP II and improvements,” (1994).
  16. S. C. Irick, “Determining surface profile from sequential interference patters from a long trace profiler,” Rev. Sci. Instrum. 63, 1432–1435 (1992).
    [CrossRef]
  17. Glidcop, a copper/aluminum alloy, is a trademark of SCM Metals, Inc.

1995 (5)

F. M. Anthony, “High heat load optics: an historical overview,” Opt. Eng. 34, 313–320 (1995).
[CrossRef]

J. L. Stapp, “Thermal distortion test facility,” Opt. Eng. 34, 330–334 (1995).
[CrossRef]

J. Susini, R. Baker, M. Krumrey, W. Schwegle, Å. Kvick, “Adaptive x-ray mirror prototype: first result,” Rev. Sci. Instrum. 66, 2048–2052 (1995).
[CrossRef]

S. Qian, W. Jark, P. Z. Takacs, K. J. Randall, W. Yun, “In situ surface profiler for high heat load mirror measurement,” Opt. Eng. 34, 396–402, (1995).
[CrossRef]

S. Qian, W. Jark, P. Z. Takacs, “The pentaprism LTP: A long-trace-profiler with stationary optical head and moving pentaprism,” Rev. Sci. Instrum. 66, 2562–2569 (1995).
[CrossRef]

1994 (1)

J. Schulte in den Bäumen, “Detect 16 wavefront sensor,” Zeiss Information with Jena Review 3(4), 29 (1994).

1992 (2)

S. C. Irick, W. R. Mckinney, D. L. J. Lunt, P. Z. Takacs, “Using a straightness reference in obtaining more accurate surface profiles from a long trace profiler,” Rev. Sci. Instrum. 63 (Part IIB), 1436–1438 (1992).

S. C. Irick, “Determining surface profile from sequential interference patters from a long trace profiler,” Rev. Sci. Instrum. 63, 1432–1435 (1992).
[CrossRef]

1983 (1)

Anthony, F. M.

F. M. Anthony, “High heat load optics: an historical overview,” Opt. Eng. 34, 313–320 (1995).
[CrossRef]

Baker, R.

J. Susini, R. Baker, M. Krumrey, W. Schwegle, Å. Kvick, “Adaptive x-ray mirror prototype: first result,” Rev. Sci. Instrum. 66, 2048–2052 (1995).
[CrossRef]

Irick, S. C.

S. C. Irick, “Determining surface profile from sequential interference patters from a long trace profiler,” Rev. Sci. Instrum. 63, 1432–1435 (1992).
[CrossRef]

S. C. Irick, W. R. Mckinney, D. L. J. Lunt, P. Z. Takacs, “Using a straightness reference in obtaining more accurate surface profiles from a long trace profiler,” Rev. Sci. Instrum. 63 (Part IIB), 1436–1438 (1992).

Jark, W.

S. Qian, W. Jark, P. Z. Takacs, “The pentaprism LTP: A long-trace-profiler with stationary optical head and moving pentaprism,” Rev. Sci. Instrum. 66, 2562–2569 (1995).
[CrossRef]

S. Qian, W. Jark, P. Z. Takacs, K. J. Randall, W. Yun, “In situ surface profiler for high heat load mirror measurement,” Opt. Eng. 34, 396–402, (1995).
[CrossRef]

S. Qian, G. Sostero, W. Jark, “Operation experience with the long-trace-profiler LTP II and improvements,” (1994).

Krumrey, M.

J. Susini, R. Baker, M. Krumrey, W. Schwegle, Å. Kvick, “Adaptive x-ray mirror prototype: first result,” Rev. Sci. Instrum. 66, 2048–2052 (1995).
[CrossRef]

Kvick, Å.

J. Susini, R. Baker, M. Krumrey, W. Schwegle, Å. Kvick, “Adaptive x-ray mirror prototype: first result,” Rev. Sci. Instrum. 66, 2048–2052 (1995).
[CrossRef]

Lunt, D. L. J.

S. C. Irick, W. R. Mckinney, D. L. J. Lunt, P. Z. Takacs, “Using a straightness reference in obtaining more accurate surface profiles from a long trace profiler,” Rev. Sci. Instrum. 63 (Part IIB), 1436–1438 (1992).

Mckinney, W. R.

S. C. Irick, W. R. Mckinney, D. L. J. Lunt, P. Z. Takacs, “Using a straightness reference in obtaining more accurate surface profiles from a long trace profiler,” Rev. Sci. Instrum. 63 (Part IIB), 1436–1438 (1992).

Mills, D. M.

D. M. Mills, “High heat load synchrotron optics,” in High Heat Flux Engineering, A. M. Khounsary, ed., Proc. SPIE1739, 456–463 (1992).
[CrossRef]

Qian, S.

S. Qian, W. Jark, P. Z. Takacs, K. J. Randall, W. Yun, “In situ surface profiler for high heat load mirror measurement,” Opt. Eng. 34, 396–402, (1995).
[CrossRef]

S. Qian, W. Jark, P. Z. Takacs, “The pentaprism LTP: A long-trace-profiler with stationary optical head and moving pentaprism,” Rev. Sci. Instrum. 66, 2562–2569 (1995).
[CrossRef]

S. Qian, H. Rarback, D. Shu, P. Z. Takacs, “In situ shearing interferometry of National Synchrotron Light source mirrors,” in Metrology: Figure and Finish, B. Truax, ed., Proc. SPIE749, 30–36 (1987).

P. Z. Takacs, S. Qian, “Surface profile interferometer,” U.S. Patent4,884,697 (5December1989).

S. Qian, G. Sostero, W. Jark, “Operation experience with the long-trace-profiler LTP II and improvements,” (1994).

P. Z. Takacs, S. Qian, “Design of a long trace surface profiler,” in Metrology: Figure and Finish, B. E. Truax, ed., Proc. SPIE749, 59–64 (1987).

Randall, K. J.

S. Qian, W. Jark, P. Z. Takacs, K. J. Randall, W. Yun, “In situ surface profiler for high heat load mirror measurement,” Opt. Eng. 34, 396–402, (1995).
[CrossRef]

Rarback, H.

S. Qian, H. Rarback, D. Shu, P. Z. Takacs, “In situ shearing interferometry of National Synchrotron Light source mirrors,” in Metrology: Figure and Finish, B. Truax, ed., Proc. SPIE749, 30–36 (1987).

Schulte in den Bäumen, J.

J. Schulte in den Bäumen, “Detect 16 wavefront sensor,” Zeiss Information with Jena Review 3(4), 29 (1994).

Schwegle, W.

J. Susini, R. Baker, M. Krumrey, W. Schwegle, Å. Kvick, “Adaptive x-ray mirror prototype: first result,” Rev. Sci. Instrum. 66, 2048–2052 (1995).
[CrossRef]

Shu, D.

S. Qian, H. Rarback, D. Shu, P. Z. Takacs, “In situ shearing interferometry of National Synchrotron Light source mirrors,” in Metrology: Figure and Finish, B. Truax, ed., Proc. SPIE749, 30–36 (1987).

Sostero, G.

S. Qian, G. Sostero, W. Jark, “Operation experience with the long-trace-profiler LTP II and improvements,” (1994).

Stapp, J. L.

J. L. Stapp, “Thermal distortion test facility,” Opt. Eng. 34, 330–334 (1995).
[CrossRef]

Susini, J.

J. Susini, R. Baker, M. Krumrey, W. Schwegle, Å. Kvick, “Adaptive x-ray mirror prototype: first result,” Rev. Sci. Instrum. 66, 2048–2052 (1995).
[CrossRef]

J. Susini, “X-ray mirrors for high brilliance synchrotron beamlines: R&D at the ESRF,” in Optics for High-Brightness Synchrotron Radiation Beamlines, J. Arthur, ed., Proc. SPIE1740, 44–57 (1992).
[CrossRef]

Takacs, P. Z.

S. Qian, W. Jark, P. Z. Takacs, K. J. Randall, W. Yun, “In situ surface profiler for high heat load mirror measurement,” Opt. Eng. 34, 396–402, (1995).
[CrossRef]

S. Qian, W. Jark, P. Z. Takacs, “The pentaprism LTP: A long-trace-profiler with stationary optical head and moving pentaprism,” Rev. Sci. Instrum. 66, 2562–2569 (1995).
[CrossRef]

S. C. Irick, W. R. Mckinney, D. L. J. Lunt, P. Z. Takacs, “Using a straightness reference in obtaining more accurate surface profiles from a long trace profiler,” Rev. Sci. Instrum. 63 (Part IIB), 1436–1438 (1992).

S. Qian, H. Rarback, D. Shu, P. Z. Takacs, “In situ shearing interferometry of National Synchrotron Light source mirrors,” in Metrology: Figure and Finish, B. Truax, ed., Proc. SPIE749, 30–36 (1987).

P. Z. Takacs, S. Qian, “Surface profile interferometer,” U.S. Patent4,884,697 (5December1989).

P. Z. Takacs, S. Qian, “Design of a long trace surface profiler,” in Metrology: Figure and Finish, B. E. Truax, ed., Proc. SPIE749, 59–64 (1987).

Von Bieren, K.

K. Von Bieren, “Interferometry of wave fronts reflected off conical surfaces,” Appl. Opt. 22, 2109–2114 (1983).
[CrossRef] [PubMed]

K. Von Bieren, “Pencil beam interferometer for aspherical optical surfaces,” in Laser Diagnostics, S. Holly, ed., Proc. SPIE343, 101–108 (1982).
[CrossRef]

Yun, W.

S. Qian, W. Jark, P. Z. Takacs, K. J. Randall, W. Yun, “In situ surface profiler for high heat load mirror measurement,” Opt. Eng. 34, 396–402, (1995).
[CrossRef]

Appl. Opt. (1)

Opt. Eng. (3)

F. M. Anthony, “High heat load optics: an historical overview,” Opt. Eng. 34, 313–320 (1995).
[CrossRef]

J. L. Stapp, “Thermal distortion test facility,” Opt. Eng. 34, 330–334 (1995).
[CrossRef]

S. Qian, W. Jark, P. Z. Takacs, K. J. Randall, W. Yun, “In situ surface profiler for high heat load mirror measurement,” Opt. Eng. 34, 396–402, (1995).
[CrossRef]

Rev. Sci. Instrum. (4)

S. Qian, W. Jark, P. Z. Takacs, “The pentaprism LTP: A long-trace-profiler with stationary optical head and moving pentaprism,” Rev. Sci. Instrum. 66, 2562–2569 (1995).
[CrossRef]

J. Susini, R. Baker, M. Krumrey, W. Schwegle, Å. Kvick, “Adaptive x-ray mirror prototype: first result,” Rev. Sci. Instrum. 66, 2048–2052 (1995).
[CrossRef]

S. C. Irick, “Determining surface profile from sequential interference patters from a long trace profiler,” Rev. Sci. Instrum. 63, 1432–1435 (1992).
[CrossRef]

S. C. Irick, W. R. Mckinney, D. L. J. Lunt, P. Z. Takacs, “Using a straightness reference in obtaining more accurate surface profiles from a long trace profiler,” Rev. Sci. Instrum. 63 (Part IIB), 1436–1438 (1992).

Zeiss Information with Jena Review (1)

J. Schulte in den Bäumen, “Detect 16 wavefront sensor,” Zeiss Information with Jena Review 3(4), 29 (1994).

Other (8)

S. Qian, H. Rarback, D. Shu, P. Z. Takacs, “In situ shearing interferometry of National Synchrotron Light source mirrors,” in Metrology: Figure and Finish, B. Truax, ed., Proc. SPIE749, 30–36 (1987).

S. Qian, G. Sostero, W. Jark, “Operation experience with the long-trace-profiler LTP II and improvements,” (1994).

Glidcop, a copper/aluminum alloy, is a trademark of SCM Metals, Inc.

J. Susini, “X-ray mirrors for high brilliance synchrotron beamlines: R&D at the ESRF,” in Optics for High-Brightness Synchrotron Radiation Beamlines, J. Arthur, ed., Proc. SPIE1740, 44–57 (1992).
[CrossRef]

D. M. Mills, “High heat load synchrotron optics,” in High Heat Flux Engineering, A. M. Khounsary, ed., Proc. SPIE1739, 456–463 (1992).
[CrossRef]

K. Von Bieren, “Pencil beam interferometer for aspherical optical surfaces,” in Laser Diagnostics, S. Holly, ed., Proc. SPIE343, 101–108 (1982).
[CrossRef]

P. Z. Takacs, S. Qian, “Design of a long trace surface profiler,” in Metrology: Figure and Finish, B. E. Truax, ed., Proc. SPIE749, 59–64 (1987).

P. Z. Takacs, S. Qian, “Surface profile interferometer,” U.S. Patent4,884,697 (5December1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Basic principle of the ppLTP. MUT, mirror under test.

Fig. 2
Fig. 2

Two alternative configurations for in situ LTP distortion profile testing by use of the ppLTP: (a) Pentaprism scans outside the vacuum chamber with the beam passing through a large window. (b) Pentaprism scans inside the vacuum chamber with the beam passing through a small window. The sampling beam, SB, travels along the entire test length of the mirror. The reference beam, RB, remains stationary at a different height from the sampling beam. Synchrotron radiation beam, SRB.

Fig. 3
Fig. 3

Schematic of the in situ LTP test.

Fig. 4
Fig. 4

View of the in situ LTP for distortion measurement installed in a radiation shielding hutch at ELETTRA.

Fig. 5
Fig. 5

Thermal condition for the in situ distortion profile test: (a) Temperature of in situ LTP shielded in the plastic tent. (b) Temperature in the radiation-shielding hutch (without ceiling).

Fig. 6
Fig. 6

Optical quality of the vacuum window with a length of 200 mm, tested by the LTP.

Fig. 7
Fig. 7

In situ height distortion profiles of a synchrotron radiation mirror under a high heat load, as measured with the ppLTP: (a) Total power, 600 W; undulator gap, 30 mm; current, 181 mA; energy, 2 GeV. (b) Total power, 360 W; undulator gap, 40 mm; current, 187 mA; energy, 2 GeV. (c) Total power, 150 W; undulator gap, 60 mm; current, 224 mA; energy, 2 GeV. (d) No synchrotron beam on, thus corresponding to the test repeatability (<0.04 µm, peak to valley).

Fig. 8
Fig. 8

In situ distortion slope profiles of a synchrotron radiation mirror under a high heat load: (a) slope variation of ∼27 µrad while exposed to a total power of 600 W, (b) slope variation of ∼18 µrad while exposed to a total power of 360 W, (c) the slope difference between two files without the synchrotron beam on.

Fig. 9
Fig. 9

Comparison of two stationary reference slope profiles in different test conditions: (a) in situ test at a synchrotron radiation beamline with a total power of 600 W on the tested mirror, (b) a plane mirror tested on an antivibration table in a temperature-controlled room (±0.1 °C).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

m=2da,

Metrics