Abstract

We have constructed a computed-tomography imaging spectrometer that uses a phase-only computer-generated hologram (CGH) array illuminator as the disperser. This imaging spectrometer collects multiplexed spatial and spectral data simultaneously and can be used for flash spectral imaging. The CGH disperser has been designed to maintain nearly equal spectral diffraction efficiency among a 5 × 5 array of diffraction orders and to minimize diffraction efficiency into higher orders. Reconstruction of the (x, y, λ) image cube from the raw, two-dimensional data is achieved by computed-tomography techniques. The reconstructed image and spectral-signature data compare favorably with measurements by other spectrometric methods.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. H. Goetz, “Imaging spectrometry for earth remote sensing,” Science 228, 1147–1153 (1985).
    [CrossRef] [PubMed]
  2. R. W. Basedow, D. C. Carmer, M. E. Anderson, “HYDICE system, implementation, and performance,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. B. Illing, eds., Proc. SPIE2480, 258–267 (1995).
    [CrossRef]
  3. W. M. Porter, H. T. Enmark, “A system overview of the Airborne Visible/Infrared Imaging Spectrometer (A VIRIS),” in Imaging Spectroscopy II, G. Vane, ed., Proc. SPIE834, 22–31 (1987).
    [CrossRef]
  4. T. Okamoto, I. Yamaguchi, “Simultaneous acquisition of spectral image information,” Opt. Lett. 16, 1277–1279 (1991).
    [CrossRef] [PubMed]
  5. T. Okamoto, A. Takahashi, I. Yamaguchi, “Simultaneous acquisition of spectral and spatial intensity distribution,” Appl. Spectrosc. 47, 1198–1202 (1993).
    [CrossRef]
  6. F. V. Bulygin, G. N. Vishnyakov, G. G. Levin, D. V. Karpukhin, “Spectrotomography—a new method of obtaining spectrograms of 2-D objects,” Opt. Spectrosc. (USSR) 71, 561–563 (1991).
  7. M. R. Descour, “Non-scanning Imaging Spectrometry,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 1994).
  8. M. R. Descour, E. L. Dereniak, “Computed-tomography imaging spectrometer: experimental calibration and reconstruction results,” App. Opt. 34, 4817–4826 (1995).
    [CrossRef]
  9. M. I. Sezan, H. Stark, “Applications of convex projection theory to image recovery in tomography and related areas,” in Image Recovery: Theory and Application, H. Stark, ed. (Academic, San Diego, Calif., 1987), pp. 415–462.
  10. P. A. Bernhardt, “Direct reconstruction methods for hyperspectral imaging with rotational spectrotomography,” J. Opt. Soc. Am. A 12, 1884–1901 (1995).
    [CrossRef]
  11. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  12. A. F. Gmitro, C. L. Coleman, “Multilevel phase holograms for free-space optical interconnects: design and analysis,” in Optoelectronic Interconnects and Packaging, R. T. Chen, P. S. Guilfoyle, eds., Proc. SPIECR62, 88–105 (1996).
  13. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw–Hill, New York, 1996), Chap. 4, pp. 81–83.
  14. E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984), Chap. 9, p. 225.
  15. P. D. Maker, R. E. Muller, “Phase holograms in polymethyl methacrylate,” J. Vac. Sci. Technol. B 10, 2516–2519 (1992).
    [CrossRef]
  16. P. D. Maker, D. W. Wilson, R. E. Muller, “Fabrication and performance of optical interconnect analog phase holograms made by electron-beam lithography,” in Optoelectronic Interconnects and Packaging, R. T. Chen, P. S. Guilfoyle, eds., Proc. SPIECR62, 415–430 (1996).
  17. M. R. Descour, R. Schowengerdt, E. L. Dereniak, “Analysis of the computed-tomography imaging spectrometer by singular value decomposition,” in Algorithms for Multispectral and Hyperspectral Imagery II, E. Iverson, ed., Proc. SPIE2758, 127–133 (1996).
    [CrossRef]

1995 (2)

M. R. Descour, E. L. Dereniak, “Computed-tomography imaging spectrometer: experimental calibration and reconstruction results,” App. Opt. 34, 4817–4826 (1995).
[CrossRef]

P. A. Bernhardt, “Direct reconstruction methods for hyperspectral imaging with rotational spectrotomography,” J. Opt. Soc. Am. A 12, 1884–1901 (1995).
[CrossRef]

1993 (1)

1992 (1)

P. D. Maker, R. E. Muller, “Phase holograms in polymethyl methacrylate,” J. Vac. Sci. Technol. B 10, 2516–2519 (1992).
[CrossRef]

1991 (2)

T. Okamoto, I. Yamaguchi, “Simultaneous acquisition of spectral image information,” Opt. Lett. 16, 1277–1279 (1991).
[CrossRef] [PubMed]

F. V. Bulygin, G. N. Vishnyakov, G. G. Levin, D. V. Karpukhin, “Spectrotomography—a new method of obtaining spectrograms of 2-D objects,” Opt. Spectrosc. (USSR) 71, 561–563 (1991).

1985 (1)

A. F. H. Goetz, “Imaging spectrometry for earth remote sensing,” Science 228, 1147–1153 (1985).
[CrossRef] [PubMed]

1972 (1)

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Anderson, M. E.

R. W. Basedow, D. C. Carmer, M. E. Anderson, “HYDICE system, implementation, and performance,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. B. Illing, eds., Proc. SPIE2480, 258–267 (1995).
[CrossRef]

Basedow, R. W.

R. W. Basedow, D. C. Carmer, M. E. Anderson, “HYDICE system, implementation, and performance,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. B. Illing, eds., Proc. SPIE2480, 258–267 (1995).
[CrossRef]

Bernhardt, P. A.

Bulygin, F. V.

F. V. Bulygin, G. N. Vishnyakov, G. G. Levin, D. V. Karpukhin, “Spectrotomography—a new method of obtaining spectrograms of 2-D objects,” Opt. Spectrosc. (USSR) 71, 561–563 (1991).

Carmer, D. C.

R. W. Basedow, D. C. Carmer, M. E. Anderson, “HYDICE system, implementation, and performance,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. B. Illing, eds., Proc. SPIE2480, 258–267 (1995).
[CrossRef]

Coleman, C. L.

A. F. Gmitro, C. L. Coleman, “Multilevel phase holograms for free-space optical interconnects: design and analysis,” in Optoelectronic Interconnects and Packaging, R. T. Chen, P. S. Guilfoyle, eds., Proc. SPIECR62, 88–105 (1996).

Crowe, D. G.

E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984), Chap. 9, p. 225.

Dereniak, E. L.

M. R. Descour, E. L. Dereniak, “Computed-tomography imaging spectrometer: experimental calibration and reconstruction results,” App. Opt. 34, 4817–4826 (1995).
[CrossRef]

E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984), Chap. 9, p. 225.

M. R. Descour, R. Schowengerdt, E. L. Dereniak, “Analysis of the computed-tomography imaging spectrometer by singular value decomposition,” in Algorithms for Multispectral and Hyperspectral Imagery II, E. Iverson, ed., Proc. SPIE2758, 127–133 (1996).
[CrossRef]

Descour, M. R.

M. R. Descour, E. L. Dereniak, “Computed-tomography imaging spectrometer: experimental calibration and reconstruction results,” App. Opt. 34, 4817–4826 (1995).
[CrossRef]

M. R. Descour, R. Schowengerdt, E. L. Dereniak, “Analysis of the computed-tomography imaging spectrometer by singular value decomposition,” in Algorithms for Multispectral and Hyperspectral Imagery II, E. Iverson, ed., Proc. SPIE2758, 127–133 (1996).
[CrossRef]

M. R. Descour, “Non-scanning Imaging Spectrometry,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 1994).

Enmark, H. T.

W. M. Porter, H. T. Enmark, “A system overview of the Airborne Visible/Infrared Imaging Spectrometer (A VIRIS),” in Imaging Spectroscopy II, G. Vane, ed., Proc. SPIE834, 22–31 (1987).
[CrossRef]

Gerchberg, R. W.

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Gmitro, A. F.

A. F. Gmitro, C. L. Coleman, “Multilevel phase holograms for free-space optical interconnects: design and analysis,” in Optoelectronic Interconnects and Packaging, R. T. Chen, P. S. Guilfoyle, eds., Proc. SPIECR62, 88–105 (1996).

Goetz, A. F. H.

A. F. H. Goetz, “Imaging spectrometry for earth remote sensing,” Science 228, 1147–1153 (1985).
[CrossRef] [PubMed]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw–Hill, New York, 1996), Chap. 4, pp. 81–83.

Karpukhin, D. V.

F. V. Bulygin, G. N. Vishnyakov, G. G. Levin, D. V. Karpukhin, “Spectrotomography—a new method of obtaining spectrograms of 2-D objects,” Opt. Spectrosc. (USSR) 71, 561–563 (1991).

Levin, G. G.

F. V. Bulygin, G. N. Vishnyakov, G. G. Levin, D. V. Karpukhin, “Spectrotomography—a new method of obtaining spectrograms of 2-D objects,” Opt. Spectrosc. (USSR) 71, 561–563 (1991).

Maker, P. D.

P. D. Maker, R. E. Muller, “Phase holograms in polymethyl methacrylate,” J. Vac. Sci. Technol. B 10, 2516–2519 (1992).
[CrossRef]

P. D. Maker, D. W. Wilson, R. E. Muller, “Fabrication and performance of optical interconnect analog phase holograms made by electron-beam lithography,” in Optoelectronic Interconnects and Packaging, R. T. Chen, P. S. Guilfoyle, eds., Proc. SPIECR62, 415–430 (1996).

Muller, R. E.

P. D. Maker, R. E. Muller, “Phase holograms in polymethyl methacrylate,” J. Vac. Sci. Technol. B 10, 2516–2519 (1992).
[CrossRef]

P. D. Maker, D. W. Wilson, R. E. Muller, “Fabrication and performance of optical interconnect analog phase holograms made by electron-beam lithography,” in Optoelectronic Interconnects and Packaging, R. T. Chen, P. S. Guilfoyle, eds., Proc. SPIECR62, 415–430 (1996).

Okamoto, T.

Porter, W. M.

W. M. Porter, H. T. Enmark, “A system overview of the Airborne Visible/Infrared Imaging Spectrometer (A VIRIS),” in Imaging Spectroscopy II, G. Vane, ed., Proc. SPIE834, 22–31 (1987).
[CrossRef]

Saxton, W. O.

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Schowengerdt, R.

M. R. Descour, R. Schowengerdt, E. L. Dereniak, “Analysis of the computed-tomography imaging spectrometer by singular value decomposition,” in Algorithms for Multispectral and Hyperspectral Imagery II, E. Iverson, ed., Proc. SPIE2758, 127–133 (1996).
[CrossRef]

Sezan, M. I.

M. I. Sezan, H. Stark, “Applications of convex projection theory to image recovery in tomography and related areas,” in Image Recovery: Theory and Application, H. Stark, ed. (Academic, San Diego, Calif., 1987), pp. 415–462.

Stark, H.

M. I. Sezan, H. Stark, “Applications of convex projection theory to image recovery in tomography and related areas,” in Image Recovery: Theory and Application, H. Stark, ed. (Academic, San Diego, Calif., 1987), pp. 415–462.

Takahashi, A.

Vishnyakov, G. N.

F. V. Bulygin, G. N. Vishnyakov, G. G. Levin, D. V. Karpukhin, “Spectrotomography—a new method of obtaining spectrograms of 2-D objects,” Opt. Spectrosc. (USSR) 71, 561–563 (1991).

Wilson, D. W.

P. D. Maker, D. W. Wilson, R. E. Muller, “Fabrication and performance of optical interconnect analog phase holograms made by electron-beam lithography,” in Optoelectronic Interconnects and Packaging, R. T. Chen, P. S. Guilfoyle, eds., Proc. SPIECR62, 415–430 (1996).

Yamaguchi, I.

App. Opt. (1)

M. R. Descour, E. L. Dereniak, “Computed-tomography imaging spectrometer: experimental calibration and reconstruction results,” App. Opt. 34, 4817–4826 (1995).
[CrossRef]

Appl. Spectrosc. (1)

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. B (1)

P. D. Maker, R. E. Muller, “Phase holograms in polymethyl methacrylate,” J. Vac. Sci. Technol. B 10, 2516–2519 (1992).
[CrossRef]

Opt. Lett. (1)

Opt. Spectrosc. (USSR) (1)

F. V. Bulygin, G. N. Vishnyakov, G. G. Levin, D. V. Karpukhin, “Spectrotomography—a new method of obtaining spectrograms of 2-D objects,” Opt. Spectrosc. (USSR) 71, 561–563 (1991).

Optik (1)

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Science (1)

A. F. H. Goetz, “Imaging spectrometry for earth remote sensing,” Science 228, 1147–1153 (1985).
[CrossRef] [PubMed]

Other (9)

R. W. Basedow, D. C. Carmer, M. E. Anderson, “HYDICE system, implementation, and performance,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. B. Illing, eds., Proc. SPIE2480, 258–267 (1995).
[CrossRef]

W. M. Porter, H. T. Enmark, “A system overview of the Airborne Visible/Infrared Imaging Spectrometer (A VIRIS),” in Imaging Spectroscopy II, G. Vane, ed., Proc. SPIE834, 22–31 (1987).
[CrossRef]

M. R. Descour, “Non-scanning Imaging Spectrometry,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 1994).

A. F. Gmitro, C. L. Coleman, “Multilevel phase holograms for free-space optical interconnects: design and analysis,” in Optoelectronic Interconnects and Packaging, R. T. Chen, P. S. Guilfoyle, eds., Proc. SPIECR62, 88–105 (1996).

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw–Hill, New York, 1996), Chap. 4, pp. 81–83.

E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984), Chap. 9, p. 225.

P. D. Maker, D. W. Wilson, R. E. Muller, “Fabrication and performance of optical interconnect analog phase holograms made by electron-beam lithography,” in Optoelectronic Interconnects and Packaging, R. T. Chen, P. S. Guilfoyle, eds., Proc. SPIECR62, 415–430 (1996).

M. R. Descour, R. Schowengerdt, E. L. Dereniak, “Analysis of the computed-tomography imaging spectrometer by singular value decomposition,” in Algorithms for Multispectral and Hyperspectral Imagery II, E. Iverson, ed., Proc. SPIE2758, 127–133 (1996).
[CrossRef]

M. I. Sezan, H. Stark, “Applications of convex projection theory to image recovery in tomography and related areas,” in Image Recovery: Theory and Application, H. Stark, ed. (Academic, San Diego, Calif., 1987), pp. 415–462.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Instrument layout.

Fig. 2
Fig. 2

Atomic force microscope scan of a section of the CGH disperser. a, Measured irradiance distribution on the FPA obtained with the CGH disperser; b, measured irradiance distribution obtained with two crossed sinusoidal-phase gratings as the disperser.

Fig. 3
Fig. 3

UA scene used in the spectral-imaging example.

Fig. 4
Fig. 4

Spectral slices through the UA image cube reconstructed from the raw data collected by the CGH disperser-based CTIS. Images are shown in negative contrast.

Fig. 5
Fig. 5

Comparison of reconstructed and directly measured spectral signatures.

Tables (2)

Tables Icon

Table 1 CGH and XSPG Disperser Measured and Calculated σon Valuesa

Tables Icon

Table 2 Measured and Calculated ηtot values for the CGH Disperser and the Optimal XSPG Disperser

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

fmerit=meanσonλi+stdσonλi=1Ni=1N σonλi+i=1Nσonλi-σonλiλ2N-11/2,

Metrics