Abstract

A MacNeille type of linear polarizer is designed at a spectral band of ±20 nm centered at 633 nm. The acceptance angle is ±10° in the BK-7 glass, or ±15° in air.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Li, J. A. Dobrowolski, “Visible broadband wide-angle, thin-film multilayer polarizing beam splitter,” Appl. Opt. 35, 2221–2225 (1996).
    [CrossRef] [PubMed]
  2. P. W. Baumeister, “Attainment of optimum reflectance for TM polarized flux in immersed systems,” Appl. Opt. 18, 942–943 (1979).
    [CrossRef] [PubMed]
  3. J. Mouchart, J. Begel, E. Duda, “Modified MacNeille cube polarizer for a wide angular field,” Appl. Opt. 28, 2847–2853 (1989).
    [CrossRef] [PubMed]
  4. A. J. Thelen, Design of Optical Interference Coatings (McGraw-Hill, New York, 1989), p. 24.
  5. H. A. Macleod, Thin Film Optical Filters (Macmillan, New York, 1986), p. 170.
  6. A. F. Turner, P. W. Baumeister, “Multilayer mirrors with high reflectance over an extended spectral region,” Appl. Opt. 5, 69–76 (1966).
    [CrossRef] [PubMed]
  7. Software Spectra (corporate author), tfcalc (Portland, Ore. 97229, 1996).
  8. A. Noe, 14025 Harvest Lane NW, Portland, Ore. 97229 (personal communication, 1996).

1996

1989

1979

1966

Baumeister, P. W.

Begel, J.

Dobrowolski, J. A.

Duda, E.

Li, L.

Macleod, H. A.

H. A. Macleod, Thin Film Optical Filters (Macmillan, New York, 1986), p. 170.

Mouchart, J.

Noe, A.

A. Noe, 14025 Harvest Lane NW, Portland, Ore. 97229 (personal communication, 1996).

Thelen, A. J.

A. J. Thelen, Design of Optical Interference Coatings (McGraw-Hill, New York, 1989), p. 24.

Turner, A. F.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

For an incident medium with an index of 1.517 and incidence angles of 45° (lower curve) and 65° (upper curve), the effective index (p polarization) of a layer material [see Eq. (3)] is shown versus the layer refractive index n. The nonshaded areas represent attainable (i.e., usable) indices: 1.35 ≤ n ≤ 2.40. In the solid black areas, the MacNeille pairs contain usable indices. The ordinate changes scale at 2.5.

Fig. 2
Fig. 2

At incidence angles of 51° (solid curve) and 56° (dashed curve) in glass with an index of 1.517, T s (λ) (on an absorbance scale) of glass 1.51A (1.39B 1.51A)13 1.39B 0.75A glass is shown, where the indices of A and B are 1.60 and 1.74, respectively. Each layer is λ0/4 in optical thickness at a λ0 of 633 nm. The vertical line is at λ0.

Fig. 3
Fig. 3

At the indicated angles of incidence (in 1° increments) in glass with an index of 1.517, the spectral width of the stop band for s polarized light of the basic period 1.39B 1.51A is shown, where A and B are defined in the caption to Fig. 2. The vertical line is at λ0 = 633 nm.

Fig. 4
Fig. 4

At incidence angles of 51° (solid curve), 59° (dotted curve), and 65° (dashed curve), T s(λ) (on an absorbance scale) of glass 1.51A (1.39B 1.51A)13 1.39B 0.75A 0.83A 1.26C (1.65A 1.26C)7 0.83A glass is shown, where the layer indices appear in Table 1. Each layer is a multiple of λ0/4 in optical thickness at a λ0 of 633 nm. The vertical line is at λ0. The incidence angles are in glass with an index of 1.517.

Fig. 5
Fig. 5

Versus the angle of incidence in the glass with an index of 1.517, T p (λ) and T s (λ) of the 52-layer coating whose refractive index profile appears in Fig. 6 and whose design appears in Appendix A. The solid and dashed curves are at 633 nm. The shaded area is the envelope of T p as the wavelength varies by ±1%, from 627 to 639 nm.

Fig. 6
Fig. 6

Refractive index profile (versus thickness) of the coating captioned in Fig. 5.

Fig. 7
Fig. 7

Versus the angle of incidence in the glass with an index of 1.517, T p (λ) and T s (λ) of the 17-layer coating whose design appears in Appendix A. The wavelength is 633 nm.

Tables (1)

Tables Icon

Table 1 MacNeille Pairs of Refractive Indicesa

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Ln0 sin θ0=n1 sin θi,
Ns,ini|effective=ni cos θi=ni1-L2 ni-21/2,
Np,ini|effective=ni sec θi=ni1-L2 ni-2-1/2.
nmin=2 L=2 n0 sin θ0.
na-2+nb-2=L-2=n0 sin θ0-2.
glass A1 A2m1 B1 B2m2 C1 C2m3 glass,
glass 1.51A 1.39B 1.51A13 1.39B 0.75A 0.83A 1.26C 1.65A 1.26C7 0.83A glass.
glass 1.51A 10.21.36B 1.48A13 1.36B 0.75A 0.83A 1.26C1.65A 1.26C7 0.83A 0.84B1.25D 1.64B3 glass.
glass 249A 125B 132A 114B 128A 119B 131A 121B 134A 123B 137A 123B 136A 121B 136A 122B 135A 122B 137A 126B 143A 128B 141A 125B 142A 131B 152A 138B 121A 97.6C 169A 75.4C 185A 63.3C 199A 84.8C 198A 87.5C 204A 65.2C 203A 55.2C 194A,92.4C 153A 47.4B 88.1D 129B 105D 180B 117D 34.9B glass.
glass 55.25H 133.07L 73.39H 156.9L 75.62H 147.94L 57.57H 50.11M 160.50L 74.99H 233.40L 54.67M 25.29H 156.82L 93.02M 167.9H 87.41L 33.16H glass.

Metrics