Abstract

We propose a simple real-time system and demonstrate its use for measuring dynamic optical phase perturbation. In this system we used a 0.1-wt. % Fe:LiNbO3 to record the self-interference grating with incident light. The system is a new kind of real-time holographic interferometer. After rise time in the interferometer, the speed for showing the fringes is as fast as that of dynamic phase perturbations. Characteristics of the interferometer are proposed and examined.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-P. Huignard, P. Gunter, Photorefractive Materials and Their Applications: I. Fundamental Phenomena; Photorefractive Materials and Their Applications: II. Applications (Springer-Verlag, New York, 1988, 1989).
  2. See, for example, J. Feinberg, “Inteferometer with a self-pumped phase-conjugate conjugator,” Opt. Lett. 8, 569–571 (1983).
  3. A. Marrakchi, J. P. Huignard, J. P. Herriau, “Application of phase conjugation in Bi12SiO20 crystals to make pattern visualization of diffuse vibrating structures,” Opt. Commun. 34, 15–18 (1980).
    [CrossRef]
  4. D. Z. Anderson, D. M. Lininger, J. Feinberg, “Optical tracking novelty filter,” Opt. Lett. 12, 123–125 (1987).
    [CrossRef] [PubMed]
  5. C. C. Sun, R. H. Tsou, W. Shen, H. H. Chang, J. Y. Chang, M. W. Chang, “Shearing interferometer with a Kitty self-pumped phase-conjugate mirror,” Appl. Opt. 35, 1815–1819 (1996).
    [CrossRef] [PubMed]
  6. J. P. Huignard, J. P. Herriau, “Real-time double-exposure interferometry with Bi12SiO20 crystals in transverse electrooptic configuration,” Appl. Opt. 16, 1807–1809 (1977).
    [CrossRef] [PubMed]
  7. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1992), Sec. 8-3.
  8. G. R. Fowles, Introduction to Modern Optics (Holt, Rinehart & Winston, New York, 1975), pp. 141–144.

1996 (1)

1987 (1)

1983 (1)

1980 (1)

A. Marrakchi, J. P. Huignard, J. P. Herriau, “Application of phase conjugation in Bi12SiO20 crystals to make pattern visualization of diffuse vibrating structures,” Opt. Commun. 34, 15–18 (1980).
[CrossRef]

1977 (1)

Anderson, D. Z.

Chang, H. H.

Chang, J. Y.

Chang, M. W.

Feinberg, J.

Fowles, G. R.

G. R. Fowles, Introduction to Modern Optics (Holt, Rinehart & Winston, New York, 1975), pp. 141–144.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1992), Sec. 8-3.

Gunter, P.

J.-P. Huignard, P. Gunter, Photorefractive Materials and Their Applications: I. Fundamental Phenomena; Photorefractive Materials and Their Applications: II. Applications (Springer-Verlag, New York, 1988, 1989).

Herriau, J. P.

A. Marrakchi, J. P. Huignard, J. P. Herriau, “Application of phase conjugation in Bi12SiO20 crystals to make pattern visualization of diffuse vibrating structures,” Opt. Commun. 34, 15–18 (1980).
[CrossRef]

J. P. Huignard, J. P. Herriau, “Real-time double-exposure interferometry with Bi12SiO20 crystals in transverse electrooptic configuration,” Appl. Opt. 16, 1807–1809 (1977).
[CrossRef] [PubMed]

Huignard, J. P.

A. Marrakchi, J. P. Huignard, J. P. Herriau, “Application of phase conjugation in Bi12SiO20 crystals to make pattern visualization of diffuse vibrating structures,” Opt. Commun. 34, 15–18 (1980).
[CrossRef]

J. P. Huignard, J. P. Herriau, “Real-time double-exposure interferometry with Bi12SiO20 crystals in transverse electrooptic configuration,” Appl. Opt. 16, 1807–1809 (1977).
[CrossRef] [PubMed]

Huignard, J.-P.

J.-P. Huignard, P. Gunter, Photorefractive Materials and Their Applications: I. Fundamental Phenomena; Photorefractive Materials and Their Applications: II. Applications (Springer-Verlag, New York, 1988, 1989).

Lininger, D. M.

Marrakchi, A.

A. Marrakchi, J. P. Huignard, J. P. Herriau, “Application of phase conjugation in Bi12SiO20 crystals to make pattern visualization of diffuse vibrating structures,” Opt. Commun. 34, 15–18 (1980).
[CrossRef]

Shen, W.

Sun, C. C.

Tsou, R. H.

Appl. Opt. (2)

Opt. Commun. (1)

A. Marrakchi, J. P. Huignard, J. P. Herriau, “Application of phase conjugation in Bi12SiO20 crystals to make pattern visualization of diffuse vibrating structures,” Opt. Commun. 34, 15–18 (1980).
[CrossRef]

Opt. Lett. (2)

Other (3)

J.-P. Huignard, P. Gunter, Photorefractive Materials and Their Applications: I. Fundamental Phenomena; Photorefractive Materials and Their Applications: II. Applications (Springer-Verlag, New York, 1988, 1989).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1992), Sec. 8-3.

G. R. Fowles, Introduction to Modern Optics (Holt, Rinehart & Winston, New York, 1975), pp. 141–144.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup: M, mirror; BE, beam expander; L, lens; DPO, dynamic phase object.

Fig. 2
Fig. 2

Experimental measurement of the rise time of the output fringe with respect to the power of the incident light.

Fig. 3
Fig. 3

Photographs of the experimental output images: (a) dynamic phase disturbance in a steady state, (b) soldering iron in the wind.

Fig. 4
Fig. 4

Schematic diagram of the self-interference inside the crystal. The phase perturbation portion can be treated as object light and the other portion as reference light, both of which form the hologram inside the crystal.

Fig. 5
Fig. 5

Wave-vector diagrams of the summation of diffracted light (a) without perturbation and (b) with perturbation.

Fig. 6
Fig. 6

Distorted output light that occurs when the strong input light does not bear an image.

Fig. 7
Fig. 7

Experimental setup that can be used to erase the crystal by using another laser light.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

νt=i=1nãit, ki,
htνt2i=1nãit, ki2+inãit, kijinãj*t, kj.
νouttαi=1nãit, ki+βi=1nãit, kijinãjt, kjãj*t, kj,
Δνt=i=pqãit, kii=pqãit, kiexpiϕix, y, t,
νoutt=αi=1nãit, ki+βi=1nãit, ki×j=pqãjt, kj2expiϕj+jpqnãjt, kj2ji.
νdifft=i=1nβiãit, ki,
βi=βj=pqãjkj2expiϕj+jpqnãjkj2ji,
νoutt=i=1nãit, kiα expiϕix, y, t+βi.
νr=expiφr,
νr=1+iφr.
Ufr=δfr-0+iUpdfr,
νr=exp-iΩ+iφr.
Ir=νr2=1+2 sinΩφr.
Ir=1±2φr,

Metrics