Abstract

UV photoablation of materials is recorded for both the near and far fields after transmission through a Dammann grating. The fused silica Fourier lens used for far-field imaging was damaged by a near-field intensity pattern with the same periodicity as the Dammann grating. The lens was located inadvertently at one eighth of the Talbot distance Z T behind the Dammann grating. Patterns recorded in copper film at the even-fractional Talbot planes compare qualitatively with calculated intensities. On the basis of these findings, a near-field intensity pattern was used to ablate vias in copper and polyimide films. The pattern at a distance of ZT/8 was used for via ablation because it is the pattern with the most fluence per spot.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Lohmann, “An array illuminator based on the Talbot-effect,” Optik (Stuttgart) 79, 41–45 (1988).
  2. A. W. Lohmann, J. A. Thomas, “Making an array illuminator based on the Talbot effect,” Appl. Opt. 29, 4337–4340 (1990).
    [CrossRef] [PubMed]
  3. J. R. Leger, G. J. Swanson, “Efficient array illuminator using binary-optics phase plates at fractional-Talbot planes,” Opt. Lett. 15, 288–290 (1990).
    [CrossRef] [PubMed]
  4. P. Latimer, R. F. Crouse, “Talbot effect reinterpreted,” Appl. Opt. 31, 80–89 (1992).
    [CrossRef] [PubMed]
  5. J. Westerholm, J. Turunen, J. Huttunen, “Fresnel diffraction in fractional Talbot planes: a new formulation,” J. Opt. Soc. Am. A 11, 1283–1290 (1994).
    [CrossRef]
  6. R. Srinivasan, “Ablation of polymers and biological tissue by UV lasers,” Science 234, 559–565 (1986).
    [CrossRef] [PubMed]
  7. G. Adema, M. Berry, I. Turlik, “Via formation in thin film multichip modules,” Electr. Packag. Prod. 32, 54–56 (1992).
  8. J. H. Brannon, J. R. Lankard, A. I. Baise, F. Burns, J. Kaufman, “Excimer laser etching of polyimide,” J. Appl. Phys. 5, 2036–2042 (1985).
    [CrossRef]
  9. J. H. Brannon, J. R. Lankard, “Patterning of polyimide films with ultraviolet light,” U.S. Patent4,508,749 (6April1985).
  10. D. S. Goodman, A. E. Rosenbluth, R. E. Tibbetts, J. S. Wilczynski, “Optical projection system,” U.S. Patent5,159,172 (27October1992).
  11. J. Jahns, M. M. Downs, M. E. Prise, N. Streibl, S. J. Walker, “Dammann gratings for laser beam shaping,” Opt. Eng. 28, 1267–1275 (1989).
    [CrossRef]
  12. R. Gunther, Modern Optics (Wiley, New York, 1990), p. 335.
  13. M. J. Soileau, W. E. Williams, N. Mansour, E. W. Van Stryland, “Laser-induced damage and the role of self-focusing,” Opt. Eng. 28, 1133–1144 (1989).
    [CrossRef]

1994

1992

G. Adema, M. Berry, I. Turlik, “Via formation in thin film multichip modules,” Electr. Packag. Prod. 32, 54–56 (1992).

P. Latimer, R. F. Crouse, “Talbot effect reinterpreted,” Appl. Opt. 31, 80–89 (1992).
[CrossRef] [PubMed]

1990

1989

J. Jahns, M. M. Downs, M. E. Prise, N. Streibl, S. J. Walker, “Dammann gratings for laser beam shaping,” Opt. Eng. 28, 1267–1275 (1989).
[CrossRef]

M. J. Soileau, W. E. Williams, N. Mansour, E. W. Van Stryland, “Laser-induced damage and the role of self-focusing,” Opt. Eng. 28, 1133–1144 (1989).
[CrossRef]

1988

A. W. Lohmann, “An array illuminator based on the Talbot-effect,” Optik (Stuttgart) 79, 41–45 (1988).

1986

R. Srinivasan, “Ablation of polymers and biological tissue by UV lasers,” Science 234, 559–565 (1986).
[CrossRef] [PubMed]

1985

J. H. Brannon, J. R. Lankard, A. I. Baise, F. Burns, J. Kaufman, “Excimer laser etching of polyimide,” J. Appl. Phys. 5, 2036–2042 (1985).
[CrossRef]

Adema, G.

G. Adema, M. Berry, I. Turlik, “Via formation in thin film multichip modules,” Electr. Packag. Prod. 32, 54–56 (1992).

Baise, A. I.

J. H. Brannon, J. R. Lankard, A. I. Baise, F. Burns, J. Kaufman, “Excimer laser etching of polyimide,” J. Appl. Phys. 5, 2036–2042 (1985).
[CrossRef]

Berry, M.

G. Adema, M. Berry, I. Turlik, “Via formation in thin film multichip modules,” Electr. Packag. Prod. 32, 54–56 (1992).

Brannon, J. H.

J. H. Brannon, J. R. Lankard, A. I. Baise, F. Burns, J. Kaufman, “Excimer laser etching of polyimide,” J. Appl. Phys. 5, 2036–2042 (1985).
[CrossRef]

J. H. Brannon, J. R. Lankard, “Patterning of polyimide films with ultraviolet light,” U.S. Patent4,508,749 (6April1985).

Burns, F.

J. H. Brannon, J. R. Lankard, A. I. Baise, F. Burns, J. Kaufman, “Excimer laser etching of polyimide,” J. Appl. Phys. 5, 2036–2042 (1985).
[CrossRef]

Crouse, R. F.

Downs, M. M.

J. Jahns, M. M. Downs, M. E. Prise, N. Streibl, S. J. Walker, “Dammann gratings for laser beam shaping,” Opt. Eng. 28, 1267–1275 (1989).
[CrossRef]

Goodman, D. S.

D. S. Goodman, A. E. Rosenbluth, R. E. Tibbetts, J. S. Wilczynski, “Optical projection system,” U.S. Patent5,159,172 (27October1992).

Gunther, R.

R. Gunther, Modern Optics (Wiley, New York, 1990), p. 335.

Huttunen, J.

Jahns, J.

J. Jahns, M. M. Downs, M. E. Prise, N. Streibl, S. J. Walker, “Dammann gratings for laser beam shaping,” Opt. Eng. 28, 1267–1275 (1989).
[CrossRef]

Kaufman, J.

J. H. Brannon, J. R. Lankard, A. I. Baise, F. Burns, J. Kaufman, “Excimer laser etching of polyimide,” J. Appl. Phys. 5, 2036–2042 (1985).
[CrossRef]

Lankard, J. R.

J. H. Brannon, J. R. Lankard, A. I. Baise, F. Burns, J. Kaufman, “Excimer laser etching of polyimide,” J. Appl. Phys. 5, 2036–2042 (1985).
[CrossRef]

J. H. Brannon, J. R. Lankard, “Patterning of polyimide films with ultraviolet light,” U.S. Patent4,508,749 (6April1985).

Latimer, P.

Leger, J. R.

Lohmann, A. W.

A. W. Lohmann, J. A. Thomas, “Making an array illuminator based on the Talbot effect,” Appl. Opt. 29, 4337–4340 (1990).
[CrossRef] [PubMed]

A. W. Lohmann, “An array illuminator based on the Talbot-effect,” Optik (Stuttgart) 79, 41–45 (1988).

Mansour, N.

M. J. Soileau, W. E. Williams, N. Mansour, E. W. Van Stryland, “Laser-induced damage and the role of self-focusing,” Opt. Eng. 28, 1133–1144 (1989).
[CrossRef]

Prise, M. E.

J. Jahns, M. M. Downs, M. E. Prise, N. Streibl, S. J. Walker, “Dammann gratings for laser beam shaping,” Opt. Eng. 28, 1267–1275 (1989).
[CrossRef]

Rosenbluth, A. E.

D. S. Goodman, A. E. Rosenbluth, R. E. Tibbetts, J. S. Wilczynski, “Optical projection system,” U.S. Patent5,159,172 (27October1992).

Soileau, M. J.

M. J. Soileau, W. E. Williams, N. Mansour, E. W. Van Stryland, “Laser-induced damage and the role of self-focusing,” Opt. Eng. 28, 1133–1144 (1989).
[CrossRef]

Srinivasan, R.

R. Srinivasan, “Ablation of polymers and biological tissue by UV lasers,” Science 234, 559–565 (1986).
[CrossRef] [PubMed]

Streibl, N.

J. Jahns, M. M. Downs, M. E. Prise, N. Streibl, S. J. Walker, “Dammann gratings for laser beam shaping,” Opt. Eng. 28, 1267–1275 (1989).
[CrossRef]

Swanson, G. J.

Thomas, J. A.

Tibbetts, R. E.

D. S. Goodman, A. E. Rosenbluth, R. E. Tibbetts, J. S. Wilczynski, “Optical projection system,” U.S. Patent5,159,172 (27October1992).

Turlik, I.

G. Adema, M. Berry, I. Turlik, “Via formation in thin film multichip modules,” Electr. Packag. Prod. 32, 54–56 (1992).

Turunen, J.

Van Stryland, E. W.

M. J. Soileau, W. E. Williams, N. Mansour, E. W. Van Stryland, “Laser-induced damage and the role of self-focusing,” Opt. Eng. 28, 1133–1144 (1989).
[CrossRef]

Walker, S. J.

J. Jahns, M. M. Downs, M. E. Prise, N. Streibl, S. J. Walker, “Dammann gratings for laser beam shaping,” Opt. Eng. 28, 1267–1275 (1989).
[CrossRef]

Westerholm, J.

Wilczynski, J. S.

D. S. Goodman, A. E. Rosenbluth, R. E. Tibbetts, J. S. Wilczynski, “Optical projection system,” U.S. Patent5,159,172 (27October1992).

Williams, W. E.

M. J. Soileau, W. E. Williams, N. Mansour, E. W. Van Stryland, “Laser-induced damage and the role of self-focusing,” Opt. Eng. 28, 1133–1144 (1989).
[CrossRef]

Appl. Opt.

Electr. Packag. Prod.

G. Adema, M. Berry, I. Turlik, “Via formation in thin film multichip modules,” Electr. Packag. Prod. 32, 54–56 (1992).

J. Appl. Phys.

J. H. Brannon, J. R. Lankard, A. I. Baise, F. Burns, J. Kaufman, “Excimer laser etching of polyimide,” J. Appl. Phys. 5, 2036–2042 (1985).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Eng.

J. Jahns, M. M. Downs, M. E. Prise, N. Streibl, S. J. Walker, “Dammann gratings for laser beam shaping,” Opt. Eng. 28, 1267–1275 (1989).
[CrossRef]

M. J. Soileau, W. E. Williams, N. Mansour, E. W. Van Stryland, “Laser-induced damage and the role of self-focusing,” Opt. Eng. 28, 1133–1144 (1989).
[CrossRef]

Opt. Lett.

Optik (Stuttgart)

A. W. Lohmann, “An array illuminator based on the Talbot-effect,” Optik (Stuttgart) 79, 41–45 (1988).

Science

R. Srinivasan, “Ablation of polymers and biological tissue by UV lasers,” Science 234, 559–565 (1986).
[CrossRef] [PubMed]

Other

J. H. Brannon, J. R. Lankard, “Patterning of polyimide films with ultraviolet light,” U.S. Patent4,508,749 (6April1985).

D. S. Goodman, A. E. Rosenbluth, R. E. Tibbetts, J. S. Wilczynski, “Optical projection system,” U.S. Patent5,159,172 (27October1992).

R. Gunther, Modern Optics (Wiley, New York, 1990), p. 335.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental intensity patterns at fractional Talbot planes from the 3 × 3 Dammann grating shown in Fig. 3. (a) Behind the mask at a distance Z T/8, (b) Z T/16, and (c) Z T/32.

Fig. 2
Fig. 2

Photoablation system with quadrupled Nd:YAG laser with a Dammann diffractive optic.

Fig. 3
Fig. 3

Dammann diffractive optic for a 3 × 3 spot array as fabricated in fused quartz. The period of each cell is 159 µm and the etch depth is 0.25 µm.

Fig. 4
Fig. 4

A 3 × 3 spot array ablated in a glass substrate with 400-µm spacing and 50-µm via size.

Fig. 5
Fig. 5

Array of rodlike patterns formed in fused silica as a result of the near-field pattern at Z T/8 and self-focusing. The array period is 159 µm and the feature depth is ∼1 mm. (a) Tilted view and (b) front view.

Fig. 6
Fig. 6

Computed intensity patterns at (a) Z T/8, (b) Z T/16, and (c) Z T/32.

Fig. 7
Fig. 7

Micrograph view of an array of ∼30-µm vias with 159-µm period etched in copper film with the near field of a Dammann grating at a distance Z T/8 behind the grating.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ZT=2Λ2/λ,
Z=p/qZT,

Metrics