Abstract

Coherent anti-Stokes Raman scattering is demonstrated as a quantitative diagnostic in low-density flows by mapping H2 velocity and translational temperature inside and outside the nozzle of a resistojet. A spatial resolution of better than 35 µm along the flow direction and 350 µm transverse to it was attained in a density as low as 5 × 1015 cm-3. The accuracy of the velocity, inferred from the Doppler shift of the Q(1) Raman resonance, was limited by the scan linearity of the laser to ±0.2 km/s. Translational temperatures, inferred from linewidths and complicated by saturation and ac Stark effects, had an accuracy of ∼20%. A discussion of applicability to molecular nitrogen is presented.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. W. Crofton, “Advanced diagnostic techniques for electric propulsion,” in 29th Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1993), paper AIAA 93-1794.
  2. D. M. Zube, R. M. Myers, “Techniques for spectroscopic measurements in an arcjet nozzle,” J. Propulsion Power 8, 254–256 (1992).
    [CrossRef]
  3. There are many other examples of emisson spectroscopy studies on arcjet flows. Most of these are AIAA conference papers available from the American Institute of Aeronautics and Astronautics, Washington, D.C. A representative sample follows. D. H. Manzella, F. M. Curran, D. M. Zube, “Preliminary plume characteristics of an arcjet thruster,” paper AIAA 90-2645; S. W. Janson, R. P. Welle, D. R. Schulthess, R. B. Cohen, “Arcjet plume characterization II—Optical diagnostic results,” paper AIAA 90-2643; D. M. Zube, R. M. Myers, “Nonequilibrium in a low power arcjet nozzle,” paper AIAA 91-2113; M. W. Crofton, “Spectral irradiance of the 1 kW arcjet from 80 to 500 nm,” paper AIAA 92-3237; W. A. Hoskins, A. E. Kull, G. W. Butler, “Measurement of population and temperature profiles in an arcjet plume,” paper AIAA 92-3240; D. M. Zube, M. Auweter-Kurtz, “Spectroscopic arcjet diagnostic under thermal equilibrium and nonequilibrium conditions,” paper AIAA 93-1792; D. M. Zube, E. W. Masserschmid, “Spectroscopic temperature and density measurements in a low power arcjet plume,” paper AIAA 94-2744; A. D. Gallimore, S-W. Kim, J. E. Foster, L. B. King, F. S. Galczinski, “Near and far-field plume studies of a 1 kW arcjet,” paper AIAA 94-3137; H. A. Habiger, M. Auweter-Kurtz, H. L. Kurtz, “Investigation of arc jet plumes with Fabry-Perot interferometry,” paper AIAA 94-3300; W. A. Hargus, M. M. Micci, R. A. Spores, “Interior spectroscopic investigation of the propellant energy modes in an arcjet nozzle,” paper AIAA 94-3302; P. V. Storm, M. A. Cappelli, “High spectral resolution emission study of a low power hydrogen arcjet plume,” paper AIAA 95-1960; G. W. Butler, I. D. Boyd, M. A. Cappelli, “Non-equilibrium flow phenomena in low power hydrogen arcjets,” paper AIAA 95-2819.
  4. D. A. Erwin, G. C. Pham-Van-Diep, W. D. Deininger, “Laser-induced fluorescence measurements of flow velocity in high-power arcjet thruster plumes,” AIAA J. 29, 1298–1303 (1991).
    [CrossRef]
  5. W. M. Ruyten, D. Keefer, “Two-beam multiplexed laser-induced fluorescence measurements of an argon arcjet plume,” AIAA J. 31, 2083–2089 (1993).
    [CrossRef]
  6. J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Laser-induced fluorescence diagnostic for temperature and velocity measurements in a hydrogen arcjet plume,” Appl. Opt. 32, 6117–6127 (1993).
    [CrossRef] [PubMed]
  7. J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Experimental investigation of velocity slip near an arcjet exit plane,” AIAA J. 33, 373–375 (1995).
    [CrossRef]
  8. There are many other examples of LIF from excited states of species in arcjet flows. Most of these are AIAA conference papers available from the American Institute of Aeronautics and Astronautics, Washington, D.C. A representative sample follows.G. C. Pham-Van-Diep, D. A. Erwin, W. D. Deininger, “Velocity mapping in a 30-kW arcjet plume using laser-induced fluorescence,” paper AIAA 89-2831; G. C. Pham-Van-Diep, D. A. Erwin, W. D. Deininger, “Velocity mapping in the plume of a 30-kW ammonia arcjet,” paper AIAA 90-1476; J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Velocity measurements in a hydrogen arcjet using LIF,” paper AIAA 91-2112; M. W. Crofton, R. P. Welle, S. W. Janson, R. B. Cohen, “Rotational and vibrational temperatures in the plume of a 1 kW arcjet,” paper AIAA 91-1491; J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Laser-induced fluorescence of atomic hydrogen in an arcjet thruster,” paper AIAA 92-0678; W. M. Ruyten, “Characterization of electric thruster plumes using multiplexed laser induced fluorescence measurements,” paper AIAA 92-2965; J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Plume characteristics of an arcjet thruster,” paper AIAA 93-2530; J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Flow diagnostics of an arcjet using laser-induced fluorescence,” paper AIAA 92-3243; M. W. Crofton, R. P. Welle, S. W. Janson, R. B. Cohen, “Temperature, velocity and density studies in the 1 kW ammonia arcjet plume by LIF,” paper AIAA 92-3241; M. A. Cappelli, J. G. Liebeskind, R. K. Hanson, G. W. Butler, D. Q. King, “A comparison of arcjet plume properties to model predictions,” paper AIAA 93-0820; B. D. Keefer, D. Burtner, T. Moller, R. Rhodes, “Multiplexed laser induced fluorescence and non-equilibrium processes in arcjets,” paper AIAA 94-2656; D. Burtner, D. Keefer, W. Ruyten, “Experimental and numerical studies of a low-power arcjet operated on simulated ammonia,” paper AIAA 94-2869; P. V. Storm, M. A. Cappelli, “Laser-induced fluorescence measurements within an arcjet thruster nozzle,” paper AIAA 95-2381; J. A. Pobst, I. J. Wysong, R. A. Spores, “Laser induced fluorescence of ground state hydrogen atoms at nozzle exit of an arcjet thruster,” paper AIAA 95-1973.
  9. W. J. Marinelli, W. J. Kessler, M. G. Allen, “Copper atom based measurements of velocity and turbulence in arc jet flows,” in 29th Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991), paper AIAA 91-0358.
  10. J. E. Pollard, “Arcjet plume studies using molecular beam mass spectrometry,” in 23rd International Electric Propulsion Conference (Electric Rocket Propulsion Society, Columbus, Ohio, 1993), paper IPEC-93-132.
  11. J. E. Pollard, “Arcjet diagnostic by XUV absorption spectroscopy,” in 23rd Plasma and Lasers Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1992), paper AIAA 92-2966.
  12. I. D. Boyd, D. R. Beattie, M. A. Cappelli, “Numerical and experimental investigations of low-density supersonic jets of hydrogen,” J. Fluid Mech. 280, 41–67 (1994).
    [CrossRef]
  13. E. J. Beiting, L. Garman, I. D. Boyd, D. B. Van Gilder, “CARS velocity and temperature measurements in a hydrogen resistojet: comparison with Monte Carlo calculations,” in 31st Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1995), paper AIAA 95-2382.
  14. I. D. Boyd, D. B. Van Gilder, E. J. Beiting, R. B. Cohen, E. J. Pencil, S. D. Hersch, “Numerical and experimental studies of hydrogen and nitrogen flows in a resisto-jet,” in 24th International Electric Propulsion Conference, (Russian Space Agency, Moscow, 1995), paper IPEC-95-20.
  15. I. D. Boyd, D. G. Van Gilder, E. J. Beiting, “Computational and experimental investigations of rarefied flows in small nozzles,” AIAA J. 34, 2320–2326 (1996).
    [CrossRef]
  16. J. W. Nibler, G. A. Pubanz, “Coherent Raman spectroscopy of gases,” in Advances in Non-linear Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1988).
  17. J. C. Luthe, E. J. Beiting, F. Y. Yueh, “Algorithms for calculating coherent anti-Stokes Raman spectra: application to several small molecules,” Comput. Phys. Commun. 42, 73–92 (1986).
    [CrossRef]
  18. S. Gaufres, S. Sportouch, “The Placzek-Teller coefficients bJ′K′JK for negative ΔJ,” J. Mol. Spectrosc. 39, 527–530 (1971).
    [CrossRef]
  19. The Boltzman factor and the partition function (state sum) are referenced from the lowest energy level in the molecule. Thus for ortho hydrogen and para nitrogen the lowest level is J = 1, the partition function is summed over odd levels only, nH2ortho=34n0 H2, and nN2para=23n0 N2. For para hydrogen and ortho nitrogen the lowest energy level is J = 0, the partition function is summed over even values only, nH2para=14n0 H2, and nN2ortho=13n0 N2.
  20. E. K. Gustafson, J. C. McDaniel, R. L. Byer, “CARS measurement of velocity in a supersonic jet,” IEEE J. Quantum Electron. QE-17, 2258–2259 (1981).
    [CrossRef]
  21. M. D. Duncan, P. Oesterlin, F. Konig, R. L. Byer, “Observation of saturation broadening of the coherent anti-Stokes Raman Spectrum (CARS) of acetylene in a pulsed molecular beam,” Chem. Phys. Lett. 80, 253–256 (1981).
    [CrossRef]
  22. L. A. Rahn, R. L. Farrow, M. L. Koszykowski, P. L. Mattern, “Observation of an optical Stark effect on vibrational and rotational transitions,” Phys. Rev. Lett. 45, 620–623 (1980).
    [CrossRef]
  23. M. A. Henesian, R. L. Byer, High-resolution CARS line-shape function,” J. Opt. Soc. Am. 68, 648–649 (1978).
  24. S. A. J. Druet, J.-P. E. Taran, Ch. J. Borde, “Line shape and Doppler broadening in resonant CARS and related nonlinear processes through a diagrammatic approach,” J. Phys. 40, 819–840 (1979).
    [CrossRef]
  25. D. A. Greenhalgh, “Quantitative CARS spectroscopy,” in Advances in Non-linear Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1988).
  26. R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472 (1953).
    [CrossRef]
  27. R. L. Farrow, R. P. Lucht, R. E. Palmer, “Spectral modeling for CARS diagnostics of combustion gases,” presented at the AIAA 19th Fluid Dynamics, Plasmas Dynamics and Lasers Conference, Honolulu, Hawaii, 8–10 June 1987, paper AIAA-87-1304.
  28. R. L. Farrow, R. E. Palmer, “Comparison of motionally narrowed coherent anti-Stokes Raman spectroscopy line shapes of H2 with hard- and soft-collision models,” Opt. Lett. 12, 984–986 (1987).
    [CrossRef] [PubMed]
  29. P. L. Varghese, R. K. Hanson, “Collisional narrowing effects on spectral line shapes measured at high resolution,” Appl. Opt. 23, 2376–2385 (1984).
    [CrossRef] [PubMed]
  30. M. A. Yuratich, “Effects of laser linewidth on coherent anti-Stokes Raman spectroscopy,” Mol. Phys. 38, 625–655 (1979).
    [CrossRef]
  31. R. L. Farrow, L. A. Rahn, “Interpreting coherent anti-Stokes Raman spectra measured with multimode Nd:YAG pump lasers,” J. Opt. Soc. Am. B 2, 903–907 (1985).
    [CrossRef]
  32. W. F. Murphy, W. Holzer, H. J. Bernstein, “Gas phase Raman intensities: a review of pre-laser data,” Appl. Spectrosc. 23, 211–218 (1969).
    [CrossRef]
  33. G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, 2nd ed. (Van Nostrand Reinhold, New York, 1950).
  34. L. A. Rahn, G. J. Rosasco, “Measurement of the density shift of the H2Q(0-5) transitions from 295 to 1000 K,” Phys. Rev. A 41, 3698–3706 (1990).
    [CrossRef] [PubMed]
  35. R. L. Farrow, L. A. Rahn, “Optical Stark effects in nonlinear Raman spectroscopy,” in Raman Spectroscopy: Linear and Nonlinear, J. Lascombe, P. V. Huong, eds. (Wiley, New York, 1982), pp. 159–160.
  36. R. L. Farrow, R. P. Lucht, R. E. Palmer, “Spectral modeling for CARS diagnostics of combustions gases,” presented at the AIAA 19th Fluid Dynamics, Plasma Dynamics and Laser Conference, Honolulu, Hawaii, 8–10 June 1987, paper AIAA-87-1304.
  37. R. P. Lucht, R. L. Farrow, “Calculation of saturation line shapes and intensities in coherent anti-Stokes Raman scattering spectra of nitrogen,” J. Opt. Soc. Am. B 5, 1243–1252 (1988).
    [CrossRef]
  38. R. P. Lucht, R. Farrow, “Saturation effects in coherent anti-Stokes Raman scattering spectroscopy of hydrogen,” J. Opt. Soc. Am. B 6, 2313–2325 (1989).
    [CrossRef]
  39. M. Pealat, M. Lefebvre, J.-P. E. Taran, P. L. Kelley, “Sensitivity of quantitative vibrational coherent anti-Stokes Raman spectroscopy to saturation and Stark shifts,” Phys. Rev. A 38, 1948–1965 (1988).
    [CrossRef] [PubMed]
  40. A. D. Wilson-Gordon, H. Friedmann, “Comment on saturation effects in high-resolution coherent anti-Stokes Raman spectroscopy of a pulsed molecular beam,” Chem. Phys. Lett. 89, 273–278 (1982).
    [CrossRef]
  41. M. Pealat, M. Lefebvre, “Temperature measurement by single-shot dual-line CARS in low-pressure flows,” Appl. Phys. B 53, 23–29 (1991).
    [CrossRef]
  42. Two fortran subroutines were used from carsfit from Sandia National Laboratories, Combustion Research Facility, Livermore, Calif. The Galatry subroutine was written by P. L. Varghese.
  43. L. A. Rahn, R. L. Farrow, G. J. Rosasco, “Measurement of the self-broadening of the H2Q(0-5) Raman transitions from 295 to 1000 K,” Phys. Rev. A 43, 6075–6088 (1991).
    [CrossRef] [PubMed]
  44. M. G. Littman, “Single-mode pulsed tunable dye laser,” Appl. Opt. 23, 4465–4468 (1984).
    [CrossRef] [PubMed]
  45. Model CTC1200M, Micro Kinetics, Irvine, Calif. 92714-5733.
  46. I. D. Boyd, Cornell University, Ithaca, N.Y. (personal communication, 1996).

1996 (1)

I. D. Boyd, D. G. Van Gilder, E. J. Beiting, “Computational and experimental investigations of rarefied flows in small nozzles,” AIAA J. 34, 2320–2326 (1996).
[CrossRef]

1995 (1)

J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Experimental investigation of velocity slip near an arcjet exit plane,” AIAA J. 33, 373–375 (1995).
[CrossRef]

1994 (1)

I. D. Boyd, D. R. Beattie, M. A. Cappelli, “Numerical and experimental investigations of low-density supersonic jets of hydrogen,” J. Fluid Mech. 280, 41–67 (1994).
[CrossRef]

1993 (2)

W. M. Ruyten, D. Keefer, “Two-beam multiplexed laser-induced fluorescence measurements of an argon arcjet plume,” AIAA J. 31, 2083–2089 (1993).
[CrossRef]

J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Laser-induced fluorescence diagnostic for temperature and velocity measurements in a hydrogen arcjet plume,” Appl. Opt. 32, 6117–6127 (1993).
[CrossRef] [PubMed]

1992 (1)

D. M. Zube, R. M. Myers, “Techniques for spectroscopic measurements in an arcjet nozzle,” J. Propulsion Power 8, 254–256 (1992).
[CrossRef]

1991 (3)

D. A. Erwin, G. C. Pham-Van-Diep, W. D. Deininger, “Laser-induced fluorescence measurements of flow velocity in high-power arcjet thruster plumes,” AIAA J. 29, 1298–1303 (1991).
[CrossRef]

M. Pealat, M. Lefebvre, “Temperature measurement by single-shot dual-line CARS in low-pressure flows,” Appl. Phys. B 53, 23–29 (1991).
[CrossRef]

L. A. Rahn, R. L. Farrow, G. J. Rosasco, “Measurement of the self-broadening of the H2Q(0-5) Raman transitions from 295 to 1000 K,” Phys. Rev. A 43, 6075–6088 (1991).
[CrossRef] [PubMed]

1990 (1)

L. A. Rahn, G. J. Rosasco, “Measurement of the density shift of the H2Q(0-5) transitions from 295 to 1000 K,” Phys. Rev. A 41, 3698–3706 (1990).
[CrossRef] [PubMed]

1989 (1)

1988 (2)

M. Pealat, M. Lefebvre, J.-P. E. Taran, P. L. Kelley, “Sensitivity of quantitative vibrational coherent anti-Stokes Raman spectroscopy to saturation and Stark shifts,” Phys. Rev. A 38, 1948–1965 (1988).
[CrossRef] [PubMed]

R. P. Lucht, R. L. Farrow, “Calculation of saturation line shapes and intensities in coherent anti-Stokes Raman scattering spectra of nitrogen,” J. Opt. Soc. Am. B 5, 1243–1252 (1988).
[CrossRef]

1987 (1)

1986 (1)

J. C. Luthe, E. J. Beiting, F. Y. Yueh, “Algorithms for calculating coherent anti-Stokes Raman spectra: application to several small molecules,” Comput. Phys. Commun. 42, 73–92 (1986).
[CrossRef]

1985 (1)

1984 (2)

1982 (1)

A. D. Wilson-Gordon, H. Friedmann, “Comment on saturation effects in high-resolution coherent anti-Stokes Raman spectroscopy of a pulsed molecular beam,” Chem. Phys. Lett. 89, 273–278 (1982).
[CrossRef]

1981 (2)

E. K. Gustafson, J. C. McDaniel, R. L. Byer, “CARS measurement of velocity in a supersonic jet,” IEEE J. Quantum Electron. QE-17, 2258–2259 (1981).
[CrossRef]

M. D. Duncan, P. Oesterlin, F. Konig, R. L. Byer, “Observation of saturation broadening of the coherent anti-Stokes Raman Spectrum (CARS) of acetylene in a pulsed molecular beam,” Chem. Phys. Lett. 80, 253–256 (1981).
[CrossRef]

1980 (1)

L. A. Rahn, R. L. Farrow, M. L. Koszykowski, P. L. Mattern, “Observation of an optical Stark effect on vibrational and rotational transitions,” Phys. Rev. Lett. 45, 620–623 (1980).
[CrossRef]

1979 (2)

M. A. Yuratich, “Effects of laser linewidth on coherent anti-Stokes Raman spectroscopy,” Mol. Phys. 38, 625–655 (1979).
[CrossRef]

S. A. J. Druet, J.-P. E. Taran, Ch. J. Borde, “Line shape and Doppler broadening in resonant CARS and related nonlinear processes through a diagrammatic approach,” J. Phys. 40, 819–840 (1979).
[CrossRef]

1978 (1)

M. A. Henesian, R. L. Byer, High-resolution CARS line-shape function,” J. Opt. Soc. Am. 68, 648–649 (1978).

1971 (1)

S. Gaufres, S. Sportouch, “The Placzek-Teller coefficients bJ′K′JK for negative ΔJ,” J. Mol. Spectrosc. 39, 527–530 (1971).
[CrossRef]

1969 (1)

1953 (1)

R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472 (1953).
[CrossRef]

Allen, M. G.

W. J. Marinelli, W. J. Kessler, M. G. Allen, “Copper atom based measurements of velocity and turbulence in arc jet flows,” in 29th Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991), paper AIAA 91-0358.

Beattie, D. R.

I. D. Boyd, D. R. Beattie, M. A. Cappelli, “Numerical and experimental investigations of low-density supersonic jets of hydrogen,” J. Fluid Mech. 280, 41–67 (1994).
[CrossRef]

Beiting, E. J.

I. D. Boyd, D. G. Van Gilder, E. J. Beiting, “Computational and experimental investigations of rarefied flows in small nozzles,” AIAA J. 34, 2320–2326 (1996).
[CrossRef]

J. C. Luthe, E. J. Beiting, F. Y. Yueh, “Algorithms for calculating coherent anti-Stokes Raman spectra: application to several small molecules,” Comput. Phys. Commun. 42, 73–92 (1986).
[CrossRef]

E. J. Beiting, L. Garman, I. D. Boyd, D. B. Van Gilder, “CARS velocity and temperature measurements in a hydrogen resistojet: comparison with Monte Carlo calculations,” in 31st Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1995), paper AIAA 95-2382.

I. D. Boyd, D. B. Van Gilder, E. J. Beiting, R. B. Cohen, E. J. Pencil, S. D. Hersch, “Numerical and experimental studies of hydrogen and nitrogen flows in a resisto-jet,” in 24th International Electric Propulsion Conference, (Russian Space Agency, Moscow, 1995), paper IPEC-95-20.

Bernstein, H. J.

Borde, Ch. J.

S. A. J. Druet, J.-P. E. Taran, Ch. J. Borde, “Line shape and Doppler broadening in resonant CARS and related nonlinear processes through a diagrammatic approach,” J. Phys. 40, 819–840 (1979).
[CrossRef]

Boyd, I. D.

I. D. Boyd, D. G. Van Gilder, E. J. Beiting, “Computational and experimental investigations of rarefied flows in small nozzles,” AIAA J. 34, 2320–2326 (1996).
[CrossRef]

I. D. Boyd, D. R. Beattie, M. A. Cappelli, “Numerical and experimental investigations of low-density supersonic jets of hydrogen,” J. Fluid Mech. 280, 41–67 (1994).
[CrossRef]

I. D. Boyd, D. B. Van Gilder, E. J. Beiting, R. B. Cohen, E. J. Pencil, S. D. Hersch, “Numerical and experimental studies of hydrogen and nitrogen flows in a resisto-jet,” in 24th International Electric Propulsion Conference, (Russian Space Agency, Moscow, 1995), paper IPEC-95-20.

E. J. Beiting, L. Garman, I. D. Boyd, D. B. Van Gilder, “CARS velocity and temperature measurements in a hydrogen resistojet: comparison with Monte Carlo calculations,” in 31st Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1995), paper AIAA 95-2382.

I. D. Boyd, Cornell University, Ithaca, N.Y. (personal communication, 1996).

Byer, R. L.

E. K. Gustafson, J. C. McDaniel, R. L. Byer, “CARS measurement of velocity in a supersonic jet,” IEEE J. Quantum Electron. QE-17, 2258–2259 (1981).
[CrossRef]

M. D. Duncan, P. Oesterlin, F. Konig, R. L. Byer, “Observation of saturation broadening of the coherent anti-Stokes Raman Spectrum (CARS) of acetylene in a pulsed molecular beam,” Chem. Phys. Lett. 80, 253–256 (1981).
[CrossRef]

M. A. Henesian, R. L. Byer, High-resolution CARS line-shape function,” J. Opt. Soc. Am. 68, 648–649 (1978).

Cappelli, M. A.

J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Experimental investigation of velocity slip near an arcjet exit plane,” AIAA J. 33, 373–375 (1995).
[CrossRef]

I. D. Boyd, D. R. Beattie, M. A. Cappelli, “Numerical and experimental investigations of low-density supersonic jets of hydrogen,” J. Fluid Mech. 280, 41–67 (1994).
[CrossRef]

J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Laser-induced fluorescence diagnostic for temperature and velocity measurements in a hydrogen arcjet plume,” Appl. Opt. 32, 6117–6127 (1993).
[CrossRef] [PubMed]

Cohen, R. B.

I. D. Boyd, D. B. Van Gilder, E. J. Beiting, R. B. Cohen, E. J. Pencil, S. D. Hersch, “Numerical and experimental studies of hydrogen and nitrogen flows in a resisto-jet,” in 24th International Electric Propulsion Conference, (Russian Space Agency, Moscow, 1995), paper IPEC-95-20.

Crofton, M. W.

M. W. Crofton, “Advanced diagnostic techniques for electric propulsion,” in 29th Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1993), paper AIAA 93-1794.

Deininger, W. D.

D. A. Erwin, G. C. Pham-Van-Diep, W. D. Deininger, “Laser-induced fluorescence measurements of flow velocity in high-power arcjet thruster plumes,” AIAA J. 29, 1298–1303 (1991).
[CrossRef]

Dicke, R. H.

R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472 (1953).
[CrossRef]

Druet, S. A. J.

S. A. J. Druet, J.-P. E. Taran, Ch. J. Borde, “Line shape and Doppler broadening in resonant CARS and related nonlinear processes through a diagrammatic approach,” J. Phys. 40, 819–840 (1979).
[CrossRef]

Duncan, M. D.

M. D. Duncan, P. Oesterlin, F. Konig, R. L. Byer, “Observation of saturation broadening of the coherent anti-Stokes Raman Spectrum (CARS) of acetylene in a pulsed molecular beam,” Chem. Phys. Lett. 80, 253–256 (1981).
[CrossRef]

Erwin, D. A.

D. A. Erwin, G. C. Pham-Van-Diep, W. D. Deininger, “Laser-induced fluorescence measurements of flow velocity in high-power arcjet thruster plumes,” AIAA J. 29, 1298–1303 (1991).
[CrossRef]

Farrow, R.

Farrow, R. L.

L. A. Rahn, R. L. Farrow, G. J. Rosasco, “Measurement of the self-broadening of the H2Q(0-5) Raman transitions from 295 to 1000 K,” Phys. Rev. A 43, 6075–6088 (1991).
[CrossRef] [PubMed]

R. P. Lucht, R. L. Farrow, “Calculation of saturation line shapes and intensities in coherent anti-Stokes Raman scattering spectra of nitrogen,” J. Opt. Soc. Am. B 5, 1243–1252 (1988).
[CrossRef]

R. L. Farrow, R. E. Palmer, “Comparison of motionally narrowed coherent anti-Stokes Raman spectroscopy line shapes of H2 with hard- and soft-collision models,” Opt. Lett. 12, 984–986 (1987).
[CrossRef] [PubMed]

R. L. Farrow, L. A. Rahn, “Interpreting coherent anti-Stokes Raman spectra measured with multimode Nd:YAG pump lasers,” J. Opt. Soc. Am. B 2, 903–907 (1985).
[CrossRef]

L. A. Rahn, R. L. Farrow, M. L. Koszykowski, P. L. Mattern, “Observation of an optical Stark effect on vibrational and rotational transitions,” Phys. Rev. Lett. 45, 620–623 (1980).
[CrossRef]

R. L. Farrow, R. P. Lucht, R. E. Palmer, “Spectral modeling for CARS diagnostics of combustion gases,” presented at the AIAA 19th Fluid Dynamics, Plasmas Dynamics and Lasers Conference, Honolulu, Hawaii, 8–10 June 1987, paper AIAA-87-1304.

R. L. Farrow, L. A. Rahn, “Optical Stark effects in nonlinear Raman spectroscopy,” in Raman Spectroscopy: Linear and Nonlinear, J. Lascombe, P. V. Huong, eds. (Wiley, New York, 1982), pp. 159–160.

R. L. Farrow, R. P. Lucht, R. E. Palmer, “Spectral modeling for CARS diagnostics of combustions gases,” presented at the AIAA 19th Fluid Dynamics, Plasma Dynamics and Laser Conference, Honolulu, Hawaii, 8–10 June 1987, paper AIAA-87-1304.

Friedmann, H.

A. D. Wilson-Gordon, H. Friedmann, “Comment on saturation effects in high-resolution coherent anti-Stokes Raman spectroscopy of a pulsed molecular beam,” Chem. Phys. Lett. 89, 273–278 (1982).
[CrossRef]

Garman, L.

E. J. Beiting, L. Garman, I. D. Boyd, D. B. Van Gilder, “CARS velocity and temperature measurements in a hydrogen resistojet: comparison with Monte Carlo calculations,” in 31st Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1995), paper AIAA 95-2382.

Gaufres, S.

S. Gaufres, S. Sportouch, “The Placzek-Teller coefficients bJ′K′JK for negative ΔJ,” J. Mol. Spectrosc. 39, 527–530 (1971).
[CrossRef]

Greenhalgh, D. A.

D. A. Greenhalgh, “Quantitative CARS spectroscopy,” in Advances in Non-linear Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1988).

Gustafson, E. K.

E. K. Gustafson, J. C. McDaniel, R. L. Byer, “CARS measurement of velocity in a supersonic jet,” IEEE J. Quantum Electron. QE-17, 2258–2259 (1981).
[CrossRef]

Hanson, R. K.

Henesian, M. A.

M. A. Henesian, R. L. Byer, High-resolution CARS line-shape function,” J. Opt. Soc. Am. 68, 648–649 (1978).

Hersch, S. D.

I. D. Boyd, D. B. Van Gilder, E. J. Beiting, R. B. Cohen, E. J. Pencil, S. D. Hersch, “Numerical and experimental studies of hydrogen and nitrogen flows in a resisto-jet,” in 24th International Electric Propulsion Conference, (Russian Space Agency, Moscow, 1995), paper IPEC-95-20.

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, 2nd ed. (Van Nostrand Reinhold, New York, 1950).

Holzer, W.

Keefer, D.

W. M. Ruyten, D. Keefer, “Two-beam multiplexed laser-induced fluorescence measurements of an argon arcjet plume,” AIAA J. 31, 2083–2089 (1993).
[CrossRef]

Kelley, P. L.

M. Pealat, M. Lefebvre, J.-P. E. Taran, P. L. Kelley, “Sensitivity of quantitative vibrational coherent anti-Stokes Raman spectroscopy to saturation and Stark shifts,” Phys. Rev. A 38, 1948–1965 (1988).
[CrossRef] [PubMed]

Kessler, W. J.

W. J. Marinelli, W. J. Kessler, M. G. Allen, “Copper atom based measurements of velocity and turbulence in arc jet flows,” in 29th Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991), paper AIAA 91-0358.

Konig, F.

M. D. Duncan, P. Oesterlin, F. Konig, R. L. Byer, “Observation of saturation broadening of the coherent anti-Stokes Raman Spectrum (CARS) of acetylene in a pulsed molecular beam,” Chem. Phys. Lett. 80, 253–256 (1981).
[CrossRef]

Koszykowski, M. L.

L. A. Rahn, R. L. Farrow, M. L. Koszykowski, P. L. Mattern, “Observation of an optical Stark effect on vibrational and rotational transitions,” Phys. Rev. Lett. 45, 620–623 (1980).
[CrossRef]

Lefebvre, M.

M. Pealat, M. Lefebvre, “Temperature measurement by single-shot dual-line CARS in low-pressure flows,” Appl. Phys. B 53, 23–29 (1991).
[CrossRef]

M. Pealat, M. Lefebvre, J.-P. E. Taran, P. L. Kelley, “Sensitivity of quantitative vibrational coherent anti-Stokes Raman spectroscopy to saturation and Stark shifts,” Phys. Rev. A 38, 1948–1965 (1988).
[CrossRef] [PubMed]

Liebeskind, J. G.

J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Experimental investigation of velocity slip near an arcjet exit plane,” AIAA J. 33, 373–375 (1995).
[CrossRef]

J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Laser-induced fluorescence diagnostic for temperature and velocity measurements in a hydrogen arcjet plume,” Appl. Opt. 32, 6117–6127 (1993).
[CrossRef] [PubMed]

Littman, M. G.

Lucht, R. P.

R. P. Lucht, R. Farrow, “Saturation effects in coherent anti-Stokes Raman scattering spectroscopy of hydrogen,” J. Opt. Soc. Am. B 6, 2313–2325 (1989).
[CrossRef]

R. P. Lucht, R. L. Farrow, “Calculation of saturation line shapes and intensities in coherent anti-Stokes Raman scattering spectra of nitrogen,” J. Opt. Soc. Am. B 5, 1243–1252 (1988).
[CrossRef]

R. L. Farrow, R. P. Lucht, R. E. Palmer, “Spectral modeling for CARS diagnostics of combustions gases,” presented at the AIAA 19th Fluid Dynamics, Plasma Dynamics and Laser Conference, Honolulu, Hawaii, 8–10 June 1987, paper AIAA-87-1304.

R. L. Farrow, R. P. Lucht, R. E. Palmer, “Spectral modeling for CARS diagnostics of combustion gases,” presented at the AIAA 19th Fluid Dynamics, Plasmas Dynamics and Lasers Conference, Honolulu, Hawaii, 8–10 June 1987, paper AIAA-87-1304.

Luthe, J. C.

J. C. Luthe, E. J. Beiting, F. Y. Yueh, “Algorithms for calculating coherent anti-Stokes Raman spectra: application to several small molecules,” Comput. Phys. Commun. 42, 73–92 (1986).
[CrossRef]

Marinelli, W. J.

W. J. Marinelli, W. J. Kessler, M. G. Allen, “Copper atom based measurements of velocity and turbulence in arc jet flows,” in 29th Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991), paper AIAA 91-0358.

Mattern, P. L.

L. A. Rahn, R. L. Farrow, M. L. Koszykowski, P. L. Mattern, “Observation of an optical Stark effect on vibrational and rotational transitions,” Phys. Rev. Lett. 45, 620–623 (1980).
[CrossRef]

McDaniel, J. C.

E. K. Gustafson, J. C. McDaniel, R. L. Byer, “CARS measurement of velocity in a supersonic jet,” IEEE J. Quantum Electron. QE-17, 2258–2259 (1981).
[CrossRef]

Murphy, W. F.

Myers, R. M.

D. M. Zube, R. M. Myers, “Techniques for spectroscopic measurements in an arcjet nozzle,” J. Propulsion Power 8, 254–256 (1992).
[CrossRef]

Nibler, J. W.

J. W. Nibler, G. A. Pubanz, “Coherent Raman spectroscopy of gases,” in Advances in Non-linear Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1988).

Oesterlin, P.

M. D. Duncan, P. Oesterlin, F. Konig, R. L. Byer, “Observation of saturation broadening of the coherent anti-Stokes Raman Spectrum (CARS) of acetylene in a pulsed molecular beam,” Chem. Phys. Lett. 80, 253–256 (1981).
[CrossRef]

Palmer, R. E.

R. L. Farrow, R. E. Palmer, “Comparison of motionally narrowed coherent anti-Stokes Raman spectroscopy line shapes of H2 with hard- and soft-collision models,” Opt. Lett. 12, 984–986 (1987).
[CrossRef] [PubMed]

R. L. Farrow, R. P. Lucht, R. E. Palmer, “Spectral modeling for CARS diagnostics of combustion gases,” presented at the AIAA 19th Fluid Dynamics, Plasmas Dynamics and Lasers Conference, Honolulu, Hawaii, 8–10 June 1987, paper AIAA-87-1304.

R. L. Farrow, R. P. Lucht, R. E. Palmer, “Spectral modeling for CARS diagnostics of combustions gases,” presented at the AIAA 19th Fluid Dynamics, Plasma Dynamics and Laser Conference, Honolulu, Hawaii, 8–10 June 1987, paper AIAA-87-1304.

Pealat, M.

M. Pealat, M. Lefebvre, “Temperature measurement by single-shot dual-line CARS in low-pressure flows,” Appl. Phys. B 53, 23–29 (1991).
[CrossRef]

M. Pealat, M. Lefebvre, J.-P. E. Taran, P. L. Kelley, “Sensitivity of quantitative vibrational coherent anti-Stokes Raman spectroscopy to saturation and Stark shifts,” Phys. Rev. A 38, 1948–1965 (1988).
[CrossRef] [PubMed]

Pencil, E. J.

I. D. Boyd, D. B. Van Gilder, E. J. Beiting, R. B. Cohen, E. J. Pencil, S. D. Hersch, “Numerical and experimental studies of hydrogen and nitrogen flows in a resisto-jet,” in 24th International Electric Propulsion Conference, (Russian Space Agency, Moscow, 1995), paper IPEC-95-20.

Pham-Van-Diep, G. C.

D. A. Erwin, G. C. Pham-Van-Diep, W. D. Deininger, “Laser-induced fluorescence measurements of flow velocity in high-power arcjet thruster plumes,” AIAA J. 29, 1298–1303 (1991).
[CrossRef]

Pollard, J. E.

J. E. Pollard, “Arcjet plume studies using molecular beam mass spectrometry,” in 23rd International Electric Propulsion Conference (Electric Rocket Propulsion Society, Columbus, Ohio, 1993), paper IPEC-93-132.

J. E. Pollard, “Arcjet diagnostic by XUV absorption spectroscopy,” in 23rd Plasma and Lasers Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1992), paper AIAA 92-2966.

Pubanz, G. A.

J. W. Nibler, G. A. Pubanz, “Coherent Raman spectroscopy of gases,” in Advances in Non-linear Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1988).

Rahn, L. A.

L. A. Rahn, R. L. Farrow, G. J. Rosasco, “Measurement of the self-broadening of the H2Q(0-5) Raman transitions from 295 to 1000 K,” Phys. Rev. A 43, 6075–6088 (1991).
[CrossRef] [PubMed]

L. A. Rahn, G. J. Rosasco, “Measurement of the density shift of the H2Q(0-5) transitions from 295 to 1000 K,” Phys. Rev. A 41, 3698–3706 (1990).
[CrossRef] [PubMed]

R. L. Farrow, L. A. Rahn, “Interpreting coherent anti-Stokes Raman spectra measured with multimode Nd:YAG pump lasers,” J. Opt. Soc. Am. B 2, 903–907 (1985).
[CrossRef]

L. A. Rahn, R. L. Farrow, M. L. Koszykowski, P. L. Mattern, “Observation of an optical Stark effect on vibrational and rotational transitions,” Phys. Rev. Lett. 45, 620–623 (1980).
[CrossRef]

R. L. Farrow, L. A. Rahn, “Optical Stark effects in nonlinear Raman spectroscopy,” in Raman Spectroscopy: Linear and Nonlinear, J. Lascombe, P. V. Huong, eds. (Wiley, New York, 1982), pp. 159–160.

Rosasco, G. J.

L. A. Rahn, R. L. Farrow, G. J. Rosasco, “Measurement of the self-broadening of the H2Q(0-5) Raman transitions from 295 to 1000 K,” Phys. Rev. A 43, 6075–6088 (1991).
[CrossRef] [PubMed]

L. A. Rahn, G. J. Rosasco, “Measurement of the density shift of the H2Q(0-5) transitions from 295 to 1000 K,” Phys. Rev. A 41, 3698–3706 (1990).
[CrossRef] [PubMed]

Ruyten, W. M.

W. M. Ruyten, D. Keefer, “Two-beam multiplexed laser-induced fluorescence measurements of an argon arcjet plume,” AIAA J. 31, 2083–2089 (1993).
[CrossRef]

Sportouch, S.

S. Gaufres, S. Sportouch, “The Placzek-Teller coefficients bJ′K′JK for negative ΔJ,” J. Mol. Spectrosc. 39, 527–530 (1971).
[CrossRef]

Taran, J.-P. E.

M. Pealat, M. Lefebvre, J.-P. E. Taran, P. L. Kelley, “Sensitivity of quantitative vibrational coherent anti-Stokes Raman spectroscopy to saturation and Stark shifts,” Phys. Rev. A 38, 1948–1965 (1988).
[CrossRef] [PubMed]

S. A. J. Druet, J.-P. E. Taran, Ch. J. Borde, “Line shape and Doppler broadening in resonant CARS and related nonlinear processes through a diagrammatic approach,” J. Phys. 40, 819–840 (1979).
[CrossRef]

Van Gilder, D. B.

E. J. Beiting, L. Garman, I. D. Boyd, D. B. Van Gilder, “CARS velocity and temperature measurements in a hydrogen resistojet: comparison with Monte Carlo calculations,” in 31st Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1995), paper AIAA 95-2382.

I. D. Boyd, D. B. Van Gilder, E. J. Beiting, R. B. Cohen, E. J. Pencil, S. D. Hersch, “Numerical and experimental studies of hydrogen and nitrogen flows in a resisto-jet,” in 24th International Electric Propulsion Conference, (Russian Space Agency, Moscow, 1995), paper IPEC-95-20.

Van Gilder, D. G.

I. D. Boyd, D. G. Van Gilder, E. J. Beiting, “Computational and experimental investigations of rarefied flows in small nozzles,” AIAA J. 34, 2320–2326 (1996).
[CrossRef]

Varghese, P. L.

Wilson-Gordon, A. D.

A. D. Wilson-Gordon, H. Friedmann, “Comment on saturation effects in high-resolution coherent anti-Stokes Raman spectroscopy of a pulsed molecular beam,” Chem. Phys. Lett. 89, 273–278 (1982).
[CrossRef]

Yueh, F. Y.

J. C. Luthe, E. J. Beiting, F. Y. Yueh, “Algorithms for calculating coherent anti-Stokes Raman spectra: application to several small molecules,” Comput. Phys. Commun. 42, 73–92 (1986).
[CrossRef]

Yuratich, M. A.

M. A. Yuratich, “Effects of laser linewidth on coherent anti-Stokes Raman spectroscopy,” Mol. Phys. 38, 625–655 (1979).
[CrossRef]

Zube, D. M.

D. M. Zube, R. M. Myers, “Techniques for spectroscopic measurements in an arcjet nozzle,” J. Propulsion Power 8, 254–256 (1992).
[CrossRef]

AIAA J. (4)

D. A. Erwin, G. C. Pham-Van-Diep, W. D. Deininger, “Laser-induced fluorescence measurements of flow velocity in high-power arcjet thruster plumes,” AIAA J. 29, 1298–1303 (1991).
[CrossRef]

W. M. Ruyten, D. Keefer, “Two-beam multiplexed laser-induced fluorescence measurements of an argon arcjet plume,” AIAA J. 31, 2083–2089 (1993).
[CrossRef]

J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Experimental investigation of velocity slip near an arcjet exit plane,” AIAA J. 33, 373–375 (1995).
[CrossRef]

I. D. Boyd, D. G. Van Gilder, E. J. Beiting, “Computational and experimental investigations of rarefied flows in small nozzles,” AIAA J. 34, 2320–2326 (1996).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

M. Pealat, M. Lefebvre, “Temperature measurement by single-shot dual-line CARS in low-pressure flows,” Appl. Phys. B 53, 23–29 (1991).
[CrossRef]

Appl. Spectrosc. (1)

Chem. Phys. Lett. (2)

M. D. Duncan, P. Oesterlin, F. Konig, R. L. Byer, “Observation of saturation broadening of the coherent anti-Stokes Raman Spectrum (CARS) of acetylene in a pulsed molecular beam,” Chem. Phys. Lett. 80, 253–256 (1981).
[CrossRef]

A. D. Wilson-Gordon, H. Friedmann, “Comment on saturation effects in high-resolution coherent anti-Stokes Raman spectroscopy of a pulsed molecular beam,” Chem. Phys. Lett. 89, 273–278 (1982).
[CrossRef]

Comput. Phys. Commun. (1)

J. C. Luthe, E. J. Beiting, F. Y. Yueh, “Algorithms for calculating coherent anti-Stokes Raman spectra: application to several small molecules,” Comput. Phys. Commun. 42, 73–92 (1986).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. K. Gustafson, J. C. McDaniel, R. L. Byer, “CARS measurement of velocity in a supersonic jet,” IEEE J. Quantum Electron. QE-17, 2258–2259 (1981).
[CrossRef]

J. Fluid Mech. (1)

I. D. Boyd, D. R. Beattie, M. A. Cappelli, “Numerical and experimental investigations of low-density supersonic jets of hydrogen,” J. Fluid Mech. 280, 41–67 (1994).
[CrossRef]

J. Mol. Spectrosc. (1)

S. Gaufres, S. Sportouch, “The Placzek-Teller coefficients bJ′K′JK for negative ΔJ,” J. Mol. Spectrosc. 39, 527–530 (1971).
[CrossRef]

J. Opt. Soc. Am. (1)

M. A. Henesian, R. L. Byer, High-resolution CARS line-shape function,” J. Opt. Soc. Am. 68, 648–649 (1978).

J. Opt. Soc. Am. B (3)

J. Phys. (1)

S. A. J. Druet, J.-P. E. Taran, Ch. J. Borde, “Line shape and Doppler broadening in resonant CARS and related nonlinear processes through a diagrammatic approach,” J. Phys. 40, 819–840 (1979).
[CrossRef]

J. Propulsion Power (1)

D. M. Zube, R. M. Myers, “Techniques for spectroscopic measurements in an arcjet nozzle,” J. Propulsion Power 8, 254–256 (1992).
[CrossRef]

Mol. Phys. (1)

M. A. Yuratich, “Effects of laser linewidth on coherent anti-Stokes Raman spectroscopy,” Mol. Phys. 38, 625–655 (1979).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472 (1953).
[CrossRef]

Phys. Rev. A (3)

M. Pealat, M. Lefebvre, J.-P. E. Taran, P. L. Kelley, “Sensitivity of quantitative vibrational coherent anti-Stokes Raman spectroscopy to saturation and Stark shifts,” Phys. Rev. A 38, 1948–1965 (1988).
[CrossRef] [PubMed]

L. A. Rahn, G. J. Rosasco, “Measurement of the density shift of the H2Q(0-5) transitions from 295 to 1000 K,” Phys. Rev. A 41, 3698–3706 (1990).
[CrossRef] [PubMed]

L. A. Rahn, R. L. Farrow, G. J. Rosasco, “Measurement of the self-broadening of the H2Q(0-5) Raman transitions from 295 to 1000 K,” Phys. Rev. A 43, 6075–6088 (1991).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

L. A. Rahn, R. L. Farrow, M. L. Koszykowski, P. L. Mattern, “Observation of an optical Stark effect on vibrational and rotational transitions,” Phys. Rev. Lett. 45, 620–623 (1980).
[CrossRef]

Other (18)

D. A. Greenhalgh, “Quantitative CARS spectroscopy,” in Advances in Non-linear Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1988).

R. L. Farrow, R. P. Lucht, R. E. Palmer, “Spectral modeling for CARS diagnostics of combustion gases,” presented at the AIAA 19th Fluid Dynamics, Plasmas Dynamics and Lasers Conference, Honolulu, Hawaii, 8–10 June 1987, paper AIAA-87-1304.

R. L. Farrow, L. A. Rahn, “Optical Stark effects in nonlinear Raman spectroscopy,” in Raman Spectroscopy: Linear and Nonlinear, J. Lascombe, P. V. Huong, eds. (Wiley, New York, 1982), pp. 159–160.

R. L. Farrow, R. P. Lucht, R. E. Palmer, “Spectral modeling for CARS diagnostics of combustions gases,” presented at the AIAA 19th Fluid Dynamics, Plasma Dynamics and Laser Conference, Honolulu, Hawaii, 8–10 June 1987, paper AIAA-87-1304.

G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, 2nd ed. (Van Nostrand Reinhold, New York, 1950).

There are many other examples of emisson spectroscopy studies on arcjet flows. Most of these are AIAA conference papers available from the American Institute of Aeronautics and Astronautics, Washington, D.C. A representative sample follows. D. H. Manzella, F. M. Curran, D. M. Zube, “Preliminary plume characteristics of an arcjet thruster,” paper AIAA 90-2645; S. W. Janson, R. P. Welle, D. R. Schulthess, R. B. Cohen, “Arcjet plume characterization II—Optical diagnostic results,” paper AIAA 90-2643; D. M. Zube, R. M. Myers, “Nonequilibrium in a low power arcjet nozzle,” paper AIAA 91-2113; M. W. Crofton, “Spectral irradiance of the 1 kW arcjet from 80 to 500 nm,” paper AIAA 92-3237; W. A. Hoskins, A. E. Kull, G. W. Butler, “Measurement of population and temperature profiles in an arcjet plume,” paper AIAA 92-3240; D. M. Zube, M. Auweter-Kurtz, “Spectroscopic arcjet diagnostic under thermal equilibrium and nonequilibrium conditions,” paper AIAA 93-1792; D. M. Zube, E. W. Masserschmid, “Spectroscopic temperature and density measurements in a low power arcjet plume,” paper AIAA 94-2744; A. D. Gallimore, S-W. Kim, J. E. Foster, L. B. King, F. S. Galczinski, “Near and far-field plume studies of a 1 kW arcjet,” paper AIAA 94-3137; H. A. Habiger, M. Auweter-Kurtz, H. L. Kurtz, “Investigation of arc jet plumes with Fabry-Perot interferometry,” paper AIAA 94-3300; W. A. Hargus, M. M. Micci, R. A. Spores, “Interior spectroscopic investigation of the propellant energy modes in an arcjet nozzle,” paper AIAA 94-3302; P. V. Storm, M. A. Cappelli, “High spectral resolution emission study of a low power hydrogen arcjet plume,” paper AIAA 95-1960; G. W. Butler, I. D. Boyd, M. A. Cappelli, “Non-equilibrium flow phenomena in low power hydrogen arcjets,” paper AIAA 95-2819.

There are many other examples of LIF from excited states of species in arcjet flows. Most of these are AIAA conference papers available from the American Institute of Aeronautics and Astronautics, Washington, D.C. A representative sample follows.G. C. Pham-Van-Diep, D. A. Erwin, W. D. Deininger, “Velocity mapping in a 30-kW arcjet plume using laser-induced fluorescence,” paper AIAA 89-2831; G. C. Pham-Van-Diep, D. A. Erwin, W. D. Deininger, “Velocity mapping in the plume of a 30-kW ammonia arcjet,” paper AIAA 90-1476; J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Velocity measurements in a hydrogen arcjet using LIF,” paper AIAA 91-2112; M. W. Crofton, R. P. Welle, S. W. Janson, R. B. Cohen, “Rotational and vibrational temperatures in the plume of a 1 kW arcjet,” paper AIAA 91-1491; J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Laser-induced fluorescence of atomic hydrogen in an arcjet thruster,” paper AIAA 92-0678; W. M. Ruyten, “Characterization of electric thruster plumes using multiplexed laser induced fluorescence measurements,” paper AIAA 92-2965; J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Plume characteristics of an arcjet thruster,” paper AIAA 93-2530; J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Flow diagnostics of an arcjet using laser-induced fluorescence,” paper AIAA 92-3243; M. W. Crofton, R. P. Welle, S. W. Janson, R. B. Cohen, “Temperature, velocity and density studies in the 1 kW ammonia arcjet plume by LIF,” paper AIAA 92-3241; M. A. Cappelli, J. G. Liebeskind, R. K. Hanson, G. W. Butler, D. Q. King, “A comparison of arcjet plume properties to model predictions,” paper AIAA 93-0820; B. D. Keefer, D. Burtner, T. Moller, R. Rhodes, “Multiplexed laser induced fluorescence and non-equilibrium processes in arcjets,” paper AIAA 94-2656; D. Burtner, D. Keefer, W. Ruyten, “Experimental and numerical studies of a low-power arcjet operated on simulated ammonia,” paper AIAA 94-2869; P. V. Storm, M. A. Cappelli, “Laser-induced fluorescence measurements within an arcjet thruster nozzle,” paper AIAA 95-2381; J. A. Pobst, I. J. Wysong, R. A. Spores, “Laser induced fluorescence of ground state hydrogen atoms at nozzle exit of an arcjet thruster,” paper AIAA 95-1973.

W. J. Marinelli, W. J. Kessler, M. G. Allen, “Copper atom based measurements of velocity and turbulence in arc jet flows,” in 29th Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991), paper AIAA 91-0358.

J. E. Pollard, “Arcjet plume studies using molecular beam mass spectrometry,” in 23rd International Electric Propulsion Conference (Electric Rocket Propulsion Society, Columbus, Ohio, 1993), paper IPEC-93-132.

J. E. Pollard, “Arcjet diagnostic by XUV absorption spectroscopy,” in 23rd Plasma and Lasers Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1992), paper AIAA 92-2966.

The Boltzman factor and the partition function (state sum) are referenced from the lowest energy level in the molecule. Thus for ortho hydrogen and para nitrogen the lowest level is J = 1, the partition function is summed over odd levels only, nH2ortho=34n0 H2, and nN2para=23n0 N2. For para hydrogen and ortho nitrogen the lowest energy level is J = 0, the partition function is summed over even values only, nH2para=14n0 H2, and nN2ortho=13n0 N2.

M. W. Crofton, “Advanced diagnostic techniques for electric propulsion,” in 29th Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1993), paper AIAA 93-1794.

E. J. Beiting, L. Garman, I. D. Boyd, D. B. Van Gilder, “CARS velocity and temperature measurements in a hydrogen resistojet: comparison with Monte Carlo calculations,” in 31st Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1995), paper AIAA 95-2382.

I. D. Boyd, D. B. Van Gilder, E. J. Beiting, R. B. Cohen, E. J. Pencil, S. D. Hersch, “Numerical and experimental studies of hydrogen and nitrogen flows in a resisto-jet,” in 24th International Electric Propulsion Conference, (Russian Space Agency, Moscow, 1995), paper IPEC-95-20.

J. W. Nibler, G. A. Pubanz, “Coherent Raman spectroscopy of gases,” in Advances in Non-linear Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1988).

Two fortran subroutines were used from carsfit from Sandia National Laboratories, Combustion Research Facility, Livermore, Calif. The Galatry subroutine was written by P. L. Varghese.

Model CTC1200M, Micro Kinetics, Irvine, Calif. 92714-5733.

I. D. Boyd, Cornell University, Ithaca, N.Y. (personal communication, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Geometry of a CARS velocity measurement.

Fig. 2
Fig. 2

Calculated relative intensities of the first four H2 Q-branch CARS transitions (upper graph) and the ratio of the signal strength for the strongest two transitions below 300 K (lower graph) as a function of temperature.

Fig. 3
Fig. 3

Calculated linewidths for the H2 Q(1) line as a function of pressure at room temperature (upper graph) and as a function of temperature for several low pressures (lower graph), using Galatry profiles.

Fig. 4
Fig. 4

Convolution of a H2 Q(1) Galatry linewidth at two temperatures and at 1.0 atm with a series of Gaussian profile width linewidths between 200 and 400 MHz. The stepped appearance of the curves is the resolution of the calculation.

Fig. 5
Fig. 5

CARS H2 Q(1) linewidth as a function of pump (squares) and Stokes (circles) laser energies. The linewidths were measured in a static cell by using the exact configuration of the instrument used to make the flow measurements. The cell pressure was 780 Torr and measurements were made at 77 K. When the Stokes energy was varied to measure the saturation broadening, the pump beam energy was 0.01 mJ. During the Stark broadening measurements, the Stokes energy was 1.3 × 10-6 mJ. The error bars are the standard deviation of the measurements. The curves are the fits to the data (see text).

Fig. 6
Fig. 6

Schematic of the instrument used to acquired the CARS spectra: M, mirror; D, dichroic; L, lens; BS, beam splitter; GI, gated integrator; SWP, short-wave pass filter; IF, narrow-band interference filter; T, telescope; A, attenuator; A/D, analog to digital; BD, beam dump; PMT, photomultiplier tube.

Fig. 7
Fig. 7

CARS signal generated by translating a 100-µm-thick glass plate through the focal zone of the pump and Stokes beams.

Fig. 8
Fig. 8

Typical data set used to infer velocity and temperature from a point in the flow. These traces were taken with the plenum temperature near 660 K at an off-axis point exterior to the nozzle. The 30° rotation of the thruster makes the angle between the resistojet axis and the laser beam [ϕ in Eq. (6)] = 60°.

Fig. 9
Fig. 9

Cross section of the resistojet nozzle used to make the interior measurements.

Fig. 10
Fig. 10

Velocity measurements at points 1–4 shown in Fig. 9. Error bars represent the standard deviations of the multiple measurements made at each point. The temperatures shown are those of the plenum.

Fig. 11
Fig. 11

Hydrogen temperatures at points 1–4 shown in Fig. 9. Points show CARS measurements; error bars represent the standard deviation of the three to six measurements made at each point. Lines are direct-simulation Monte Carlo calculations.

Tables (3)

Tables Icon

Table 1 SLM Dye Laser Characteristics

Tables Icon

Table 2 Laser Energies and Number Densities of the H2 J = 1 Level Used for Recoverable Signals

Tables Icon

Table 3 Temperature Inferred from an Unheated Resistojet

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Ias=16π2ωasc2χCARS32Ip2Is2,
Nas=A2ħωasσJ2ΔnJ2fδJIp2Es2,
σJ=σzz3ν+13-4ρ1+ρ+4ρ1+ρbJJ,
Δn=n0QTgi exphcFi/kTr-gf exphcFf/kTr,
ΔνD=ν˜Rv cos α,
v=Δνν˜R cos θ cos ϕ,
Δn2Δn02=1-exp-B/B,
B=2AħωpΓτσJΔδJ2+Γ2IpIs,
δν=-ωJ30216DeβdαdqκI,
Γ=2.46ωJc2kT ln 2m,
ΓM=ΓGalatry+αEsb+cEpd2+ΓDriving2,

Metrics