Abstract

In a recent field campaign, the NASA Goddard Space Flight Center scanning Raman lidar measured, in the water vapor channel, Raman scattering from low-level clouds well in excess of 100% relative humidity. The excess scattering has been interpreted to be spontaneous Raman scattering by liquid water in the cloud droplets. A review of research on Raman scattering by microspheres indicates that the technique may provide a remote method to observe cloud liquid water. The clouds studied appear, from Mie scattering, to have two distinct layers with only the upper layer showing significant Raman scattering from liquid water in the droplets.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. Melfi, D. N. Whiteman, R. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
    [CrossRef]
  2. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
    [CrossRef]
  3. D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
    [CrossRef] [PubMed]
  4. J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
    [CrossRef]
  5. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. O’C. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Ocean. Technol. 12, 1177–1195 (1995).
    [CrossRef]
  6. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, “Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November-December 1991,” Geophys. Res. Lett. 19, 1599–1602 (1992).
    [CrossRef]
  7. R. A. Ferrare, D. N. Whiteman, S. H. Melfi, “Raman lidar measurements of temperature in the troposphere and lower stratosphere,” in Optical Remote Sensing of the Atmosphere, Vol. 4 of 1990 OSA Technical Digest Series (Optical Society of America, Washigton, D.C., 1990), pp. 188–191.
  8. K. D. Evans, S. H. Melfi, R. A. Ferrare, D. N. Whiteman, “Upper tropospheric temperature measurements using a Raman lidar,” Appl. Opt. 36, 2594–2602 (1997).
    [CrossRef] [PubMed]
  9. C. R. Philbrick, F. J. Schmidlin, K. U. Grossman, G. Lange, D. Offerman, K. D. Baker, D. Krankowsky, U. von Zahn, “Density and temperature structure over Northern Europe,” J. Atmos. Terr. Phys. 47, 159–172 (1985).
    [CrossRef]
  10. G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
    [CrossRef] [PubMed]
  11. R. Thurn, W. Kiefer, “Structural resonances observed in the Raman spectra of optically levitated droplets,” Appl. Opt. 24, 1515–1519 (1985).
    [CrossRef]
  12. G. Schweigar, “Raman scattering on microparticles: size dependence,” J. Opt. Soc. Am. B 8, 1770–1778 (1991).
    [CrossRef]
  13. R. G. Pinnick, A. Biswas, R. L. Armstrong, H. Latifi, E. Creegan, V. Srivastava, G. Fernandez, “Stimulated Raman scattering in micrometer-sized droplets: measurements of angular scattering characteristics,” Opt. Lett. 12, 1099–1101 (1988).
    [CrossRef]
  14. V. Srivastava, M. A. Jarzembski, “Laser-induced stimulated Raman scattering in the forward direction of a droplet: comparison of Mie theory with geometrical optics,” Opt. Lett. 16, 126–128 (1991).
    [CrossRef] [PubMed]
  15. A. Serpenguzel, J. C. Swindal, R. K. Chang, W. P. Acker, “Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering,” Appl. Opt. 31, 3543–3551 (1992).
    [CrossRef] [PubMed]
  16. A. Serpenguzel, G. Chen, R. K. Chang, W.-f. Hsieh, “Heuristic model for the growth and coupling of nonlinear processes in droplets,” J. Opt. Soc. Am. B 9, 871–883 (1992).
    [CrossRef]
  17. D. H. Leach, R. K. Chang, W. P. Acker, S. C. Hill, “Third-order sum-frequency generation in droplets: experimental results,” J. Opt. Soc. Am. B 10, 34–45 (1993).
    [CrossRef]
  18. R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
    [CrossRef] [PubMed]
  19. D. N. Whiteman, W. F. Murphy, N. W. Walsh, K. D. Evans, “Temperature sensitivity of an atmospheric Raman lidar system based on a XeF excimer laser,” Opt. Lett. 18, 247–249 (1993).
    [CrossRef]
  20. S. H. Melfi, “Remote measurements of the atmosphere using Raman scattering,” Appl. Opt. 11, 1605–1610 (1972).
    [CrossRef] [PubMed]
  21. A. D. Collard, S. A. Ackerman, W. L. Smith, X. Ma, H. E. Revercomb, R. O. Knuteson, S.-C. Lee, “Cirrus cloud properties derived from high spectral resolution infrared spectrometry during FIRE II. Part III. Ground-based HIS results,” J. Atmos. Sci. 52, 4264–4275 (1995).
    [CrossRef]
  22. N. S. Higdon, E. V. Browell, P. Ponsardin, “Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols,” Appl. Opt. 33, 6422–6438 (1994).
    [CrossRef] [PubMed]
  23. S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3614 (1989); Appl. Opt. 28, 4981(E) (1989).
  24. J. R. Scherer, M. K. Go, S. Kint, “Raman spectra and structure of water from -10 to 90°,” J. Phys. Chem. 78, 1304–1313 (1974).
    [CrossRef]
  25. W. F. Murphy, “The rovibrational Raman spectrum of water vapour ν1 and ν3,” Mol. Phys. 36, 727–732 (1978).
    [CrossRef]
  26. R. B. Slusher, V. E. Derr, “Temperature dependence and cross sections of some Stokes and anti-Stokes Raman lines in ice lh,” Appl. Opt. 14, 2116–2120 (1975).
    [CrossRef] [PubMed]
  27. A. Weber, Raman Spectroscopy of Gases and Liquids, Vol. 11 of Topics in Current Physics (Springer-Verlag, Berlin, 1979).
    [CrossRef]
  28. W. A. Senior, W. K. Thompson, “Assignment of the infra-red and Raman bands of liquid water,” Nature (London) 205, 170 (1965).
  29. M. Kerker, S. D. Druger, “Raman and fluorescent scattering by molecules embedded in spheres with radii up to several multiples of the wavelength,” Appl. Opt. 18, 1172–1179 (1979).
    [CrossRef] [PubMed]
  30. R. R. Rogers, M. K. Yau, A Short Course in Cloud Physics, 3rd ed. (Pergamon, Oxford, 1989).
  31. U. Wandinger, “Influence of multiple scattering on DIAL, Raman, and high spectral resolution lidars—a common MUSCLE study,” in Abstract Book, 18th International Laser Radar Conference (International Committee for Laser Atmospheric Studies, Berlin, Germany, 1996), p. 80.
  32. C. J. Grund, E. W. Eloranta, “University of Wisconsin high spectral resolution lidar,” Opt. Eng. 30, 6–12 (1991).
    [CrossRef]

1997 (1)

1995 (2)

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. O’C. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Ocean. Technol. 12, 1177–1195 (1995).
[CrossRef]

A. D. Collard, S. A. Ackerman, W. L. Smith, X. Ma, H. E. Revercomb, R. O. Knuteson, S.-C. Lee, “Cirrus cloud properties derived from high spectral resolution infrared spectrometry during FIRE II. Part III. Ground-based HIS results,” J. Atmos. Sci. 52, 4264–4275 (1995).
[CrossRef]

1994 (2)

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

N. S. Higdon, E. V. Browell, P. Ponsardin, “Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols,” Appl. Opt. 33, 6422–6438 (1994).
[CrossRef] [PubMed]

1993 (3)

1992 (6)

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, “Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November-December 1991,” Geophys. Res. Lett. 19, 1599–1602 (1992).
[CrossRef]

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

A. Serpenguzel, G. Chen, R. K. Chang, W.-f. Hsieh, “Heuristic model for the growth and coupling of nonlinear processes in droplets,” J. Opt. Soc. Am. B 9, 871–883 (1992).
[CrossRef]

A. Serpenguzel, J. C. Swindal, R. K. Chang, W. P. Acker, “Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering,” Appl. Opt. 31, 3543–3551 (1992).
[CrossRef] [PubMed]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
[CrossRef] [PubMed]

1991 (3)

1989 (2)

S. H. Melfi, D. N. Whiteman, R. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
[CrossRef]

S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3614 (1989); Appl. Opt. 28, 4981(E) (1989).

1988 (1)

R. G. Pinnick, A. Biswas, R. L. Armstrong, H. Latifi, E. Creegan, V. Srivastava, G. Fernandez, “Stimulated Raman scattering in micrometer-sized droplets: measurements of angular scattering characteristics,” Opt. Lett. 12, 1099–1101 (1988).
[CrossRef]

1985 (2)

C. R. Philbrick, F. J. Schmidlin, K. U. Grossman, G. Lange, D. Offerman, K. D. Baker, D. Krankowsky, U. von Zahn, “Density and temperature structure over Northern Europe,” J. Atmos. Terr. Phys. 47, 159–172 (1985).
[CrossRef]

R. Thurn, W. Kiefer, “Structural resonances observed in the Raman spectra of optically levitated droplets,” Appl. Opt. 24, 1515–1519 (1985).
[CrossRef]

1979 (1)

1978 (1)

W. F. Murphy, “The rovibrational Raman spectrum of water vapour ν1 and ν3,” Mol. Phys. 36, 727–732 (1978).
[CrossRef]

1975 (1)

1974 (1)

J. R. Scherer, M. K. Go, S. Kint, “Raman spectra and structure of water from -10 to 90°,” J. Phys. Chem. 78, 1304–1313 (1974).
[CrossRef]

1972 (1)

1965 (1)

W. A. Senior, W. K. Thompson, “Assignment of the infra-red and Raman bands of liquid water,” Nature (London) 205, 170 (1965).

Acker, W. P.

Ackerman, S. A.

A. D. Collard, S. A. Ackerman, W. L. Smith, X. Ma, H. E. Revercomb, R. O. Knuteson, S.-C. Lee, “Cirrus cloud properties derived from high spectral resolution infrared spectrometry during FIRE II. Part III. Ground-based HIS results,” J. Atmos. Sci. 52, 4264–4275 (1995).
[CrossRef]

Ansmann, A.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Armstrong, R. L.

R. G. Pinnick, A. Biswas, R. L. Armstrong, H. Latifi, E. Creegan, V. Srivastava, G. Fernandez, “Stimulated Raman scattering in micrometer-sized droplets: measurements of angular scattering characteristics,” Opt. Lett. 12, 1099–1101 (1988).
[CrossRef]

Baker, K. D.

C. R. Philbrick, F. J. Schmidlin, K. U. Grossman, G. Lange, D. Offerman, K. D. Baker, D. Krankowsky, U. von Zahn, “Density and temperature structure over Northern Europe,” J. Atmos. Terr. Phys. 47, 159–172 (1985).
[CrossRef]

Bisson, S. E.

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

Biswas, A.

R. G. Pinnick, A. Biswas, R. L. Armstrong, H. Latifi, E. Creegan, V. Srivastava, G. Fernandez, “Stimulated Raman scattering in micrometer-sized droplets: measurements of angular scattering characteristics,” Opt. Lett. 12, 1099–1101 (1988).
[CrossRef]

Browell, E. V.

Cess, R. D.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
[CrossRef] [PubMed]

Chang, R. K.

Charlson, R. J.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
[CrossRef] [PubMed]

Chen, G.

Coakley, J. A.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
[CrossRef] [PubMed]

Collard, A. D.

A. D. Collard, S. A. Ackerman, W. L. Smith, X. Ma, H. E. Revercomb, R. O. Knuteson, S.-C. Lee, “Cirrus cloud properties derived from high spectral resolution infrared spectrometry during FIRE II. Part III. Ground-based HIS results,” J. Atmos. Sci. 52, 4264–4275 (1995).
[CrossRef]

Creegan, E.

R. G. Pinnick, A. Biswas, R. L. Armstrong, H. Latifi, E. Creegan, V. Srivastava, G. Fernandez, “Stimulated Raman scattering in micrometer-sized droplets: measurements of angular scattering characteristics,” Opt. Lett. 12, 1099–1101 (1988).
[CrossRef]

Derr, V. E.

Druger, S. D.

Eloranta, E. W.

C. J. Grund, E. W. Eloranta, “University of Wisconsin high spectral resolution lidar,” Opt. Eng. 30, 6–12 (1991).
[CrossRef]

Evans, K. D.

K. D. Evans, S. H. Melfi, R. A. Ferrare, D. N. Whiteman, “Upper tropospheric temperature measurements using a Raman lidar,” Appl. Opt. 36, 2594–2602 (1997).
[CrossRef] [PubMed]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. O’C. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Ocean. Technol. 12, 1177–1195 (1995).
[CrossRef]

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

D. N. Whiteman, W. F. Murphy, N. W. Walsh, K. D. Evans, “Temperature sensitivity of an atmospheric Raman lidar system based on a XeF excimer laser,” Opt. Lett. 18, 247–249 (1993).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, “Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November-December 1991,” Geophys. Res. Lett. 19, 1599–1602 (1992).
[CrossRef]

Fernandez, G.

R. G. Pinnick, A. Biswas, R. L. Armstrong, H. Latifi, E. Creegan, V. Srivastava, G. Fernandez, “Stimulated Raman scattering in micrometer-sized droplets: measurements of angular scattering characteristics,” Opt. Lett. 12, 1099–1101 (1988).
[CrossRef]

Ferrare, R.

S. H. Melfi, D. N. Whiteman, R. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
[CrossRef]

Ferrare, R. A.

K. D. Evans, S. H. Melfi, R. A. Ferrare, D. N. Whiteman, “Upper tropospheric temperature measurements using a Raman lidar,” Appl. Opt. 36, 2594–2602 (1997).
[CrossRef] [PubMed]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. O’C. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Ocean. Technol. 12, 1177–1195 (1995).
[CrossRef]

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, “Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November-December 1991,” Geophys. Res. Lett. 19, 1599–1602 (1992).
[CrossRef]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

R. A. Ferrare, D. N. Whiteman, S. H. Melfi, “Raman lidar measurements of temperature in the troposphere and lower stratosphere,” in Optical Remote Sensing of the Atmosphere, Vol. 4 of 1990 OSA Technical Digest Series (Optical Society of America, Washigton, D.C., 1990), pp. 188–191.

Go, M. K.

J. R. Scherer, M. K. Go, S. Kint, “Raman spectra and structure of water from -10 to 90°,” J. Phys. Chem. 78, 1304–1313 (1974).
[CrossRef]

Goldsmith, J. E. M.

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

Grossman, K. U.

C. R. Philbrick, F. J. Schmidlin, K. U. Grossman, G. Lange, D. Offerman, K. D. Baker, D. Krankowsky, U. von Zahn, “Density and temperature structure over Northern Europe,” J. Atmos. Terr. Phys. 47, 159–172 (1985).
[CrossRef]

Grund, C. J.

C. J. Grund, E. W. Eloranta, “University of Wisconsin high spectral resolution lidar,” Opt. Eng. 30, 6–12 (1991).
[CrossRef]

Hales, J. M.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
[CrossRef] [PubMed]

Hansen, J. E.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
[CrossRef] [PubMed]

Higdon, N. S.

Hill, S. C.

Hofmann, D. J.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
[CrossRef] [PubMed]

Hsieh, W.-f.

Ismail, S.

Jarzembski, M. A.

Kerker, M.

Kiefer, W.

Kint, S.

J. R. Scherer, M. K. Go, S. Kint, “Raman spectra and structure of water from -10 to 90°,” J. Phys. Chem. 78, 1304–1313 (1974).
[CrossRef]

Knuteson, R. O.

A. D. Collard, S. A. Ackerman, W. L. Smith, X. Ma, H. E. Revercomb, R. O. Knuteson, S.-C. Lee, “Cirrus cloud properties derived from high spectral resolution infrared spectrometry during FIRE II. Part III. Ground-based HIS results,” J. Atmos. Sci. 52, 4264–4275 (1995).
[CrossRef]

Krankowsky, D.

C. R. Philbrick, F. J. Schmidlin, K. U. Grossman, G. Lange, D. Offerman, K. D. Baker, D. Krankowsky, U. von Zahn, “Density and temperature structure over Northern Europe,” J. Atmos. Terr. Phys. 47, 159–172 (1985).
[CrossRef]

Lahmann, W.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Lange, G.

C. R. Philbrick, F. J. Schmidlin, K. U. Grossman, G. Lange, D. Offerman, K. D. Baker, D. Krankowsky, U. von Zahn, “Density and temperature structure over Northern Europe,” J. Atmos. Terr. Phys. 47, 159–172 (1985).
[CrossRef]

Latifi, H.

R. G. Pinnick, A. Biswas, R. L. Armstrong, H. Latifi, E. Creegan, V. Srivastava, G. Fernandez, “Stimulated Raman scattering in micrometer-sized droplets: measurements of angular scattering characteristics,” Opt. Lett. 12, 1099–1101 (1988).
[CrossRef]

Leach, D. H.

Lee, S.-C.

A. D. Collard, S. A. Ackerman, W. L. Smith, X. Ma, H. E. Revercomb, R. O. Knuteson, S.-C. Lee, “Cirrus cloud properties derived from high spectral resolution infrared spectrometry during FIRE II. Part III. Ground-based HIS results,” J. Atmos. Sci. 52, 4264–4275 (1995).
[CrossRef]

Ma, X.

A. D. Collard, S. A. Ackerman, W. L. Smith, X. Ma, H. E. Revercomb, R. O. Knuteson, S.-C. Lee, “Cirrus cloud properties derived from high spectral resolution infrared spectrometry during FIRE II. Part III. Ground-based HIS results,” J. Atmos. Sci. 52, 4264–4275 (1995).
[CrossRef]

Melfi, S. H.

K. D. Evans, S. H. Melfi, R. A. Ferrare, D. N. Whiteman, “Upper tropospheric temperature measurements using a Raman lidar,” Appl. Opt. 36, 2594–2602 (1997).
[CrossRef] [PubMed]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. O’C. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Ocean. Technol. 12, 1177–1195 (1995).
[CrossRef]

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, “Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November-December 1991,” Geophys. Res. Lett. 19, 1599–1602 (1992).
[CrossRef]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

S. H. Melfi, D. N. Whiteman, R. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
[CrossRef]

S. H. Melfi, “Remote measurements of the atmosphere using Raman scattering,” Appl. Opt. 11, 1605–1610 (1972).
[CrossRef] [PubMed]

R. A. Ferrare, D. N. Whiteman, S. H. Melfi, “Raman lidar measurements of temperature in the troposphere and lower stratosphere,” in Optical Remote Sensing of the Atmosphere, Vol. 4 of 1990 OSA Technical Digest Series (Optical Society of America, Washigton, D.C., 1990), pp. 188–191.

Michaelis, W.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Mitev, V.

Murphy, W. F.

Offerman, D.

C. R. Philbrick, F. J. Schmidlin, K. U. Grossman, G. Lange, D. Offerman, K. D. Baker, D. Krankowsky, U. von Zahn, “Density and temperature structure over Northern Europe,” J. Atmos. Terr. Phys. 47, 159–172 (1985).
[CrossRef]

Pepler, S. J.

Philbrick, C. R.

C. R. Philbrick, F. J. Schmidlin, K. U. Grossman, G. Lange, D. Offerman, K. D. Baker, D. Krankowsky, U. von Zahn, “Density and temperature structure over Northern Europe,” J. Atmos. Terr. Phys. 47, 159–172 (1985).
[CrossRef]

Pinnick, R. G.

R. G. Pinnick, A. Biswas, R. L. Armstrong, H. Latifi, E. Creegan, V. Srivastava, G. Fernandez, “Stimulated Raman scattering in micrometer-sized droplets: measurements of angular scattering characteristics,” Opt. Lett. 12, 1099–1101 (1988).
[CrossRef]

Ponsardin, P.

Revercomb, H. E.

A. D. Collard, S. A. Ackerman, W. L. Smith, X. Ma, H. E. Revercomb, R. O. Knuteson, S.-C. Lee, “Cirrus cloud properties derived from high spectral resolution infrared spectrometry during FIRE II. Part III. Ground-based HIS results,” J. Atmos. Sci. 52, 4264–4275 (1995).
[CrossRef]

Riebesell, M.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Rogers, R. R.

R. R. Rogers, M. K. Yau, A Short Course in Cloud Physics, 3rd ed. (Pergamon, Oxford, 1989).

Scherer, J. R.

J. R. Scherer, M. K. Go, S. Kint, “Raman spectra and structure of water from -10 to 90°,” J. Phys. Chem. 78, 1304–1313 (1974).
[CrossRef]

Schmidlin, F. J.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. O’C. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Ocean. Technol. 12, 1177–1195 (1995).
[CrossRef]

C. R. Philbrick, F. J. Schmidlin, K. U. Grossman, G. Lange, D. Offerman, K. D. Baker, D. Krankowsky, U. von Zahn, “Density and temperature structure over Northern Europe,” J. Atmos. Terr. Phys. 47, 159–172 (1985).
[CrossRef]

Schwartz, S. E.

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
[CrossRef] [PubMed]

Schweigar, G.

Senior, W. A.

W. A. Senior, W. K. Thompson, “Assignment of the infra-red and Raman bands of liquid water,” Nature (London) 205, 170 (1965).

Serpenguzel, A.

Slusher, R. B.

Smith, W. L.

A. D. Collard, S. A. Ackerman, W. L. Smith, X. Ma, H. E. Revercomb, R. O. Knuteson, S.-C. Lee, “Cirrus cloud properties derived from high spectral resolution infrared spectrometry during FIRE II. Part III. Ground-based HIS results,” J. Atmos. Sci. 52, 4264–4275 (1995).
[CrossRef]

Srivastava, V.

V. Srivastava, M. A. Jarzembski, “Laser-induced stimulated Raman scattering in the forward direction of a droplet: comparison of Mie theory with geometrical optics,” Opt. Lett. 16, 126–128 (1991).
[CrossRef] [PubMed]

R. G. Pinnick, A. Biswas, R. L. Armstrong, H. Latifi, E. Creegan, V. Srivastava, G. Fernandez, “Stimulated Raman scattering in micrometer-sized droplets: measurements of angular scattering characteristics,” Opt. Lett. 12, 1099–1101 (1988).
[CrossRef]

Starr, D. O’C.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. O’C. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Ocean. Technol. 12, 1177–1195 (1995).
[CrossRef]

Swindal, J. C.

Thomas, L.

Thompson, W. K.

W. A. Senior, W. K. Thompson, “Assignment of the infra-red and Raman bands of liquid water,” Nature (London) 205, 170 (1965).

Thurn, R.

Vaughan, G.

von Zahn, U.

C. R. Philbrick, F. J. Schmidlin, K. U. Grossman, G. Lange, D. Offerman, K. D. Baker, D. Krankowsky, U. von Zahn, “Density and temperature structure over Northern Europe,” J. Atmos. Terr. Phys. 47, 159–172 (1985).
[CrossRef]

Voss, E.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Walsh, N. W.

Wandinger, U.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

U. Wandinger, “Influence of multiple scattering on DIAL, Raman, and high spectral resolution lidars—a common MUSCLE study,” in Abstract Book, 18th International Laser Radar Conference (International Committee for Laser Atmospheric Studies, Berlin, Germany, 1996), p. 80.

Wareing, D. P.

Weber, A.

A. Weber, Raman Spectroscopy of Gases and Liquids, Vol. 11 of Topics in Current Physics (Springer-Verlag, Berlin, 1979).
[CrossRef]

Weitkamp, C.

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Whiteman, D. N.

K. D. Evans, S. H. Melfi, R. A. Ferrare, D. N. Whiteman, “Upper tropospheric temperature measurements using a Raman lidar,” Appl. Opt. 36, 2594–2602 (1997).
[CrossRef] [PubMed]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. O’C. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Ocean. Technol. 12, 1177–1195 (1995).
[CrossRef]

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

D. N. Whiteman, W. F. Murphy, N. W. Walsh, K. D. Evans, “Temperature sensitivity of an atmospheric Raman lidar system based on a XeF excimer laser,” Opt. Lett. 18, 247–249 (1993).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, “Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November-December 1991,” Geophys. Res. Lett. 19, 1599–1602 (1992).
[CrossRef]

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

S. H. Melfi, D. N. Whiteman, R. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
[CrossRef]

R. A. Ferrare, D. N. Whiteman, S. H. Melfi, “Raman lidar measurements of temperature in the troposphere and lower stratosphere,” in Optical Remote Sensing of the Atmosphere, Vol. 4 of 1990 OSA Technical Digest Series (Optical Society of America, Washigton, D.C., 1990), pp. 188–191.

Yau, M. K.

R. R. Rogers, M. K. Yau, A Short Course in Cloud Physics, 3rd ed. (Pergamon, Oxford, 1989).

Appl. Opt. (10)

S. H. Melfi, “Remote measurements of the atmosphere using Raman scattering,” Appl. Opt. 11, 1605–1610 (1972).
[CrossRef] [PubMed]

R. B. Slusher, V. E. Derr, “Temperature dependence and cross sections of some Stokes and anti-Stokes Raman lines in ice lh,” Appl. Opt. 14, 2116–2120 (1975).
[CrossRef] [PubMed]

M. Kerker, S. D. Druger, “Raman and fluorescent scattering by molecules embedded in spheres with radii up to several multiples of the wavelength,” Appl. Opt. 18, 1172–1179 (1979).
[CrossRef] [PubMed]

R. Thurn, W. Kiefer, “Structural resonances observed in the Raman spectra of optically levitated droplets,” Appl. Opt. 24, 1515–1519 (1985).
[CrossRef]

S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3614 (1989); Appl. Opt. 28, 4981(E) (1989).

D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef] [PubMed]

G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
[CrossRef] [PubMed]

N. S. Higdon, E. V. Browell, P. Ponsardin, “Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols,” Appl. Opt. 33, 6422–6438 (1994).
[CrossRef] [PubMed]

A. Serpenguzel, J. C. Swindal, R. K. Chang, W. P. Acker, “Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering,” Appl. Opt. 31, 3543–3551 (1992).
[CrossRef] [PubMed]

K. D. Evans, S. H. Melfi, R. A. Ferrare, D. N. Whiteman, “Upper tropospheric temperature measurements using a Raman lidar,” Appl. Opt. 36, 2594–2602 (1997).
[CrossRef] [PubMed]

Appl. Phys. B (1)

A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992).
[CrossRef]

Bull. Am. Meteorol. Soc. (1)

J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994).
[CrossRef]

Geophys. Res. Lett. (1)

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, “Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November-December 1991,” Geophys. Res. Lett. 19, 1599–1602 (1992).
[CrossRef]

J. Appl. Meteorol. (1)

S. H. Melfi, D. N. Whiteman, R. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989).
[CrossRef]

J. Atmos. Ocean. Technol. (1)

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. O’C. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Ocean. Technol. 12, 1177–1195 (1995).
[CrossRef]

J. Atmos. Sci. (1)

A. D. Collard, S. A. Ackerman, W. L. Smith, X. Ma, H. E. Revercomb, R. O. Knuteson, S.-C. Lee, “Cirrus cloud properties derived from high spectral resolution infrared spectrometry during FIRE II. Part III. Ground-based HIS results,” J. Atmos. Sci. 52, 4264–4275 (1995).
[CrossRef]

J. Atmos. Terr. Phys. (1)

C. R. Philbrick, F. J. Schmidlin, K. U. Grossman, G. Lange, D. Offerman, K. D. Baker, D. Krankowsky, U. von Zahn, “Density and temperature structure over Northern Europe,” J. Atmos. Terr. Phys. 47, 159–172 (1985).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. (1)

J. R. Scherer, M. K. Go, S. Kint, “Raman spectra and structure of water from -10 to 90°,” J. Phys. Chem. 78, 1304–1313 (1974).
[CrossRef]

Mol. Phys. (1)

W. F. Murphy, “The rovibrational Raman spectrum of water vapour ν1 and ν3,” Mol. Phys. 36, 727–732 (1978).
[CrossRef]

Nature (London) (1)

W. A. Senior, W. K. Thompson, “Assignment of the infra-red and Raman bands of liquid water,” Nature (London) 205, 170 (1965).

Opt. Eng. (1)

C. J. Grund, E. W. Eloranta, “University of Wisconsin high spectral resolution lidar,” Opt. Eng. 30, 6–12 (1991).
[CrossRef]

Opt. Lett. (3)

Science (1)

R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992).
[CrossRef] [PubMed]

Other (4)

R. A. Ferrare, D. N. Whiteman, S. H. Melfi, “Raman lidar measurements of temperature in the troposphere and lower stratosphere,” in Optical Remote Sensing of the Atmosphere, Vol. 4 of 1990 OSA Technical Digest Series (Optical Society of America, Washigton, D.C., 1990), pp. 188–191.

R. R. Rogers, M. K. Yau, A Short Course in Cloud Physics, 3rd ed. (Pergamon, Oxford, 1989).

U. Wandinger, “Influence of multiple scattering on DIAL, Raman, and high spectral resolution lidars—a common MUSCLE study,” in Abstract Book, 18th International Laser Radar Conference (International Committee for Laser Atmospheric Studies, Berlin, Germany, 1996), p. 80.

A. Weber, Raman Spectroscopy of Gases and Liquids, Vol. 11 of Topics in Current Physics (Springer-Verlag, Berlin, 1979).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Water vapor mixing ratio profile and an elastic-scattering ratio profile obtained with the scanning Raman lidar at the NASA Wallops Flight Facility on 9 September 1995 at 02:48 UT (2.80 h UT). Also shown is the water vapor mixing ratio and the saturated water vapor mixing ratio profiles made with data from the radiosonde launched at 02:33 UT.

Fig. 2
Fig. 2

False color, time–height image of the variation of the Raman-scattering ratio, normalized to the water vapor mixing ratio, during the night of 9 September 1995. The image is color coded as shown by the color bar.

Fig. 3
Fig. 3

False color, time–height image of the variation of the elastic-scattering ratio during the night of 9 September 1995, color coded as shown by the color bar.

Fig. 4
Fig. 4

The ν - 1, ν - 3 bands of bulk liquid water at 30 °C (combination of isotropic and anisotropic components) and the ν - 1 band of water vapor excited by the 351.1-nm laser line are shown as a function of wavelength. The two bands (liquid and vapor) have been normalized so that their respective band strengths are in a ratio of 5:1. Also shown is the transmission curve for the interference filter used to select the Raman scattering.

Fig. 5
Fig. 5

Profiles of the Raman-scattering ratio, normalized to the water vapor mixing ratio, and the elastic-scattering ratio acquired at 3.13 h UT. The elastic-scattering ratio refers to the upper scale. Also shown is the saturated mixing ratio (100% relative humidity) profile obtained with the temperature data from the 02:33 UT radiosonde. The Raman-scattering ratio and the saturated mixing ratio are plotted in reference to the bottom scale.

Fig. 6
Fig. 6

Same as Fig. 5, except that the Raman-scattering ratio and the elastic-scattering ratio were acquired at 2.90 h UT.

Fig. 7
Fig. 7

Same as Fig. 5, except that the Raman-scattering ratio and the elastic-scattering ratio were acquired at 3.00 h UT.

Fig. 8
Fig. 8

Same as Fig. 5, except that the Raman-scattering ratio and the elastic-scattering ratio were acquired at 2.53 h UT.

Metrics