Abstract

The scattering phase functions of micrometer-sized glycerol droplets containing spherical latex inclusions undergo random fluctuations with time. We measure scattering intensities in the near-forward and near-backward scattering directions and find them to have strong positive correlations during some time periods and strong negative correlations during other time periods. The characteristic time constants of these correlations are of the order of seconds. We calculate scattering correlations from two types of scattering system. Correlations from a two-sphere system generally are positive, whereas correlations from a sphere containing a single spherical inclusion may be both positive and negative. Calculations of correlations from our experimental data are consistent with diffusion of inclusions within the host droplet, rather than interference effects between the inclusions.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
    [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20, 1803–1814 (1981).
    [CrossRef] [PubMed]
  3. P. Chýlek, “Partial wave resonances and the ripple structure of the Mie normalized extinction cross section,” J. Opt. Soc. Am. A 66, 285–287 (1976).
    [CrossRef]
  4. P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical levitation and partial wave resonances,” Phys. Rev. A 18, 2229–2233 (1978).
    [CrossRef]
  5. P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Narrow resonance structure in the Mie scattering characteristics,” Appl. Opt. 17, 3019–3021 (1978).
    [CrossRef] [PubMed]
  6. H. S. Bennett, G. J. Rosasco, “Resonances in the efficiency factor for absorption: Mie scattering theory,” Appl. Opt. 17, 491–493 (1978).
    [CrossRef] [PubMed]
  7. P. R. Conwell, P. W. Barber, C. K. Rushfirth, “Resonant spectra of dielectric spheres,” J. Opt. Soc. Am. A 1, 62–67 (1984).
    [CrossRef]
  8. J. R. Probert-Jones, “Resonance component of backscattering by large dielectric sphere,” J. Opt. Soc. Am. A 1, 822–829 (1984).
    [CrossRef]
  9. H. S. Bennett, G. J. Rosasco, “Internal field resonance structure: implications for optical absorption and scattering by microscopic particles,” J. Opt. Soc. Am. A 1, 62–67 (1984).
  10. S. C. Hill, R. E. Benner, “Morphology-dependent resonances associated with stimulated processes in microspheres,” J. Opt. Soc. Am. B 3, 1509–1514 (1986).
    [CrossRef]
  11. G. Videen, W. S. Bickel, “Light-scattering resonances in small spheres,” Phys. Rev. A 45, 6008–6012 (1992).
    [CrossRef] [PubMed]
  12. P. Chýlek, D. Ngo, R. G. Pinnick, “Resonance structure of composite and slightly absorbing spheres,” J. Opt. Soc. Am. A 9, 775–780 (1992).
    [CrossRef]
  13. D. Ngo, R. G. Pinnick, “Suppression of scattering resonances in inhomogeneous microdroplets,” J. Opt. Soc. Am. A 11, 1352–1359 (1994).
    [CrossRef]
  14. J. Gu, T. E. Ruekgauer, J.-G. Xie, R. L. Armstrong, “Effect of particulate seeding on microdroplet angular scattering,” Opt. Lett. 18, 1293–1295 (1993).
    [CrossRef] [PubMed]
  15. J.-G. Xie, T. E. Ruekgauer, R. L. Armstrong, R. G. Pinnick, “Suppression of stimulated Raman scattering from microdroplets by seeding with nanometer-sized latex particles,” Opt. Lett. 18, 340–342 (1993).
    [CrossRef] [PubMed]
  16. H.-B. Lin, A. L. Huston, J. D. Eversole, A. J. Campillo, P. Chýlek, “Internal scattering effects on microdroplet resonant emission structure,” Opt. Lett. 17, 970–972 (1992).
    [CrossRef] [PubMed]
  17. R. L. Armstrong, J.-G. Xie, T. E. Ruekgauer, J. Gu, R. G. Pinnick, “Effects of submicrometer-sized particles on microdroplet lasing,” Opt. Lett. 18, 119–121 (1993).
    [CrossRef] [PubMed]
  18. R. L. Armstrong, J.-G. Xie, T. E. Ruekgauer, R. G. Pinnick, “Energy-transfer-assisted lasing from microdroplets seeded with fluorescent sol,” Opt. Lett. 17, 943–945 (1992).
    [CrossRef] [PubMed]
  19. T. Kaiser, G. Roll, G. Schweiger, “Enhancement of the Raman spectrum of optically levitated microspheres by seeded nanoparticles,” J. Opt. Soc. Am. B 12, 281–286 (1995).
    [CrossRef]
  20. J. D. Eversole, H-B. Lin, A. J. Campillo, “Input/output resonance correlation in laser-induced emission from microdroplets,” J. Opt. Soc. Am. B 12, 287–296 (1995).
    [CrossRef]
  21. B. V. Bronk, M. J. Smith, S. Arnold, “Photon-correlation spectroscopy for small spherical inclusions in a micrometer-sized electrodynamically levitated droplet,” Opt. Lett. 18, 93–95 (1993).
    [CrossRef] [PubMed]
  22. C. Liang, Y. T. Lo, “Scattering by two spheres,” Radio Sci. 2, 1481–1495 (1967).
  23. J. H. Bruning, Y. T. Lo, “Multiple scattering of EM waves by spheres parts I and II,” IEEE Trans. Antennas Propag. AP-19, 378–400 (1971).
    [CrossRef]
  24. A. R. Jones, “Electromagnetic wave scattering by assemblies of particles in the Rayleigh approximation,” Proc. R. Soc. London, Ser. A 366, 111–127 (1979).
    [CrossRef]
  25. J. M. Gérardy, M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations: the long wavelength limit,” Phys. Rev. B 22, 4950–4959 (1980).
    [CrossRef]
  26. R. T. Wang, J. M. Greenberg, D. W. Schuerman, “Experimental results of dependent light scattering by two spheres,” Opt. Lett. 6, 543–545 (1981).
    [CrossRef] [PubMed]
  27. F. Borghese, P. Denti, R. Saija, G. Toscano, O. I. Sindoni, “Multiple electromagnetic scattering from a cluster of spheres. I. Theory,” Aerosol Sci. Technol. 3, 227–235 (1984).
    [CrossRef]
  28. K. A. Fuller, G. W. Kattawar, “Consummate solution to the problem of classical electromagnetic scattering by an ensemble of spheres. I. linear chains,” Opt. Lett. 13, 90–92 (1988).
    [CrossRef]
  29. K. A. Fuller, G. W. Kattawar, “Consummate solution to the problem of classical electromagnetic scattering by an ensemble of spheres. I. clusters of arbitrary configuration,” Opt. Lett. 13, 1063–1065 (1988).
    [CrossRef] [PubMed]
  30. M. F. Iskander, H. Y. Chen, J. E. Penner, “Optical scattering and absorption by branched chains of aerosols,” Appl. Opt. 28, 3083–3091 (1989).
    [CrossRef] [PubMed]
  31. D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. London Ser. A 433, 599–614 (1991).
    [CrossRef]
  32. M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A 8, 871–882 (1991).
    [CrossRef]
  33. J. C. Ku, K.-H. Shim, “A comparison of solutions for light scattering and absorption by agglomerated or arbitrarily-shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992).
    [CrossRef]
  34. K. A. Fuller, “Optical resonances and two-sphere systems,” Appl. Opt. 33, 4716–4731 (1991).
    [CrossRef]
  35. M. I. Mishchenko, D. W. Mackowski, “Light scattering by randomly oriented bispheres,” Opt. Lett. 19, 1604–1606 (1994).
    [CrossRef] [PubMed]
  36. K. A. Fuller, “Scattering and absorption cross sections of compounded spheres. I. Theory for external aggregation,” J. Opt. Soc. Am. A 11, 3251–3260 (1994).
    [CrossRef]
  37. K. A. Fuller, “Scattering and absorption cross sections of compounded spheres. II. Calculations for external aggregation,” J. Opt. Soc. Am. A 12, 881–892 (1995).
    [CrossRef]
  38. S. C. Hill, H. I. Saleheen, K. A. Fuller, “Volume current method for modeling light scattering by inhomogeneously perturbed spheres,” J. Opt. Soc. Am. A 12, 905–915 (1995).
    [CrossRef]
  39. D. W. Mackowski, “Calculation of total cross sections of multiple-sphere clusters,” J. Opt. Soc. Am. A 11, 2851–2861 (1994).
    [CrossRef]
  40. J. G. Fikioris, N. K. Uzunoglu, “Scattering from an eccentrically stratified dielectric sphere,” J. Opt. Soc. Am. 69, 1359–1366 (1979).
    [CrossRef]
  41. F. Borghese, P. Denti, R. Saija, “Optical properties of spheres containing a spherical eccentric inclusion,” J. Opt. Soc. Am. A 9, 1327–1335 (1992).
    [CrossRef]
  42. F. Borghese, P. Denti, R. Saija, “Optical properties of spheres containing several spherical inclusions,” Appl. Opt. 33, 484–493 (1994).
    [CrossRef] [PubMed]
  43. K. A. Fuller, “Scattering and absorption cross sections of compounded spheres. III. Spheres containing arbitrarily located spherical inhomogeneities,” J. Opt. Soc. Am. A 12, 893–904 (1995).
    [CrossRef]
  44. M. M. Mazumder, S. C. Hill, P. W. Barber, “Morphology-dependent resonances in inhomogeneous spheres: comparison of the layered T-matrix method and the time-independent perturbation method,” J. Opt. Soc. Am. A 9, 1844–1853 (1992).
    [CrossRef]
  45. N. C. Skaropoulos, M. P. Ioannidow, D. P. Chrissoulidis, “Indirect mode-matching solution to scattering from a dielectric sphere with an eccentric inclusion,” J. Opt. Soc. Am. A 11, 1859–1866 (1994).
    [CrossRef]
  46. G. Videen, D. Ngo, P. Chýlek, “Effective-medium predictions of absorption by graphitic carbon in water droplets,” Opt. Lett. 19, 1675–1677 (1994).
    [CrossRef] [PubMed]
  47. G. Videen, D. Ngo, P. Chýlek, R. G. Pinnick, “Light scattering from a sphere with an irregular inclusion,” J. Opt. Soc. Am. A 12, 922–928 (1995).
    [CrossRef]
  48. K. Fuller, “Morphology-dependent resonances in eccentrically stratified spheres,” Opt. Lett. 19, 1272–1274 (1994).
    [CrossRef] [PubMed]
  49. S. Arnold, “Spectroscopy of single levitated micron sized particles,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), Chap. 2, pp. 66–127.
  50. T. W. Chen, “Simple formula for light scattering by large spherical dielectric,” Appl. Opt. 32, 7568–7571 (1993).
    [CrossRef] [PubMed]

1995 (6)

1994 (8)

1993 (5)

1992 (7)

1991 (3)

K. A. Fuller, “Optical resonances and two-sphere systems,” Appl. Opt. 33, 4716–4731 (1991).
[CrossRef]

D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. London Ser. A 433, 599–614 (1991).
[CrossRef]

M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A 8, 871–882 (1991).
[CrossRef]

1989 (1)

1988 (2)

1986 (1)

1984 (4)

1981 (2)

1980 (1)

J. M. Gérardy, M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations: the long wavelength limit,” Phys. Rev. B 22, 4950–4959 (1980).
[CrossRef]

1979 (2)

A. R. Jones, “Electromagnetic wave scattering by assemblies of particles in the Rayleigh approximation,” Proc. R. Soc. London, Ser. A 366, 111–127 (1979).
[CrossRef]

J. G. Fikioris, N. K. Uzunoglu, “Scattering from an eccentrically stratified dielectric sphere,” J. Opt. Soc. Am. 69, 1359–1366 (1979).
[CrossRef]

1978 (3)

1977 (1)

A. Ashkin, J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[CrossRef]

1976 (1)

P. Chýlek, “Partial wave resonances and the ripple structure of the Mie normalized extinction cross section,” J. Opt. Soc. Am. A 66, 285–287 (1976).
[CrossRef]

1971 (1)

J. H. Bruning, Y. T. Lo, “Multiple scattering of EM waves by spheres parts I and II,” IEEE Trans. Antennas Propag. AP-19, 378–400 (1971).
[CrossRef]

1967 (1)

C. Liang, Y. T. Lo, “Scattering by two spheres,” Radio Sci. 2, 1481–1495 (1967).

Armstrong, R. L.

Arnold, S.

B. V. Bronk, M. J. Smith, S. Arnold, “Photon-correlation spectroscopy for small spherical inclusions in a micrometer-sized electrodynamically levitated droplet,” Opt. Lett. 18, 93–95 (1993).
[CrossRef] [PubMed]

S. Arnold, “Spectroscopy of single levitated micron sized particles,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), Chap. 2, pp. 66–127.

Ashkin, A.

A. Ashkin, J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20, 1803–1814 (1981).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[CrossRef]

Ausloos, M.

J. M. Gérardy, M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations: the long wavelength limit,” Phys. Rev. B 22, 4950–4959 (1980).
[CrossRef]

Barber, P. W.

Benner, R. E.

Bennett, H. S.

Bickel, W. S.

G. Videen, W. S. Bickel, “Light-scattering resonances in small spheres,” Phys. Rev. A 45, 6008–6012 (1992).
[CrossRef] [PubMed]

Borghese, F.

Bronk, B. V.

Bruning, J. H.

J. H. Bruning, Y. T. Lo, “Multiple scattering of EM waves by spheres parts I and II,” IEEE Trans. Antennas Propag. AP-19, 378–400 (1971).
[CrossRef]

Campillo, A. J.

Chen, H. Y.

Chen, T. W.

Chrissoulidis, D. P.

Chýlek, P.

Conwell, P. R.

Denti, P.

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20, 1803–1814 (1981).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[CrossRef]

Eversole, J. D.

Fikioris, J. G.

Fuller, K.

Fuller, K. A.

Gérardy, J. M.

J. M. Gérardy, M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations: the long wavelength limit,” Phys. Rev. B 22, 4950–4959 (1980).
[CrossRef]

Greenberg, J. M.

Gu, J.

Hill, S. C.

Huston, A. L.

Ioannidow, M. P.

Iskander, M. F.

Jones, A. R.

A. R. Jones, “Electromagnetic wave scattering by assemblies of particles in the Rayleigh approximation,” Proc. R. Soc. London, Ser. A 366, 111–127 (1979).
[CrossRef]

Kaiser, T.

Kattawar, G. W.

Kiehl, J. T.

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Narrow resonance structure in the Mie scattering characteristics,” Appl. Opt. 17, 3019–3021 (1978).
[CrossRef] [PubMed]

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical levitation and partial wave resonances,” Phys. Rev. A 18, 2229–2233 (1978).
[CrossRef]

Ko, M. K. W.

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical levitation and partial wave resonances,” Phys. Rev. A 18, 2229–2233 (1978).
[CrossRef]

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Narrow resonance structure in the Mie scattering characteristics,” Appl. Opt. 17, 3019–3021 (1978).
[CrossRef] [PubMed]

Ku, J. C.

J. C. Ku, K.-H. Shim, “A comparison of solutions for light scattering and absorption by agglomerated or arbitrarily-shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992).
[CrossRef]

Liang, C.

C. Liang, Y. T. Lo, “Scattering by two spheres,” Radio Sci. 2, 1481–1495 (1967).

Lin, H.-B.

Lin, H-B.

Lo, Y. T.

J. H. Bruning, Y. T. Lo, “Multiple scattering of EM waves by spheres parts I and II,” IEEE Trans. Antennas Propag. AP-19, 378–400 (1971).
[CrossRef]

C. Liang, Y. T. Lo, “Scattering by two spheres,” Radio Sci. 2, 1481–1495 (1967).

Mackowski, D. W.

Mazumder, M. M.

Mishchenko, M. I.

Ngo, D.

Penner, J. E.

Pinnick, R. G.

Probert-Jones, J. R.

Roll, G.

Rosasco, G. J.

Ruekgauer, T. E.

Rushfirth, C. K.

Saija, R.

Saleheen, H. I.

Schuerman, D. W.

Schweiger, G.

Shim, K.-H.

J. C. Ku, K.-H. Shim, “A comparison of solutions for light scattering and absorption by agglomerated or arbitrarily-shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992).
[CrossRef]

Sindoni, O. I.

F. Borghese, P. Denti, R. Saija, G. Toscano, O. I. Sindoni, “Multiple electromagnetic scattering from a cluster of spheres. I. Theory,” Aerosol Sci. Technol. 3, 227–235 (1984).
[CrossRef]

Skaropoulos, N. C.

Smith, M. J.

Toscano, G.

F. Borghese, P. Denti, R. Saija, G. Toscano, O. I. Sindoni, “Multiple electromagnetic scattering from a cluster of spheres. I. Theory,” Aerosol Sci. Technol. 3, 227–235 (1984).
[CrossRef]

Uzunoglu, N. K.

Videen, G.

Wang, R. T.

Xie, J.-G.

Aerosol Sci. Technol. (1)

F. Borghese, P. Denti, R. Saija, G. Toscano, O. I. Sindoni, “Multiple electromagnetic scattering from a cluster of spheres. I. Theory,” Aerosol Sci. Technol. 3, 227–235 (1984).
[CrossRef]

Appl. Opt. (7)

IEEE Trans. Antennas Propag. (1)

J. H. Bruning, Y. T. Lo, “Multiple scattering of EM waves by spheres parts I and II,” IEEE Trans. Antennas Propag. AP-19, 378–400 (1971).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (16)

F. Borghese, P. Denti, R. Saija, “Optical properties of spheres containing a spherical eccentric inclusion,” J. Opt. Soc. Am. A 9, 1327–1335 (1992).
[CrossRef]

K. A. Fuller, “Scattering and absorption cross sections of compounded spheres. I. Theory for external aggregation,” J. Opt. Soc. Am. A 11, 3251–3260 (1994).
[CrossRef]

K. A. Fuller, “Scattering and absorption cross sections of compounded spheres. II. Calculations for external aggregation,” J. Opt. Soc. Am. A 12, 881–892 (1995).
[CrossRef]

S. C. Hill, H. I. Saleheen, K. A. Fuller, “Volume current method for modeling light scattering by inhomogeneously perturbed spheres,” J. Opt. Soc. Am. A 12, 905–915 (1995).
[CrossRef]

D. W. Mackowski, “Calculation of total cross sections of multiple-sphere clusters,” J. Opt. Soc. Am. A 11, 2851–2861 (1994).
[CrossRef]

M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A 8, 871–882 (1991).
[CrossRef]

P. Chýlek, “Partial wave resonances and the ripple structure of the Mie normalized extinction cross section,” J. Opt. Soc. Am. A 66, 285–287 (1976).
[CrossRef]

P. R. Conwell, P. W. Barber, C. K. Rushfirth, “Resonant spectra of dielectric spheres,” J. Opt. Soc. Am. A 1, 62–67 (1984).
[CrossRef]

J. R. Probert-Jones, “Resonance component of backscattering by large dielectric sphere,” J. Opt. Soc. Am. A 1, 822–829 (1984).
[CrossRef]

H. S. Bennett, G. J. Rosasco, “Internal field resonance structure: implications for optical absorption and scattering by microscopic particles,” J. Opt. Soc. Am. A 1, 62–67 (1984).

P. Chýlek, D. Ngo, R. G. Pinnick, “Resonance structure of composite and slightly absorbing spheres,” J. Opt. Soc. Am. A 9, 775–780 (1992).
[CrossRef]

D. Ngo, R. G. Pinnick, “Suppression of scattering resonances in inhomogeneous microdroplets,” J. Opt. Soc. Am. A 11, 1352–1359 (1994).
[CrossRef]

G. Videen, D. Ngo, P. Chýlek, R. G. Pinnick, “Light scattering from a sphere with an irregular inclusion,” J. Opt. Soc. Am. A 12, 922–928 (1995).
[CrossRef]

K. A. Fuller, “Scattering and absorption cross sections of compounded spheres. III. Spheres containing arbitrarily located spherical inhomogeneities,” J. Opt. Soc. Am. A 12, 893–904 (1995).
[CrossRef]

M. M. Mazumder, S. C. Hill, P. W. Barber, “Morphology-dependent resonances in inhomogeneous spheres: comparison of the layered T-matrix method and the time-independent perturbation method,” J. Opt. Soc. Am. A 9, 1844–1853 (1992).
[CrossRef]

N. C. Skaropoulos, M. P. Ioannidow, D. P. Chrissoulidis, “Indirect mode-matching solution to scattering from a dielectric sphere with an eccentric inclusion,” J. Opt. Soc. Am. A 11, 1859–1866 (1994).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Quant. Spectrosc. Radiat. Transfer (1)

J. C. Ku, K.-H. Shim, “A comparison of solutions for light scattering and absorption by agglomerated or arbitrarily-shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992).
[CrossRef]

Opt. Lett. (12)

K. A. Fuller, G. W. Kattawar, “Consummate solution to the problem of classical electromagnetic scattering by an ensemble of spheres. I. linear chains,” Opt. Lett. 13, 90–92 (1988).
[CrossRef]

K. A. Fuller, G. W. Kattawar, “Consummate solution to the problem of classical electromagnetic scattering by an ensemble of spheres. I. clusters of arbitrary configuration,” Opt. Lett. 13, 1063–1065 (1988).
[CrossRef] [PubMed]

M. I. Mishchenko, D. W. Mackowski, “Light scattering by randomly oriented bispheres,” Opt. Lett. 19, 1604–1606 (1994).
[CrossRef] [PubMed]

B. V. Bronk, M. J. Smith, S. Arnold, “Photon-correlation spectroscopy for small spherical inclusions in a micrometer-sized electrodynamically levitated droplet,” Opt. Lett. 18, 93–95 (1993).
[CrossRef] [PubMed]

J. Gu, T. E. Ruekgauer, J.-G. Xie, R. L. Armstrong, “Effect of particulate seeding on microdroplet angular scattering,” Opt. Lett. 18, 1293–1295 (1993).
[CrossRef] [PubMed]

J.-G. Xie, T. E. Ruekgauer, R. L. Armstrong, R. G. Pinnick, “Suppression of stimulated Raman scattering from microdroplets by seeding with nanometer-sized latex particles,” Opt. Lett. 18, 340–342 (1993).
[CrossRef] [PubMed]

H.-B. Lin, A. L. Huston, J. D. Eversole, A. J. Campillo, P. Chýlek, “Internal scattering effects on microdroplet resonant emission structure,” Opt. Lett. 17, 970–972 (1992).
[CrossRef] [PubMed]

R. L. Armstrong, J.-G. Xie, T. E. Ruekgauer, J. Gu, R. G. Pinnick, “Effects of submicrometer-sized particles on microdroplet lasing,” Opt. Lett. 18, 119–121 (1993).
[CrossRef] [PubMed]

R. L. Armstrong, J.-G. Xie, T. E. Ruekgauer, R. G. Pinnick, “Energy-transfer-assisted lasing from microdroplets seeded with fluorescent sol,” Opt. Lett. 17, 943–945 (1992).
[CrossRef] [PubMed]

G. Videen, D. Ngo, P. Chýlek, “Effective-medium predictions of absorption by graphitic carbon in water droplets,” Opt. Lett. 19, 1675–1677 (1994).
[CrossRef] [PubMed]

K. Fuller, “Morphology-dependent resonances in eccentrically stratified spheres,” Opt. Lett. 19, 1272–1274 (1994).
[CrossRef] [PubMed]

R. T. Wang, J. M. Greenberg, D. W. Schuerman, “Experimental results of dependent light scattering by two spheres,” Opt. Lett. 6, 543–545 (1981).
[CrossRef] [PubMed]

Phys. Rev. A (2)

G. Videen, W. S. Bickel, “Light-scattering resonances in small spheres,” Phys. Rev. A 45, 6008–6012 (1992).
[CrossRef] [PubMed]

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical levitation and partial wave resonances,” Phys. Rev. A 18, 2229–2233 (1978).
[CrossRef]

Phys. Rev. B (1)

J. M. Gérardy, M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations: the long wavelength limit,” Phys. Rev. B 22, 4950–4959 (1980).
[CrossRef]

Phys. Rev. Lett. (1)

A. Ashkin, J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[CrossRef]

Proc. R. Soc. London Ser. A (1)

D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. London Ser. A 433, 599–614 (1991).
[CrossRef]

Proc. R. Soc. London, Ser. A (1)

A. R. Jones, “Electromagnetic wave scattering by assemblies of particles in the Rayleigh approximation,” Proc. R. Soc. London, Ser. A 366, 111–127 (1979).
[CrossRef]

Radio Sci. (1)

C. Liang, Y. T. Lo, “Scattering by two spheres,” Radio Sci. 2, 1481–1495 (1967).

Other (1)

S. Arnold, “Spectroscopy of single levitated micron sized particles,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), Chap. 2, pp. 66–127.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental setup used to measure elastic scattering from micrometer-size glycerol droplets seeded with latex particles. Droplets are caught in an electrodynamic trap and are illuminated with a krypton–argon laser (λ = 647.1 nm). Scattered light is simultaneously detected by photomultiplier tubes (PMT’s) placed in the forward-scatter (∼7°) and backward-scatter (∼179.5°) directions. These signals are amplified, digitized, and stored.

Fig. 2
Fig. 2

(a) Experimental data showing the scattered intensity of an r h ≈ 12 µm glycerol host containing approximately 170, r i = 0.50 µm, latex inclusions in the forward-scatter and backward-scatter directions as a function of time; (b) correlation function of the scattering signals.

Fig. 3
Fig. 3

Correlation of (a) two perfectly conducting, r = 0.50 µm, spheres illuminated at λ = 647.1 nm as a function of separation distance d; (b) two dielectric, n = n i/n h = 1.081, r = 0.50 µm spheres illuminated at λ = 439.9 nm as a function of separation distance, d.

Fig. 4
Fig. 4

Correlation of glycerol host spheres (nh = 1.471) containing an r = 0.50 µm latex sphere illuminated at λ = 647.1 nm as a function of center-to-center distance d.

Fig. 5
Fig. 5

Correlation of (a) a glycerol host sphere containing an r = 0.50 µm latex sphere fixed to its outer edge as a function of host sphere radius; (b) extinction as a function of homogeneous glycerol radius.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ρxy=ixi-x¯yi-y¯ixi-x¯2iyi-y¯21/2,

Metrics