Abstract

The accuracy of temperature and simultaneous relative N2–O2 concentration measurements of accumulated as well as of single-pulse rotational coherent anti-Stokes Raman spectra has been investigated in air in the temperature range from 300 to 2050 K. The experimental spectra were taken in a high-temperature oven at atmospheric pressure for a constant oxygen concentration of 20.9% (air). The evaluation procedure is based on the energy-corrected sudden-power scaling law. The agreement of the thermocouple readings with the mean values of the evaluated coherent anti-Stokes Raman spectroscopy temperatures is higher than 50 K and independent of the temperature. The evaluated oxygen concentration is found to be in the range from 20.0 to 21.7% and is also independent of the temperature.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Rahn, S. C. Johnston, R. L. Farrow, P. L. Mattern, “CARS thermometry in an internal combustion engine,” in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1982), Vol. 5, pp. 609–613.
  2. R. P. Lucht, R. E. Teets, R. M. Green, R. E. Palmer, C. R. Ferguson, “Unburned gas temperatures in an internal combustion engine. I. CARS temperature measurements,” Combust. Sci. Technol. 55, 41–61 (1987).
    [CrossRef]
  3. M. J. Cottereau, F. Grisch, J. J. Marie, “CARS measurements of temperature and species concentrations in an IC engine,” Appl. Phys. B 51, 63–66 (1990).
    [CrossRef]
  4. T. Nakada, T. Itoh, Y. Takagi, “Application of CARS to Development of High Compression Ratio Spark Ignition Engine,” SAE Paper 932644 (Society of Automotive Engineers, Warrendale, Pa., 1993).
  5. K. Kajiyama, K. Sajiki, H. Katakoka, S. Maeda, C. Hirose, “N2 CARS Thermometry in Diesel Engine,” SAE Paper 821036 (Society of Automotive Engineers, Warrendale, Pa., 1982).
  6. R. Bombach, B. Hemmerlein, W. Kreutner, “CARS temperature measurements in a lean, turbulent, 120KW natural gas flame,” in Non-Instrusive Combustion Diagnostics, K. K. Kuo, T. P. Parr, eds. (Begell House, New York, 1994), pp. 145–151.
  7. R. Lückenrath, M. Woyde, W. Meier, W. Stricker, U. Schnell, H.-J. Magel, J. Görres, H. Spliethoff, H. Maier, “Comparison of coherent anti-Stokes Raman-scattering thermometry with thermocouple measurements and model predictions in both natural-gas and coal-dust flames,” Appl. Opt. 34, 3303–3312 (1995).
    [CrossRef]
  8. S. Kampmann, T. Seeger, A. Leipertz, “Simultaneous coherent anti-Stokes Raman scattering and two-dimensional laser Rayleigh thermometry in a contained technical swirl combustor,” Appl. Opt. 34, 2780–2786 (1995).
    [CrossRef] [PubMed]
  9. A. C. Eckbreth, T. J. Anderson, J. A. Shirley, “Laser Raman diagnostics for propulsion systems development,” Ber. Bunsenges. Phys. Chem. 97, 1597–1608 (1993).
    [CrossRef]
  10. J. Zheng, J. B. Snow, D. V. Murphy, A. Leipertz, R. K. Chang, R. L. Farrow, “Experimental comparison of broadband rotational coherent anti-Stokes Raman scattering (CARS) and broadband vibrational CARS in a flame,” Opt. Lett. 9, 341–343 (1984).
    [CrossRef] [PubMed]
  11. A. C. Eckbreth, T. J. Anderson, “Simultaneous rotational coherent anti-Stokes Raman spectroscopy and coherent Stokes Raman spectroscopy with arbitrary pump-Stokes spectral separation,” Opt. Lett. 11, 496–498 (1986).
    [CrossRef] [PubMed]
  12. M. Alden, P.-E. Bengtsson, H. Edner, “Rotational CARS generation through a multiple four-color interaction,” Appl. Opt. 25, 4493–4500 (1986).
    [CrossRef] [PubMed]
  13. T. Seeger, “Anwendungsvergleich von Vibrations- und Rotations-CARS in der technischen Verbrennung,” Ph.D. dissertation (Universität Erlangen-Nürnberg, 1994).
  14. L. Martinsson, P.-E. Bengtsson, M. Alden, “Oxygen concentration and temperature measurements in N2-O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
    [CrossRef]
  15. T. Seeger, A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996).
    [CrossRef] [PubMed]
  16. P.-E. Bengtsson, L. Martinsson, M. Alden, S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992).
    [CrossRef]
  17. P.-E. Bengtsson, L. Martinsson, M. Alden, B. Johansson, B. Lassesson, K. Marfori, G. Lundholm, “Dual broadband rotational CARS measurements in an IC engine,” in Proceedings of the Twenty-Fifth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1735–1742.
  18. L. Martinsson, P.-E. Bengtsson, M. Alden, S. Kröll, J. Bonamy, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
    [CrossRef]
  19. A. C. Eckbreth, Laser Diagnostic for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988).
  20. D. A. Greenhalgh, “Quantitative CARS spectroscopy,” in Advances in Non-Linear Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1988), Vol. 15, pp. 193–251.
  21. M. A. Yuratich, “Effects of laser linewidth on coherent anti-Stokes Raman spectroscopy,” Mol. Phys. 38, 625–655 (1979).
    [CrossRef]
  22. D. V. Murphy, “Broad-band rotational CARS thermometry in nitrogen gas,” Ph.D. dissertation (Yale University, New Haven, Conn., 1981).
  23. A. Leipertz, “Temperaturbestimmung in Gasen mittels linearer und nichtlinearer Raman-Prozesse,” Habilitation thesis (Ruhr-Universität, Bochum, Germany, 1984).
  24. J. D. Drake, “Rotational Raman intensity-correction factors due to vibrational anharmonicity: their effect on temperature measurements,” Opt. Lett. 7, 440–441 (1982).
    [CrossRef] [PubMed]
  25. E. Magens, “Nutzung von Rotations-CARS zur Temperaturund Konzentrationsmessung in Flammen,” Ph.D. dissertation (Universität Erlangen-Nürnberg, Erlangen, 1992).
  26. A. E. DePristo, S. D. Augustin, R. Ramaswany, H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem. Phys. 71, 850–865 (1979).
    [CrossRef]
  27. L. Bonamy, J. Bonamy, D. Robert, B. Lavorel, R. Saint-Loup, R. Chaux, J. Santos, H. Berger, “Rotational inelastic rates for N2-N2 systems from a scaling theoretical analysis of stimulated Raman Q branch,” J. Chem. Phys. 89, 5568–5577 (1988).
    [CrossRef]
  28. G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in stimulated Raman Q branch of O2 and O2-N2,” J. Chem. Phys. 96, 961–971 (1992).
    [CrossRef]
  29. M. Berard, P. Lallemand, J. P. Cebe, M. Giraud, “Experimental and theoretical analysis of the temperature dependence of rotational Raman linewidths of oxygen,” J. Chem. Phys. 78, 672–687 (1983).
    [CrossRef]
  30. D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, “Nonlinearity and image persistence of P-20 phosphor-based intensified photodiode array detectors used in CARS spectroscopy,” Appl. Opt. 28, 3226–3232 (1989).
    [CrossRef] [PubMed]
  31. D. R. Snelling, G. J. Smallwood, T. Parameswaran, “Effect of detector nonlinearity and image persistence on CARS derived temperatures,” Appl. Opt. 28, 3233–3241 (1989).
    [CrossRef] [PubMed]
  32. minpack (Argonne National Laboratory, Argonne, Ill., March1980 Version).

1996

L. Martinsson, P.-E. Bengtsson, M. Alden, “Oxygen concentration and temperature measurements in N2-O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

T. Seeger, A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996).
[CrossRef] [PubMed]

1995

1993

A. C. Eckbreth, T. J. Anderson, J. A. Shirley, “Laser Raman diagnostics for propulsion systems development,” Ber. Bunsenges. Phys. Chem. 97, 1597–1608 (1993).
[CrossRef]

L. Martinsson, P.-E. Bengtsson, M. Alden, S. Kröll, J. Bonamy, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
[CrossRef]

1992

P.-E. Bengtsson, L. Martinsson, M. Alden, S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992).
[CrossRef]

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in stimulated Raman Q branch of O2 and O2-N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

1990

M. J. Cottereau, F. Grisch, J. J. Marie, “CARS measurements of temperature and species concentrations in an IC engine,” Appl. Phys. B 51, 63–66 (1990).
[CrossRef]

1989

1988

L. Bonamy, J. Bonamy, D. Robert, B. Lavorel, R. Saint-Loup, R. Chaux, J. Santos, H. Berger, “Rotational inelastic rates for N2-N2 systems from a scaling theoretical analysis of stimulated Raman Q branch,” J. Chem. Phys. 89, 5568–5577 (1988).
[CrossRef]

1987

R. P. Lucht, R. E. Teets, R. M. Green, R. E. Palmer, C. R. Ferguson, “Unburned gas temperatures in an internal combustion engine. I. CARS temperature measurements,” Combust. Sci. Technol. 55, 41–61 (1987).
[CrossRef]

1986

1984

1983

M. Berard, P. Lallemand, J. P. Cebe, M. Giraud, “Experimental and theoretical analysis of the temperature dependence of rotational Raman linewidths of oxygen,” J. Chem. Phys. 78, 672–687 (1983).
[CrossRef]

1982

1979

A. E. DePristo, S. D. Augustin, R. Ramaswany, H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem. Phys. 71, 850–865 (1979).
[CrossRef]

M. A. Yuratich, “Effects of laser linewidth on coherent anti-Stokes Raman spectroscopy,” Mol. Phys. 38, 625–655 (1979).
[CrossRef]

Alden, M.

L. Martinsson, P.-E. Bengtsson, M. Alden, “Oxygen concentration and temperature measurements in N2-O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

L. Martinsson, P.-E. Bengtsson, M. Alden, S. Kröll, J. Bonamy, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
[CrossRef]

P.-E. Bengtsson, L. Martinsson, M. Alden, S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992).
[CrossRef]

M. Alden, P.-E. Bengtsson, H. Edner, “Rotational CARS generation through a multiple four-color interaction,” Appl. Opt. 25, 4493–4500 (1986).
[CrossRef] [PubMed]

P.-E. Bengtsson, L. Martinsson, M. Alden, B. Johansson, B. Lassesson, K. Marfori, G. Lundholm, “Dual broadband rotational CARS measurements in an IC engine,” in Proceedings of the Twenty-Fifth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1735–1742.

Anderson, T. J.

Augustin, S. D.

A. E. DePristo, S. D. Augustin, R. Ramaswany, H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem. Phys. 71, 850–865 (1979).
[CrossRef]

Bengtsson, P.-E.

L. Martinsson, P.-E. Bengtsson, M. Alden, “Oxygen concentration and temperature measurements in N2-O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

L. Martinsson, P.-E. Bengtsson, M. Alden, S. Kröll, J. Bonamy, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
[CrossRef]

P.-E. Bengtsson, L. Martinsson, M. Alden, S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992).
[CrossRef]

M. Alden, P.-E. Bengtsson, H. Edner, “Rotational CARS generation through a multiple four-color interaction,” Appl. Opt. 25, 4493–4500 (1986).
[CrossRef] [PubMed]

P.-E. Bengtsson, L. Martinsson, M. Alden, B. Johansson, B. Lassesson, K. Marfori, G. Lundholm, “Dual broadband rotational CARS measurements in an IC engine,” in Proceedings of the Twenty-Fifth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1735–1742.

Berard, M.

M. Berard, P. Lallemand, J. P. Cebe, M. Giraud, “Experimental and theoretical analysis of the temperature dependence of rotational Raman linewidths of oxygen,” J. Chem. Phys. 78, 672–687 (1983).
[CrossRef]

Berger, H.

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in stimulated Raman Q branch of O2 and O2-N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

L. Bonamy, J. Bonamy, D. Robert, B. Lavorel, R. Saint-Loup, R. Chaux, J. Santos, H. Berger, “Rotational inelastic rates for N2-N2 systems from a scaling theoretical analysis of stimulated Raman Q branch,” J. Chem. Phys. 89, 5568–5577 (1988).
[CrossRef]

Bombach, R.

R. Bombach, B. Hemmerlein, W. Kreutner, “CARS temperature measurements in a lean, turbulent, 120KW natural gas flame,” in Non-Instrusive Combustion Diagnostics, K. K. Kuo, T. P. Parr, eds. (Begell House, New York, 1994), pp. 145–151.

Bonamy, J.

L. Martinsson, P.-E. Bengtsson, M. Alden, S. Kröll, J. Bonamy, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
[CrossRef]

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in stimulated Raman Q branch of O2 and O2-N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

L. Bonamy, J. Bonamy, D. Robert, B. Lavorel, R. Saint-Loup, R. Chaux, J. Santos, H. Berger, “Rotational inelastic rates for N2-N2 systems from a scaling theoretical analysis of stimulated Raman Q branch,” J. Chem. Phys. 89, 5568–5577 (1988).
[CrossRef]

Bonamy, L.

L. Bonamy, J. Bonamy, D. Robert, B. Lavorel, R. Saint-Loup, R. Chaux, J. Santos, H. Berger, “Rotational inelastic rates for N2-N2 systems from a scaling theoretical analysis of stimulated Raman Q branch,” J. Chem. Phys. 89, 5568–5577 (1988).
[CrossRef]

Cebe, J. P.

M. Berard, P. Lallemand, J. P. Cebe, M. Giraud, “Experimental and theoretical analysis of the temperature dependence of rotational Raman linewidths of oxygen,” J. Chem. Phys. 78, 672–687 (1983).
[CrossRef]

Chang, R. K.

Chaux, R.

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in stimulated Raman Q branch of O2 and O2-N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

L. Bonamy, J. Bonamy, D. Robert, B. Lavorel, R. Saint-Loup, R. Chaux, J. Santos, H. Berger, “Rotational inelastic rates for N2-N2 systems from a scaling theoretical analysis of stimulated Raman Q branch,” J. Chem. Phys. 89, 5568–5577 (1988).
[CrossRef]

Cottereau, M. J.

M. J. Cottereau, F. Grisch, J. J. Marie, “CARS measurements of temperature and species concentrations in an IC engine,” Appl. Phys. B 51, 63–66 (1990).
[CrossRef]

DePristo, A. E.

A. E. DePristo, S. D. Augustin, R. Ramaswany, H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem. Phys. 71, 850–865 (1979).
[CrossRef]

Drake, J. D.

Eckbreth, A. C.

A. C. Eckbreth, T. J. Anderson, J. A. Shirley, “Laser Raman diagnostics for propulsion systems development,” Ber. Bunsenges. Phys. Chem. 97, 1597–1608 (1993).
[CrossRef]

A. C. Eckbreth, T. J. Anderson, “Simultaneous rotational coherent anti-Stokes Raman spectroscopy and coherent Stokes Raman spectroscopy with arbitrary pump-Stokes spectral separation,” Opt. Lett. 11, 496–498 (1986).
[CrossRef] [PubMed]

A. C. Eckbreth, Laser Diagnostic for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988).

Edner, H.

Farrow, R. L.

J. Zheng, J. B. Snow, D. V. Murphy, A. Leipertz, R. K. Chang, R. L. Farrow, “Experimental comparison of broadband rotational coherent anti-Stokes Raman scattering (CARS) and broadband vibrational CARS in a flame,” Opt. Lett. 9, 341–343 (1984).
[CrossRef] [PubMed]

L. A. Rahn, S. C. Johnston, R. L. Farrow, P. L. Mattern, “CARS thermometry in an internal combustion engine,” in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1982), Vol. 5, pp. 609–613.

Ferguson, C. R.

R. P. Lucht, R. E. Teets, R. M. Green, R. E. Palmer, C. R. Ferguson, “Unburned gas temperatures in an internal combustion engine. I. CARS temperature measurements,” Combust. Sci. Technol. 55, 41–61 (1987).
[CrossRef]

Giraud, M.

M. Berard, P. Lallemand, J. P. Cebe, M. Giraud, “Experimental and theoretical analysis of the temperature dependence of rotational Raman linewidths of oxygen,” J. Chem. Phys. 78, 672–687 (1983).
[CrossRef]

Görres, J.

Green, R. M.

R. P. Lucht, R. E. Teets, R. M. Green, R. E. Palmer, C. R. Ferguson, “Unburned gas temperatures in an internal combustion engine. I. CARS temperature measurements,” Combust. Sci. Technol. 55, 41–61 (1987).
[CrossRef]

Greenhalgh, D. A.

D. A. Greenhalgh, “Quantitative CARS spectroscopy,” in Advances in Non-Linear Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1988), Vol. 15, pp. 193–251.

Grisch, F.

M. J. Cottereau, F. Grisch, J. J. Marie, “CARS measurements of temperature and species concentrations in an IC engine,” Appl. Phys. B 51, 63–66 (1990).
[CrossRef]

Hemmerlein, B.

R. Bombach, B. Hemmerlein, W. Kreutner, “CARS temperature measurements in a lean, turbulent, 120KW natural gas flame,” in Non-Instrusive Combustion Diagnostics, K. K. Kuo, T. P. Parr, eds. (Begell House, New York, 1994), pp. 145–151.

Hirose, C.

K. Kajiyama, K. Sajiki, H. Katakoka, S. Maeda, C. Hirose, “N2 CARS Thermometry in Diesel Engine,” SAE Paper 821036 (Society of Automotive Engineers, Warrendale, Pa., 1982).

Itoh, T.

T. Nakada, T. Itoh, Y. Takagi, “Application of CARS to Development of High Compression Ratio Spark Ignition Engine,” SAE Paper 932644 (Society of Automotive Engineers, Warrendale, Pa., 1993).

Johansson, B.

P.-E. Bengtsson, L. Martinsson, M. Alden, B. Johansson, B. Lassesson, K. Marfori, G. Lundholm, “Dual broadband rotational CARS measurements in an IC engine,” in Proceedings of the Twenty-Fifth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1735–1742.

Johnston, S. C.

L. A. Rahn, S. C. Johnston, R. L. Farrow, P. L. Mattern, “CARS thermometry in an internal combustion engine,” in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1982), Vol. 5, pp. 609–613.

Kajiyama, K.

K. Kajiyama, K. Sajiki, H. Katakoka, S. Maeda, C. Hirose, “N2 CARS Thermometry in Diesel Engine,” SAE Paper 821036 (Society of Automotive Engineers, Warrendale, Pa., 1982).

Kampmann, S.

Katakoka, H.

K. Kajiyama, K. Sajiki, H. Katakoka, S. Maeda, C. Hirose, “N2 CARS Thermometry in Diesel Engine,” SAE Paper 821036 (Society of Automotive Engineers, Warrendale, Pa., 1982).

Kreutner, W.

R. Bombach, B. Hemmerlein, W. Kreutner, “CARS temperature measurements in a lean, turbulent, 120KW natural gas flame,” in Non-Instrusive Combustion Diagnostics, K. K. Kuo, T. P. Parr, eds. (Begell House, New York, 1994), pp. 145–151.

Kröll, S.

L. Martinsson, P.-E. Bengtsson, M. Alden, S. Kröll, J. Bonamy, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
[CrossRef]

P.-E. Bengtsson, L. Martinsson, M. Alden, S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992).
[CrossRef]

Lallemand, P.

M. Berard, P. Lallemand, J. P. Cebe, M. Giraud, “Experimental and theoretical analysis of the temperature dependence of rotational Raman linewidths of oxygen,” J. Chem. Phys. 78, 672–687 (1983).
[CrossRef]

Lassesson, B.

P.-E. Bengtsson, L. Martinsson, M. Alden, B. Johansson, B. Lassesson, K. Marfori, G. Lundholm, “Dual broadband rotational CARS measurements in an IC engine,” in Proceedings of the Twenty-Fifth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1735–1742.

Lavorel, B.

L. Bonamy, J. Bonamy, D. Robert, B. Lavorel, R. Saint-Loup, R. Chaux, J. Santos, H. Berger, “Rotational inelastic rates for N2-N2 systems from a scaling theoretical analysis of stimulated Raman Q branch,” J. Chem. Phys. 89, 5568–5577 (1988).
[CrossRef]

Leipertz, A.

Lucht, R. P.

R. P. Lucht, R. E. Teets, R. M. Green, R. E. Palmer, C. R. Ferguson, “Unburned gas temperatures in an internal combustion engine. I. CARS temperature measurements,” Combust. Sci. Technol. 55, 41–61 (1987).
[CrossRef]

Lückenrath, R.

Lundholm, G.

P.-E. Bengtsson, L. Martinsson, M. Alden, B. Johansson, B. Lassesson, K. Marfori, G. Lundholm, “Dual broadband rotational CARS measurements in an IC engine,” in Proceedings of the Twenty-Fifth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1735–1742.

Maeda, S.

K. Kajiyama, K. Sajiki, H. Katakoka, S. Maeda, C. Hirose, “N2 CARS Thermometry in Diesel Engine,” SAE Paper 821036 (Society of Automotive Engineers, Warrendale, Pa., 1982).

Magel, H.-J.

Magens, E.

E. Magens, “Nutzung von Rotations-CARS zur Temperaturund Konzentrationsmessung in Flammen,” Ph.D. dissertation (Universität Erlangen-Nürnberg, Erlangen, 1992).

Maier, H.

Marfori, K.

P.-E. Bengtsson, L. Martinsson, M. Alden, B. Johansson, B. Lassesson, K. Marfori, G. Lundholm, “Dual broadband rotational CARS measurements in an IC engine,” in Proceedings of the Twenty-Fifth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1735–1742.

Marie, J. J.

M. J. Cottereau, F. Grisch, J. J. Marie, “CARS measurements of temperature and species concentrations in an IC engine,” Appl. Phys. B 51, 63–66 (1990).
[CrossRef]

Martinsson, L.

L. Martinsson, P.-E. Bengtsson, M. Alden, “Oxygen concentration and temperature measurements in N2-O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

L. Martinsson, P.-E. Bengtsson, M. Alden, S. Kröll, J. Bonamy, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
[CrossRef]

P.-E. Bengtsson, L. Martinsson, M. Alden, S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992).
[CrossRef]

P.-E. Bengtsson, L. Martinsson, M. Alden, B. Johansson, B. Lassesson, K. Marfori, G. Lundholm, “Dual broadband rotational CARS measurements in an IC engine,” in Proceedings of the Twenty-Fifth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1735–1742.

Mattern, P. L.

L. A. Rahn, S. C. Johnston, R. L. Farrow, P. L. Mattern, “CARS thermometry in an internal combustion engine,” in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1982), Vol. 5, pp. 609–613.

Meier, W.

Millot, G.

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in stimulated Raman Q branch of O2 and O2-N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

Murphy, D. V.

Nakada, T.

T. Nakada, T. Itoh, Y. Takagi, “Application of CARS to Development of High Compression Ratio Spark Ignition Engine,” SAE Paper 932644 (Society of Automotive Engineers, Warrendale, Pa., 1993).

Palmer, R. E.

R. P. Lucht, R. E. Teets, R. M. Green, R. E. Palmer, C. R. Ferguson, “Unburned gas temperatures in an internal combustion engine. I. CARS temperature measurements,” Combust. Sci. Technol. 55, 41–61 (1987).
[CrossRef]

Parameswaran, T.

Rabitz, H.

A. E. DePristo, S. D. Augustin, R. Ramaswany, H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem. Phys. 71, 850–865 (1979).
[CrossRef]

Rahn, L. A.

L. A. Rahn, S. C. Johnston, R. L. Farrow, P. L. Mattern, “CARS thermometry in an internal combustion engine,” in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1982), Vol. 5, pp. 609–613.

Ramaswany, R.

A. E. DePristo, S. D. Augustin, R. Ramaswany, H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem. Phys. 71, 850–865 (1979).
[CrossRef]

Robert, D.

L. Bonamy, J. Bonamy, D. Robert, B. Lavorel, R. Saint-Loup, R. Chaux, J. Santos, H. Berger, “Rotational inelastic rates for N2-N2 systems from a scaling theoretical analysis of stimulated Raman Q branch,” J. Chem. Phys. 89, 5568–5577 (1988).
[CrossRef]

Saint-Loup, R.

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in stimulated Raman Q branch of O2 and O2-N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

L. Bonamy, J. Bonamy, D. Robert, B. Lavorel, R. Saint-Loup, R. Chaux, J. Santos, H. Berger, “Rotational inelastic rates for N2-N2 systems from a scaling theoretical analysis of stimulated Raman Q branch,” J. Chem. Phys. 89, 5568–5577 (1988).
[CrossRef]

Sajiki, K.

K. Kajiyama, K. Sajiki, H. Katakoka, S. Maeda, C. Hirose, “N2 CARS Thermometry in Diesel Engine,” SAE Paper 821036 (Society of Automotive Engineers, Warrendale, Pa., 1982).

Santos, J.

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in stimulated Raman Q branch of O2 and O2-N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

L. Bonamy, J. Bonamy, D. Robert, B. Lavorel, R. Saint-Loup, R. Chaux, J. Santos, H. Berger, “Rotational inelastic rates for N2-N2 systems from a scaling theoretical analysis of stimulated Raman Q branch,” J. Chem. Phys. 89, 5568–5577 (1988).
[CrossRef]

Sawchuk, R. A.

Schnell, U.

Seeger, T.

Shirley, J. A.

A. C. Eckbreth, T. J. Anderson, J. A. Shirley, “Laser Raman diagnostics for propulsion systems development,” Ber. Bunsenges. Phys. Chem. 97, 1597–1608 (1993).
[CrossRef]

Smallwood, G. J.

Snelling, D. R.

Snow, J. B.

Spliethoff, H.

Stricker, W.

Takagi, Y.

T. Nakada, T. Itoh, Y. Takagi, “Application of CARS to Development of High Compression Ratio Spark Ignition Engine,” SAE Paper 932644 (Society of Automotive Engineers, Warrendale, Pa., 1993).

Teets, R. E.

R. P. Lucht, R. E. Teets, R. M. Green, R. E. Palmer, C. R. Ferguson, “Unburned gas temperatures in an internal combustion engine. I. CARS temperature measurements,” Combust. Sci. Technol. 55, 41–61 (1987).
[CrossRef]

Woyde, M.

Yuratich, M. A.

M. A. Yuratich, “Effects of laser linewidth on coherent anti-Stokes Raman spectroscopy,” Mol. Phys. 38, 625–655 (1979).
[CrossRef]

Zheng, J.

Appl. Opt.

Appl. Phys. B

L. Martinsson, P.-E. Bengtsson, M. Alden, “Oxygen concentration and temperature measurements in N2-O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

M. J. Cottereau, F. Grisch, J. J. Marie, “CARS measurements of temperature and species concentrations in an IC engine,” Appl. Phys. B 51, 63–66 (1990).
[CrossRef]

Ber. Bunsenges. Phys. Chem.

A. C. Eckbreth, T. J. Anderson, J. A. Shirley, “Laser Raman diagnostics for propulsion systems development,” Ber. Bunsenges. Phys. Chem. 97, 1597–1608 (1993).
[CrossRef]

Combust. Sci. Technol.

P.-E. Bengtsson, L. Martinsson, M. Alden, S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992).
[CrossRef]

R. P. Lucht, R. E. Teets, R. M. Green, R. E. Palmer, C. R. Ferguson, “Unburned gas temperatures in an internal combustion engine. I. CARS temperature measurements,” Combust. Sci. Technol. 55, 41–61 (1987).
[CrossRef]

J. Chem. Phys.

L. Martinsson, P.-E. Bengtsson, M. Alden, S. Kröll, J. Bonamy, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
[CrossRef]

A. E. DePristo, S. D. Augustin, R. Ramaswany, H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem. Phys. 71, 850–865 (1979).
[CrossRef]

L. Bonamy, J. Bonamy, D. Robert, B. Lavorel, R. Saint-Loup, R. Chaux, J. Santos, H. Berger, “Rotational inelastic rates for N2-N2 systems from a scaling theoretical analysis of stimulated Raman Q branch,” J. Chem. Phys. 89, 5568–5577 (1988).
[CrossRef]

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in stimulated Raman Q branch of O2 and O2-N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

M. Berard, P. Lallemand, J. P. Cebe, M. Giraud, “Experimental and theoretical analysis of the temperature dependence of rotational Raman linewidths of oxygen,” J. Chem. Phys. 78, 672–687 (1983).
[CrossRef]

Mol. Phys.

M. A. Yuratich, “Effects of laser linewidth on coherent anti-Stokes Raman spectroscopy,” Mol. Phys. 38, 625–655 (1979).
[CrossRef]

Opt. Lett.

Other

T. Nakada, T. Itoh, Y. Takagi, “Application of CARS to Development of High Compression Ratio Spark Ignition Engine,” SAE Paper 932644 (Society of Automotive Engineers, Warrendale, Pa., 1993).

K. Kajiyama, K. Sajiki, H. Katakoka, S. Maeda, C. Hirose, “N2 CARS Thermometry in Diesel Engine,” SAE Paper 821036 (Society of Automotive Engineers, Warrendale, Pa., 1982).

R. Bombach, B. Hemmerlein, W. Kreutner, “CARS temperature measurements in a lean, turbulent, 120KW natural gas flame,” in Non-Instrusive Combustion Diagnostics, K. K. Kuo, T. P. Parr, eds. (Begell House, New York, 1994), pp. 145–151.

A. C. Eckbreth, Laser Diagnostic for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988).

D. A. Greenhalgh, “Quantitative CARS spectroscopy,” in Advances in Non-Linear Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1988), Vol. 15, pp. 193–251.

P.-E. Bengtsson, L. Martinsson, M. Alden, B. Johansson, B. Lassesson, K. Marfori, G. Lundholm, “Dual broadband rotational CARS measurements in an IC engine,” in Proceedings of the Twenty-Fifth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1735–1742.

L. A. Rahn, S. C. Johnston, R. L. Farrow, P. L. Mattern, “CARS thermometry in an internal combustion engine,” in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1982), Vol. 5, pp. 609–613.

T. Seeger, “Anwendungsvergleich von Vibrations- und Rotations-CARS in der technischen Verbrennung,” Ph.D. dissertation (Universität Erlangen-Nürnberg, 1994).

E. Magens, “Nutzung von Rotations-CARS zur Temperaturund Konzentrationsmessung in Flammen,” Ph.D. dissertation (Universität Erlangen-Nürnberg, Erlangen, 1992).

D. V. Murphy, “Broad-band rotational CARS thermometry in nitrogen gas,” Ph.D. dissertation (Yale University, New Haven, Conn., 1981).

A. Leipertz, “Temperaturbestimmung in Gasen mittels linearer und nichtlinearer Raman-Prozesse,” Habilitation thesis (Ruhr-Universität, Bochum, Germany, 1984).

minpack (Argonne National Laboratory, Argonne, Ill., March1980 Version).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental setup. M, mirror; BD, beam dump; BS, beam splitter; DM, dichroic mirror; L, lens; HTO, high-temperature oven; C, 1024-pixel-intensified diode array. ω1 is the narrowband green beam, ω2 is the red broadband dye laser beams, and ω3 is the CARS beam.

Fig. 2
Fig. 2

Experimental single-pulse pure rotational CARS spectra of air for different temperatures. The adjusted and thermocouple-controlled oven temperature were (a) 300 K and (b) 1800 K. The evaluated temperatures and O2 concentrations for the shown spectra are (a) 305 K and 21.5% and (b) 1830 K and 21.6%. The difference between the experimental and the best-fitting theoretical spectrum is given in the plot below each spectrum.

Fig. 3
Fig. 3

Accumulated pure rotational CARS spectra of air for different temperatures. The spectrum consists of 100 accumulated single shots. The adjusted and thermocouple-controlled oven temperature were (a) 1000 K and (b) 1950 K. The evaluated temperatures and O2 concentrations are (a) 1012 K and 20.6% and (b) 1926 K and 20.6%. The difference between experimental and the best-fit theoretical spectrum is shown below each spectrum.

Fig. 4
Fig. 4

Probability density functions of 500 single-pulse CARS spectra. Adjusted oven temperature was 1700 K. (a) The evaluated CARS temperature is 1702.0 K with a standard deviation of 78.5 K. (b) The evaluated O2 concentration is 20.2% with a standard deviation of 1.2%.

Fig. 5
Fig. 5

Evaluated temperature mean value as a function of the adjusted oven temperature. Each measurement point represents the mean of 25 accumulated 100 single-pulse or of 500 single-pulse spectra. The differences between both are displayed in the lower part of the figure.

Fig. 6
Fig. 6

Evaluated O2 concentration versus adjusted oven temperature. Each point represents the mean value of 500 single-pulse spectra or of 25 spectra each accumulated over 100 single pulses.

Tables (1)

Tables Icon

Table 1 Parameters of the ECS-P Fitting Law used in the Line-Broadening Calculations

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

γJJ=2J+1expEJ-EJ>kTΩJ>2LJJL000×2L+1ΩL-2γ0L,
ΩJ=11+ωJJ-22τc224,
γ0L=AT0T/T0βLL+1α.
CI=b log C+a.

Metrics