Abstract

A lidar instrument was developed to make simultaneous measurements at three distinct wavelengths in the visible and near infrared at 0.532, 1.064, and 1.54 µm with high cross-sectional calibration accuracy. Aerosol and cloud backscatter cross sections were acquired during November and December 1989 and May and June 1990 by the NASA DC-8 aircraft as part of the Global Backscatter Experiment. The instrument, methodology, and measurement results are described. A Nd:YAG laser produced 1.064- and 0.532-µm energy. The 1.54-µm transmitted pulse was generated by Raman-shifted downconversion of the 1.064-µm pulse through a Raman cell pressured with methane gas. The lidar could be pointed in the nadir or zenith direction from the aircraft. A hard-target-based calibration procedure was used to obtain the ratio of the system calibration between the three wavelengths, and the absolute calibration was referenced to the 0.532-µm lidar molecular backscatter cross section for the clearest scattering regions. From the relative wavelength calibration, the aerosol backscatter cross sections at the longer wavelengths are resolved for values as small as 1% of the molecular cross section. Backscatter measurement accuracies are better than 10-9 (m sr)-1 at 1.064 and 1.54 µm. Results from the Pacific Ocean region of the multiwavelength backscatter dependence are presented. Results show extensive structure and variation for the aerosol cross sections. The range of observed aerosol cross section is over 4 orders of magnitude, from less than 10-9 (m sr)-1 to greater than 10-5 (m sr)-1.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Bowdle, S. F. Williams, J. Rothermel, J. E. Arnold, “Global Backscatter Experiment (GLOBE),” in Coherent Laser Radar: Technology and Applications, Vol. 12 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991).
  2. R. T. Menzies, D. M. Tratt, “Airborne CO2 coherent lidar for measurements of atmospheric aerosol and cloud backscatter,” Appl. Opt. 33, 5698–5711 (1994).
    [CrossRef] [PubMed]
  3. J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 34, 2083–2088 (1996).
    [CrossRef]
  4. A. D. Clarke, “A thermo-optic technique for in situ analysis of size-resolved aerosol physiochemistry,” Atmos. Environ. 25, 635–644 (1991).
    [CrossRef]
  5. A. D. Clark, “Atmospheric nuclei in the Pacific midtroposphere: their nature, concentration and evolution,” J. Geophys. Res. Atmos. 98, 20633–20647 (1993).
    [CrossRef]
  6. R. F. Pueschel, J. M. Livingstone, G. V. Ferry, T. R. DeFelice, “Aerosol abundances and optical characteristics in the Pacific basin free troposphere,” Atmos. Environ. 28, 951–960 (1994).
    [CrossRef]
  7. W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molianari, D. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurthi, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
    [CrossRef]
  8. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
    [CrossRef]
  9. B. Gentry, C. L. Korb, “Edge technique for high-accuracy Doppler velocimetry,” Appl. Opt. 33, 5770–5777 (1994).
    [CrossRef] [PubMed]
  10. W. S. Fisher, V. J. Abreu, W. R. Skinner, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
    [CrossRef]
  11. J. D. Spinhirne, H. J. Zwally, R. E. Schutz, “Climate measurements by the EOS-Geoscience Laser Altimeter system,” in Preprint Volume of Second Symposium on Global Change Studies (American Meteorological Society, Boston, Mass., 1991), pp. 17–22.
  12. G. S. Kent, P. H. Wang, U. Farrakha, A. Deepak, E. M. Patterson, “Development of a global model for atmospheric backscatter at CO2 wavelengths,” (NASA Marshall Space Flight Center, Huntsville, Ala., 1986).
  13. J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
    [CrossRef]
  14. G. S. Kent, M. P. McCormick, S. K. Schaffner, “Global optical climatology of the free tropospheric aerosol from 1.0-µm satellite occultation measurements,” IEEE Trans. Geosci. Remote Sensing 96, 5249–5267 (1991).
  15. D. R. Cutten, R. F. Pueshel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothemel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over the Pacific Ocean,” J. Geophys. Res. 101, 9375–9389 (1996).
    [CrossRef]
  16. S. Chudamani, J. D. Spinhirne, A. D. Clarke, “Lidar backscatter cross sections in the 2-µm near-infrared wavelength region,” Appl. Opt. 35, 4812–4819 (1996).
    [CrossRef] [PubMed]
  17. Z. Chu, U. N. Singh, T. D. Wilkerson, “A self-seeded SRS system for the generation of 1.54-micron eye-safe radiation,” Opt. Commun. 75, 173–178 (1990).
    [CrossRef]
  18. C. L. Butner, J. B. Schutt, M. C. Shai, “Comparison of the reflectance characteristics of polytetrafluoroethylene and barium sulfate paints,” Appl. Opt. 23, 1139–1140 (1984).
    [CrossRef] [PubMed]
  19. J. D. Spinhirne, “Micro pulse lidar,” IEEE Trans. Geosci. Remote Sensing 31, 48–55 (1993).
    [CrossRef]

1996 (3)

J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 34, 2083–2088 (1996).
[CrossRef]

D. R. Cutten, R. F. Pueshel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothemel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over the Pacific Ocean,” J. Geophys. Res. 101, 9375–9389 (1996).
[CrossRef]

S. Chudamani, J. D. Spinhirne, A. D. Clarke, “Lidar backscatter cross sections in the 2-µm near-infrared wavelength region,” Appl. Opt. 35, 4812–4819 (1996).
[CrossRef] [PubMed]

1995 (2)

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molianari, D. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurthi, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

W. S. Fisher, V. J. Abreu, W. R. Skinner, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

1994 (3)

1993 (3)

J. D. Spinhirne, “Micro pulse lidar,” IEEE Trans. Geosci. Remote Sensing 31, 48–55 (1993).
[CrossRef]

A. D. Clark, “Atmospheric nuclei in the Pacific midtroposphere: their nature, concentration and evolution,” J. Geophys. Res. Atmos. 98, 20633–20647 (1993).
[CrossRef]

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

1991 (2)

A. D. Clarke, “A thermo-optic technique for in situ analysis of size-resolved aerosol physiochemistry,” Atmos. Environ. 25, 635–644 (1991).
[CrossRef]

G. S. Kent, M. P. McCormick, S. K. Schaffner, “Global optical climatology of the free tropospheric aerosol from 1.0-µm satellite occultation measurements,” IEEE Trans. Geosci. Remote Sensing 96, 5249–5267 (1991).

1990 (1)

Z. Chu, U. N. Singh, T. D. Wilkerson, “A self-seeded SRS system for the generation of 1.54-micron eye-safe radiation,” Opt. Commun. 75, 173–178 (1990).
[CrossRef]

1984 (1)

1980 (1)

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

Abreu, V. J.

W. S. Fisher, V. J. Abreu, W. R. Skinner, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Anderson, J. R.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molianari, D. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurthi, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Arnold, J. E.

D. A. Bowdle, S. F. Williams, J. Rothermel, J. E. Arnold, “Global Backscatter Experiment (GLOBE),” in Coherent Laser Radar: Technology and Applications, Vol. 12 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991).

Atlas, R. M.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molianari, D. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurthi, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Baker, W. E.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molianari, D. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurthi, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Bowdle, D.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molianari, D. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurthi, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Bowdle, D. A.

J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 34, 2083–2088 (1996).
[CrossRef]

D. R. Cutten, R. F. Pueshel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothemel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over the Pacific Ocean,” J. Geophys. Res. 101, 9375–9389 (1996).
[CrossRef]

D. A. Bowdle, S. F. Williams, J. Rothermel, J. E. Arnold, “Global Backscatter Experiment (GLOBE),” in Coherent Laser Radar: Technology and Applications, Vol. 12 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991).

Brown, R. A.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molianari, D. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurthi, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Bruns, D. L.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

Butner, C. L.

Chambers, D. M.

J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 34, 2083–2088 (1996).
[CrossRef]

Chu, Z.

Z. Chu, U. N. Singh, T. D. Wilkerson, “A self-seeded SRS system for the generation of 1.54-micron eye-safe radiation,” Opt. Commun. 75, 173–178 (1990).
[CrossRef]

Chudamani, S.

Clark, A. D.

A. D. Clark, “Atmospheric nuclei in the Pacific midtroposphere: their nature, concentration and evolution,” J. Geophys. Res. Atmos. 98, 20633–20647 (1993).
[CrossRef]

Clarke, A. D.

S. Chudamani, J. D. Spinhirne, A. D. Clarke, “Lidar backscatter cross sections in the 2-µm near-infrared wavelength region,” Appl. Opt. 35, 4812–4819 (1996).
[CrossRef] [PubMed]

D. R. Cutten, R. F. Pueshel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothemel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over the Pacific Ocean,” J. Geophys. Res. 101, 9375–9389 (1996).
[CrossRef]

A. D. Clarke, “A thermo-optic technique for in situ analysis of size-resolved aerosol physiochemistry,” Atmos. Environ. 25, 635–644 (1991).
[CrossRef]

Cutten, D. R.

D. R. Cutten, R. F. Pueshel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothemel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over the Pacific Ocean,” J. Geophys. Res. 101, 9375–9389 (1996).
[CrossRef]

Deepak, A.

G. S. Kent, P. H. Wang, U. Farrakha, A. Deepak, E. M. Patterson, “Development of a global model for atmospheric backscatter at CO2 wavelengths,” (NASA Marshall Space Flight Center, Huntsville, Ala., 1986).

DeFelice, T. R.

R. F. Pueschel, J. M. Livingstone, G. V. Ferry, T. R. DeFelice, “Aerosol abundances and optical characteristics in the Pacific basin free troposphere,” Atmos. Environ. 28, 951–960 (1994).
[CrossRef]

Emmitt, G. D.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molianari, D. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurthi, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Farrakha, U.

G. S. Kent, P. H. Wang, U. Farrakha, A. Deepak, E. M. Patterson, “Development of a global model for atmospheric backscatter at CO2 wavelengths,” (NASA Marshall Space Flight Center, Huntsville, Ala., 1986).

Ferry, G. V.

R. F. Pueschel, J. M. Livingstone, G. V. Ferry, T. R. DeFelice, “Aerosol abundances and optical characteristics in the Pacific basin free troposphere,” Atmos. Environ. 28, 951–960 (1994).
[CrossRef]

Fisher, W. S.

W. S. Fisher, V. J. Abreu, W. R. Skinner, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Gentry, B.

Hale, C. P.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

Hannon, S. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

Hardesty, R. M.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molianari, D. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurthi, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Henderson, S. W.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

Herman, B. M.

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

Jarzembski, M. A.

J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 34, 2083–2088 (1996).
[CrossRef]

Jones, W. D.

J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 34, 2083–2088 (1996).
[CrossRef]

Kent, G. S.

G. S. Kent, M. P. McCormick, S. K. Schaffner, “Global optical climatology of the free tropospheric aerosol from 1.0-µm satellite occultation measurements,” IEEE Trans. Geosci. Remote Sensing 96, 5249–5267 (1991).

G. S. Kent, P. H. Wang, U. Farrakha, A. Deepak, E. M. Patterson, “Development of a global model for atmospheric backscatter at CO2 wavelengths,” (NASA Marshall Space Flight Center, Huntsville, Ala., 1986).

Korb, C. L.

Krishnamurthi, T. N.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molianari, D. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurthi, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Livingstone, J. M.

R. F. Pueschel, J. M. Livingstone, G. V. Ferry, T. R. DeFelice, “Aerosol abundances and optical characteristics in the Pacific basin free troposphere,” Atmos. Environ. 28, 951–960 (1994).
[CrossRef]

Lorenc, A. C.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molianari, D. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurthi, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Magee, J. R.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

McCormick, M. P.

G. S. Kent, M. P. McCormick, S. K. Schaffner, “Global optical climatology of the free tropospheric aerosol from 1.0-µm satellite occultation measurements,” IEEE Trans. Geosci. Remote Sensing 96, 5249–5267 (1991).

McElroy, J.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molianari, D. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurthi, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Menzies, R. T.

D. R. Cutten, R. F. Pueshel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothemel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over the Pacific Ocean,” J. Geophys. Res. 101, 9375–9389 (1996).
[CrossRef]

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molianari, D. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurthi, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

R. T. Menzies, D. M. Tratt, “Airborne CO2 coherent lidar for measurements of atmospheric aerosol and cloud backscatter,” Appl. Opt. 33, 5698–5711 (1994).
[CrossRef] [PubMed]

Molianari, J. E.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molianari, D. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurthi, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Paegle, J.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molianari, D. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurthi, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Patterson, E. M.

G. S. Kent, P. H. Wang, U. Farrakha, A. Deepak, E. M. Patterson, “Development of a global model for atmospheric backscatter at CO2 wavelengths,” (NASA Marshall Space Flight Center, Huntsville, Ala., 1986).

Post, M. J.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molianari, D. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurthi, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Pueschel, R. F.

R. F. Pueschel, J. M. Livingstone, G. V. Ferry, T. R. DeFelice, “Aerosol abundances and optical characteristics in the Pacific basin free troposphere,” Atmos. Environ. 28, 951–960 (1994).
[CrossRef]

Pueshel, R. F.

D. R. Cutten, R. F. Pueshel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothemel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over the Pacific Ocean,” J. Geophys. Res. 101, 9375–9389 (1996).
[CrossRef]

Reagan, J. A.

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

Robertson, F.

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molianari, D. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurthi, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

Rothemel, J.

D. R. Cutten, R. F. Pueshel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothemel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over the Pacific Ocean,” J. Geophys. Res. 101, 9375–9389 (1996).
[CrossRef]

Rothermel, J.

J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 34, 2083–2088 (1996).
[CrossRef]

D. A. Bowdle, S. F. Williams, J. Rothermel, J. E. Arnold, “Global Backscatter Experiment (GLOBE),” in Coherent Laser Radar: Technology and Applications, Vol. 12 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991).

Schaffner, S. K.

G. S. Kent, M. P. McCormick, S. K. Schaffner, “Global optical climatology of the free tropospheric aerosol from 1.0-µm satellite occultation measurements,” IEEE Trans. Geosci. Remote Sensing 96, 5249–5267 (1991).

Schutt, J. B.

Schutz, R. E.

J. D. Spinhirne, H. J. Zwally, R. E. Schutz, “Climate measurements by the EOS-Geoscience Laser Altimeter system,” in Preprint Volume of Second Symposium on Global Change Studies (American Meteorological Society, Boston, Mass., 1991), pp. 17–22.

Shai, M. C.

Singh, U. N.

Z. Chu, U. N. Singh, T. D. Wilkerson, “A self-seeded SRS system for the generation of 1.54-micron eye-safe radiation,” Opt. Commun. 75, 173–178 (1990).
[CrossRef]

Skinner, W. R.

W. S. Fisher, V. J. Abreu, W. R. Skinner, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Spinhirne, J. D.

S. Chudamani, J. D. Spinhirne, A. D. Clarke, “Lidar backscatter cross sections in the 2-µm near-infrared wavelength region,” Appl. Opt. 35, 4812–4819 (1996).
[CrossRef] [PubMed]

D. R. Cutten, R. F. Pueshel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothemel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over the Pacific Ocean,” J. Geophys. Res. 101, 9375–9389 (1996).
[CrossRef]

J. D. Spinhirne, “Micro pulse lidar,” IEEE Trans. Geosci. Remote Sensing 31, 48–55 (1993).
[CrossRef]

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

J. D. Spinhirne, H. J. Zwally, R. E. Schutz, “Climate measurements by the EOS-Geoscience Laser Altimeter system,” in Preprint Volume of Second Symposium on Global Change Studies (American Meteorological Society, Boston, Mass., 1991), pp. 17–22.

Srivastava, V.

J. Rothermel, D. M. Chambers, M. A. Jarzembski, V. Srivastava, D. A. Bowdle, W. D. Jones, “Signal processing and calibration of continuous-wave focused CO2 Doppler lidars for atmospheric backscatter measurement,” Appl. Opt. 34, 2083–2088 (1996).
[CrossRef]

D. R. Cutten, R. F. Pueshel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothemel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over the Pacific Ocean,” J. Geophys. Res. 101, 9375–9389 (1996).
[CrossRef]

Suni, P. J. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

Tratt, D. M.

Wang, P. H.

G. S. Kent, P. H. Wang, U. Farrakha, A. Deepak, E. M. Patterson, “Development of a global model for atmospheric backscatter at CO2 wavelengths,” (NASA Marshall Space Flight Center, Huntsville, Ala., 1986).

Wilkerson, T. D.

Z. Chu, U. N. Singh, T. D. Wilkerson, “A self-seeded SRS system for the generation of 1.54-micron eye-safe radiation,” Opt. Commun. 75, 173–178 (1990).
[CrossRef]

Williams, S. F.

D. A. Bowdle, S. F. Williams, J. Rothermel, J. E. Arnold, “Global Backscatter Experiment (GLOBE),” in Coherent Laser Radar: Technology and Applications, Vol. 12 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991).

Yuen, E. H.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

Zwally, H. J.

J. D. Spinhirne, H. J. Zwally, R. E. Schutz, “Climate measurements by the EOS-Geoscience Laser Altimeter system,” in Preprint Volume of Second Symposium on Global Change Studies (American Meteorological Society, Boston, Mass., 1991), pp. 17–22.

Appl. Opt. (5)

Atmos. Environ. (2)

A. D. Clarke, “A thermo-optic technique for in situ analysis of size-resolved aerosol physiochemistry,” Atmos. Environ. 25, 635–644 (1991).
[CrossRef]

R. F. Pueschel, J. M. Livingstone, G. V. Ferry, T. R. DeFelice, “Aerosol abundances and optical characteristics in the Pacific basin free troposphere,” Atmos. Environ. 28, 951–960 (1994).
[CrossRef]

Bull. Am. Meteorol. Soc. (1)

W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molianari, D. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurthi, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995).
[CrossRef]

IEEE Trans. Geosci. Remote Sensing (3)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

G. S. Kent, M. P. McCormick, S. K. Schaffner, “Global optical climatology of the free tropospheric aerosol from 1.0-µm satellite occultation measurements,” IEEE Trans. Geosci. Remote Sensing 96, 5249–5267 (1991).

J. D. Spinhirne, “Micro pulse lidar,” IEEE Trans. Geosci. Remote Sensing 31, 48–55 (1993).
[CrossRef]

J. Appl. Meteorol. (1)

J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
[CrossRef]

J. Geophys. Res. (1)

D. R. Cutten, R. F. Pueshel, D. A. Bowdle, V. Srivastava, A. D. Clarke, J. Rothemel, J. D. Spinhirne, R. T. Menzies, “Multi-wavelength comparison of modeled and measured remote tropospheric aerosol backscatter over the Pacific Ocean,” J. Geophys. Res. 101, 9375–9389 (1996).
[CrossRef]

J. Geophys. Res. Atmos. (1)

A. D. Clark, “Atmospheric nuclei in the Pacific midtroposphere: their nature, concentration and evolution,” J. Geophys. Res. Atmos. 98, 20633–20647 (1993).
[CrossRef]

Opt. Commun. (1)

Z. Chu, U. N. Singh, T. D. Wilkerson, “A self-seeded SRS system for the generation of 1.54-micron eye-safe radiation,” Opt. Commun. 75, 173–178 (1990).
[CrossRef]

Opt. Eng. (1)

W. S. Fisher, V. J. Abreu, W. R. Skinner, “Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night,” Opt. Eng. 34, 499–511 (1995).
[CrossRef]

Other (3)

J. D. Spinhirne, H. J. Zwally, R. E. Schutz, “Climate measurements by the EOS-Geoscience Laser Altimeter system,” in Preprint Volume of Second Symposium on Global Change Studies (American Meteorological Society, Boston, Mass., 1991), pp. 17–22.

G. S. Kent, P. H. Wang, U. Farrakha, A. Deepak, E. M. Patterson, “Development of a global model for atmospheric backscatter at CO2 wavelengths,” (NASA Marshall Space Flight Center, Huntsville, Ala., 1986).

D. A. Bowdle, S. F. Williams, J. Rothermel, J. E. Arnold, “Global Backscatter Experiment (GLOBE),” in Coherent Laser Radar: Technology and Applications, Vol. 12 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

System diagram that indicates the components and design of the VIRL system. A Raman cell pressured with 400-psi methane gas is used to generate 1.54-µm pulse energy. A precise monitor of the relative pulse energy at the three operating wavelengths is based on an integrating sphere design, and pulse energy is sampled by an optical pick-off flat tilted at 17° to the beam. All filters and detectors for the receiver and energy monitor were temperature controlled. Signals were acquired by computer-automated measurement and control (CAMAC) interfaced with 12-bit analog-to-digital transient recorders.

Fig. 2
Fig. 2

Picture of the lidar on the DC-8. The telescope rotates around a central axis for operation in either the upward and the downward direction. The laser output is transmitted coaxially to the receiver telescope by means of a periscope beam transfer arrangement. The system operates through 40-cm-diameter coated BK-7 windows on the top and bottom of the DC-8 aircraft.

Fig. 3
Fig. 3

Schematic of the hard-target calibration procedure that was used for measurements. When the target measurement was made, the detectors were put into a charge-integrated mode by small relays in the detector preamplifier circuits, and the signals are acquired by the same electronics as used for the atmospheric signals. Also, a calibrated neutral density (ND) filter is placed in the optical path and a turning mirror directs the signal from the target. The relative wavelength response of the mirror and target were measured in separate procedures.

Fig. 4
Fig. 4

Image of the logarithm of the attenuated backscatter cross section (m sr)-1 at 1.064 µm for a DC-8 flight over the Pacific Ocean between Japan and Hawaii on 4 June 1990. The image display scale, shown on the right, is the calibrated base ten logarithm of the cross-sectional value in units of (m sr)-1. Both clouds, which appear as cross sections generally above 10-5, and aerosol scattering features are seen. The lower layer of strong aerosol scattering with a height varying between 0.3 and 1.2 km is the marine boundary layer. The pronounced aerosol structure above the boundary layer is believed to be due to clouds that have transported aerosol upward and then dissipated. The black line at the top of the image indicates plane height.

Fig. 5
Fig. 5

Image of the logarithm of the aerosol backscatter cross section in (m sr)-1 at 1.064 µm over the Pacific, southeast of Japan, around 25 °N and 148 °E, from 03:32–03:50 UTC, 3 June 1990. The DC-8 aircraft flew at various altitudes over this region to facilitate intercomparisons between instruments, but for the data shown the aircraft was at 9.7 km. The data are the retrieved aerosol backscatter cross section. Cloud tops have been detected by a threshold procedure and subsequent data are removed. Also a correction for signal attenuation has been applied.

Fig. 6
Fig. 6

Image of the logarithm of the aerosol backscatter cross section (m sr)-1 at 1.542 µm for the same time period of Fig. 5. The similarity in spatial structure at the two wavelengths is apparent. The 1.54-µm aerosol backscatter cross sections are typically smaller in magnitude than at 1.064 µm.

Fig. 7
Fig. 7

Aerosol backscatter cross-sectional profiles at 1.064 µm obtained over the exact same geographic location above the Pacific, southeast of Japan, on 3 June 1990. The DC-8 flew over the same region at different altitudes, leading to the two measurements at 03:30–03:33 UTC (solid curve) and 02:36–02:39 (dotted curve) spaced approximately an hour apart.

Fig. 8
Fig. 8

Comparison of the aerosol backscatter cross-sectional profiles at different wavelengths obtained by the VIRL instrument from 02:38–02:44 UTC on 3 June 1990. As in Fig. 5 there are substantially increased levels of aerosol loading in the lower troposphere.

Fig. 9
Fig. 9

Comparison of 9.25-µm aerosol backscatter cross-sectional profile from the pulsed CO2 lidar system on the DC-8 with data at 0.532, 1.064, and 1.542 µm. The data are from 03:43–03:45 UTC, 3 June 1990 and is a segment of the region shown in Fig. 5. GSFC, Goddard Space Flight Center.

Fig. 10
Fig. 10

Visible and near-infrared aerosol backscatter cross-sectional profiles obtained at 04:44–04:50 UTC during a transit flight from Australia to Japan on 31 May 1990. On this flight an upper troposphere aerosol haze layer was encountered that was believed to be due to long-range transport. A clean low backscatter regime is found between an altitude of 2–5 km. In the clean region, the aerosol backscatter cross sections at all three wavelengths are near or below the measurement sensitivity.

Fig. 11
Fig. 11

Scatterplot comparison of 1.06-µm and 1.54-µm aerosol backscatter cross sections from a portion of the flight of 31 May 1990 south of Japan. Each data point is the average of measurements over a 1050-m vertical and 1-min horizontal distance. The data scatter is the result of some measurement error in the 1.54-µm channel, relative response effects for the detectors of the two channels, and actual variation of the observed aerosol cross sections.

Fig. 12
Fig. 12

Accumulative probability plots of the measured aerosol backscatter cross sections for the GLOBE flight on 3 June 1990. (a) Data for the 1.064-µm channel and (b) data for the 1.54-µm channel. Each curve represents a different cumulative percentile value ranging from 30 to 90%. Above 10 km the measurement results for the 1.54-µm channel are too few to present meaningful statistics and are not shown. The results for this single flight do not represent the overall observations for all of the GLOBE flight missions.

Tables (3)

Tables Icon

Table 1 Instrument Characteristics

Tables Icon

Table 2 Molecular Backscatter Cross Section and Calculated Noise Equivalent Cross Sectional Values for the Lidar Receiver at 11-km altitude with a 2-s Signal Average

Tables Icon

Table 3 Relative Error Terms for Target Calibration Procedure

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Pz=vzr2=ECβaz+βmzT2z,
P1E1=C1βm11+δ1T12,
R=βm1βm2βa2βa1,
P2E2=QC1βm21+Rδ1T22.
T2=Tm2Ta2=Tm2 exp-2z0zσazdz,
Vp=EGvrdAtToρTfTt2/πτdt2,
C=Vpτ/Ecdt2/2ρTfTt2,
C1C2=1Q=Vp1E2τ1Vp2E1τ2ρ1ρ2Tf2Tf1Tt2Tt12.
ΔQQ2=jΔtjtj2.

Metrics