Abstract

Measurements of 160-fs, 248-nm ultrashort pulses are obtained through a two-photon fluorescence measurement based on the two-photon-induced color-center fluorescence in fused-silica crystals. The method proved to be reliable and advantageous in comparison with two-photon fluorescence techniques employing other materials, both solid state and gaseous.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Schultz, H. Schuler, T. Engers, D. Von der Linde, “Measurement of intense ultraviolet subpicosecond pulses using degenerate four-wave mixing,” IEEE J. Quantum Electron. 25, 2580–2586 (1989).
    [CrossRef]
  2. E. J. Canto-Said, P. Simon, C. Jordan, G. Marowsky, “Surface second-harmonic generation in Si(111) for autocorrelation measurement of 248-nm femtosecond pulses,” Opt. Lett. 18, 2038–2041 (1993).
    [CrossRef]
  3. S. Satzmari, “High-brightness ultraviolet excimer lasers,” Appl. Phys. B 58, 211–223 (1994).
    [CrossRef]
  4. J. I. Dadap, G. B. Focht, D. H. Reitze, M. C. Downer, “Two-photon absorption in diamond and its application to ultraviolet femtosecond pulse-width measurement,” Opt. Lett. 16, 499–501 (1991).
    [CrossRef] [PubMed]
  5. J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, “Two-photon excitation of fluorescence by picosecond light pulses,” Appl. Phys. Lett. 11, 216–218 (1967).
    [CrossRef]
  6. B. Bouma, T. S. Luk, K. Boyer, C. K. Rhodes, “High-brightness subpicosecond terawatt KrF* system driven with a frequency converted self-mode-locked pulse-compressed TiAl2O3 laser,” J. Opt. Soc. Am. B 10, 1180–1184 (1993).
    [CrossRef]
  7. M. H. R. Hutchinson, I. A. McIntyre, G. N. Gibson, C. K. Rhodes, “Measurement of 248-nm, subpicosecond pulse durations by two-photon fluorescence of xenon excimers,” Opt. Lett. 12, 102–104 (1987).
    [CrossRef] [PubMed]
  8. E. Eva, K. Mann, “Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet window materials,” Appl. Phys. A 62, 145–149 (1996).
  9. K. Hata, M. Watanabe, S. Watanabe, “Nonlinear processes in UV optical materials at 248 nm,” Appl. Phys. B 50, 55–59 (1990).
    [CrossRef]
  10. O. Ollikainein, A. Rebane, D. Erui, U. Wild, “Femtosecond time-resolved pulse measurement and image detection in broad spectral range by two-photon-excited fluorescence,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington D.C., 1996), pp. 227–228.
  11. S. P. Le Blanc, G. Szabo, R. Sauerbrey, “Femtosecond single-shot phase-sensitive autocorrelator for the ultraviolet,” Opt. Lett. 16, 1508–1510 (1991).
    [CrossRef] [PubMed]
  12. M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, B. S. Wherrett, “Measurement of the anisotropy of two-photon absorption coefficients in zincblende semiconductors,” IEEE J. Quantum Electron. 30 (2), 256–268 (1994).
    [CrossRef]
  13. S. Hell, E. H. K. Stelzer, “Properties of a 4Pi confocal fluorescence microscope,” J. Opt. Soc. Am. A 9, 2159–2166 (1992).
    [CrossRef]
  14. A. J. Taylor, R. B. Gibson, J. P. Roberts, “Two-photon absorption at 248 nm in ultraviolet window materials,” Opt. Lett. 13, 814–816 (1988).
    [CrossRef] [PubMed]
  15. P. Liu, R. Yen, N. Bloembergen, “Two-photon absorption coefficients in UV window and coating materials,” Appl. Opt. 18, 1015–1018 (1979).
    [CrossRef] [PubMed]
  16. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
    [CrossRef]
  17. T. Nelson, F. G. Omenetto, J. W. Longworth, W. A. Schroeder, C. K. Rhodes, “Design and analysis of an all solid-state UV laser based on Ce3+ LiSrAlF6,” in High Power Lasers, Proceedings of NATO ASI (Kluwer Academic, London, 1995), Vol. 7, pp. 177–183.

1996

E. Eva, K. Mann, “Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet window materials,” Appl. Phys. A 62, 145–149 (1996).

1994

S. Satzmari, “High-brightness ultraviolet excimer lasers,” Appl. Phys. B 58, 211–223 (1994).
[CrossRef]

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, B. S. Wherrett, “Measurement of the anisotropy of two-photon absorption coefficients in zincblende semiconductors,” IEEE J. Quantum Electron. 30 (2), 256–268 (1994).
[CrossRef]

1993

1992

1991

1990

K. Hata, M. Watanabe, S. Watanabe, “Nonlinear processes in UV optical materials at 248 nm,” Appl. Phys. B 50, 55–59 (1990).
[CrossRef]

1989

H. Schultz, H. Schuler, T. Engers, D. Von der Linde, “Measurement of intense ultraviolet subpicosecond pulses using degenerate four-wave mixing,” IEEE J. Quantum Electron. 25, 2580–2586 (1989).
[CrossRef]

1988

1987

1979

1967

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, “Two-photon excitation of fluorescence by picosecond light pulses,” Appl. Phys. Lett. 11, 216–218 (1967).
[CrossRef]

Andersen, D. R.

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, B. S. Wherrett, “Measurement of the anisotropy of two-photon absorption coefficients in zincblende semiconductors,” IEEE J. Quantum Electron. 30 (2), 256–268 (1994).
[CrossRef]

Bloembergen, N.

Bouma, B.

Boyer, K.

Canto-Said, E. J.

Dadap, J. I.

Downer, M. C.

Dvorak, M. D.

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, B. S. Wherrett, “Measurement of the anisotropy of two-photon absorption coefficients in zincblende semiconductors,” IEEE J. Quantum Electron. 30 (2), 256–268 (1994).
[CrossRef]

Engers, T.

H. Schultz, H. Schuler, T. Engers, D. Von der Linde, “Measurement of intense ultraviolet subpicosecond pulses using degenerate four-wave mixing,” IEEE J. Quantum Electron. 25, 2580–2586 (1989).
[CrossRef]

Erui, D.

O. Ollikainein, A. Rebane, D. Erui, U. Wild, “Femtosecond time-resolved pulse measurement and image detection in broad spectral range by two-photon-excited fluorescence,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington D.C., 1996), pp. 227–228.

Eva, E.

E. Eva, K. Mann, “Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet window materials,” Appl. Phys. A 62, 145–149 (1996).

Focht, G. B.

Gibson, G. N.

Gibson, R. B.

Giordmaine, J. A.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, “Two-photon excitation of fluorescence by picosecond light pulses,” Appl. Phys. Lett. 11, 216–218 (1967).
[CrossRef]

Hagan, D. J.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

Hata, K.

K. Hata, M. Watanabe, S. Watanabe, “Nonlinear processes in UV optical materials at 248 nm,” Appl. Phys. B 50, 55–59 (1990).
[CrossRef]

Hell, S.

Hutchings, D. C.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

Hutchinson, M. H. R.

Jordan, C.

Le Blanc, S. P.

Liu, P.

Longworth, J. W.

T. Nelson, F. G. Omenetto, J. W. Longworth, W. A. Schroeder, C. K. Rhodes, “Design and analysis of an all solid-state UV laser based on Ce3+ LiSrAlF6,” in High Power Lasers, Proceedings of NATO ASI (Kluwer Academic, London, 1995), Vol. 7, pp. 177–183.

Luk, T. S.

Mann, K.

E. Eva, K. Mann, “Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet window materials,” Appl. Phys. A 62, 145–149 (1996).

Marowsky, G.

McIntyre, I. A.

Nelson, T.

T. Nelson, F. G. Omenetto, J. W. Longworth, W. A. Schroeder, C. K. Rhodes, “Design and analysis of an all solid-state UV laser based on Ce3+ LiSrAlF6,” in High Power Lasers, Proceedings of NATO ASI (Kluwer Academic, London, 1995), Vol. 7, pp. 177–183.

Ollikainein, O.

O. Ollikainein, A. Rebane, D. Erui, U. Wild, “Femtosecond time-resolved pulse measurement and image detection in broad spectral range by two-photon-excited fluorescence,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington D.C., 1996), pp. 227–228.

Omenetto, F. G.

T. Nelson, F. G. Omenetto, J. W. Longworth, W. A. Schroeder, C. K. Rhodes, “Design and analysis of an all solid-state UV laser based on Ce3+ LiSrAlF6,” in High Power Lasers, Proceedings of NATO ASI (Kluwer Academic, London, 1995), Vol. 7, pp. 177–183.

Rebane, A.

O. Ollikainein, A. Rebane, D. Erui, U. Wild, “Femtosecond time-resolved pulse measurement and image detection in broad spectral range by two-photon-excited fluorescence,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington D.C., 1996), pp. 227–228.

Reitze, D. H.

Rentzepis, P. M.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, “Two-photon excitation of fluorescence by picosecond light pulses,” Appl. Phys. Lett. 11, 216–218 (1967).
[CrossRef]

Rhodes, C. K.

Roberts, J. P.

Satzmari, S.

S. Satzmari, “High-brightness ultraviolet excimer lasers,” Appl. Phys. B 58, 211–223 (1994).
[CrossRef]

Sauerbrey, R.

Schroeder, W. A.

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, B. S. Wherrett, “Measurement of the anisotropy of two-photon absorption coefficients in zincblende semiconductors,” IEEE J. Quantum Electron. 30 (2), 256–268 (1994).
[CrossRef]

T. Nelson, F. G. Omenetto, J. W. Longworth, W. A. Schroeder, C. K. Rhodes, “Design and analysis of an all solid-state UV laser based on Ce3+ LiSrAlF6,” in High Power Lasers, Proceedings of NATO ASI (Kluwer Academic, London, 1995), Vol. 7, pp. 177–183.

Schuler, H.

H. Schultz, H. Schuler, T. Engers, D. Von der Linde, “Measurement of intense ultraviolet subpicosecond pulses using degenerate four-wave mixing,” IEEE J. Quantum Electron. 25, 2580–2586 (1989).
[CrossRef]

Schultz, H.

H. Schultz, H. Schuler, T. Engers, D. Von der Linde, “Measurement of intense ultraviolet subpicosecond pulses using degenerate four-wave mixing,” IEEE J. Quantum Electron. 25, 2580–2586 (1989).
[CrossRef]

Shapiro, S. L.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, “Two-photon excitation of fluorescence by picosecond light pulses,” Appl. Phys. Lett. 11, 216–218 (1967).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

Simon, P.

Smirl, A. L.

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, B. S. Wherrett, “Measurement of the anisotropy of two-photon absorption coefficients in zincblende semiconductors,” IEEE J. Quantum Electron. 30 (2), 256–268 (1994).
[CrossRef]

Stelzer, E. H. K.

Szabo, G.

Taylor, A. J.

Van Stryland, E. W.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

Von der Linde, D.

H. Schultz, H. Schuler, T. Engers, D. Von der Linde, “Measurement of intense ultraviolet subpicosecond pulses using degenerate four-wave mixing,” IEEE J. Quantum Electron. 25, 2580–2586 (1989).
[CrossRef]

Watanabe, M.

K. Hata, M. Watanabe, S. Watanabe, “Nonlinear processes in UV optical materials at 248 nm,” Appl. Phys. B 50, 55–59 (1990).
[CrossRef]

Watanabe, S.

K. Hata, M. Watanabe, S. Watanabe, “Nonlinear processes in UV optical materials at 248 nm,” Appl. Phys. B 50, 55–59 (1990).
[CrossRef]

Wecht, K. W.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, “Two-photon excitation of fluorescence by picosecond light pulses,” Appl. Phys. Lett. 11, 216–218 (1967).
[CrossRef]

Wherrett, B. S.

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, B. S. Wherrett, “Measurement of the anisotropy of two-photon absorption coefficients in zincblende semiconductors,” IEEE J. Quantum Electron. 30 (2), 256–268 (1994).
[CrossRef]

Wild, U.

O. Ollikainein, A. Rebane, D. Erui, U. Wild, “Femtosecond time-resolved pulse measurement and image detection in broad spectral range by two-photon-excited fluorescence,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington D.C., 1996), pp. 227–228.

Yen, R.

Appl. Opt.

Appl. Phys. A

E. Eva, K. Mann, “Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet window materials,” Appl. Phys. A 62, 145–149 (1996).

Appl. Phys. B

K. Hata, M. Watanabe, S. Watanabe, “Nonlinear processes in UV optical materials at 248 nm,” Appl. Phys. B 50, 55–59 (1990).
[CrossRef]

S. Satzmari, “High-brightness ultraviolet excimer lasers,” Appl. Phys. B 58, 211–223 (1994).
[CrossRef]

Appl. Phys. Lett.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, “Two-photon excitation of fluorescence by picosecond light pulses,” Appl. Phys. Lett. 11, 216–218 (1967).
[CrossRef]

IEEE J. Quantum Electron.

H. Schultz, H. Schuler, T. Engers, D. Von der Linde, “Measurement of intense ultraviolet subpicosecond pulses using degenerate four-wave mixing,” IEEE J. Quantum Electron. 25, 2580–2586 (1989).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, B. S. Wherrett, “Measurement of the anisotropy of two-photon absorption coefficients in zincblende semiconductors,” IEEE J. Quantum Electron. 30 (2), 256–268 (1994).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Lett.

Other

T. Nelson, F. G. Omenetto, J. W. Longworth, W. A. Schroeder, C. K. Rhodes, “Design and analysis of an all solid-state UV laser based on Ce3+ LiSrAlF6,” in High Power Lasers, Proceedings of NATO ASI (Kluwer Academic, London, 1995), Vol. 7, pp. 177–183.

O. Ollikainein, A. Rebane, D. Erui, U. Wild, “Femtosecond time-resolved pulse measurement and image detection in broad spectral range by two-photon-excited fluorescence,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington D.C., 1996), pp. 227–228.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

TPF autocorrelator. In the inset, P = d/2 + δ, represents the point of pulse overlap, where δ is the mismatch between the optical paths of the reflected and transmitted beams caused by the beam splitter (BS).

Fig. 2
Fig. 2

Dependence of fluorescence intensity on laser irradiance.

Fig. 3
Fig. 3

Single-shot autocorrelation traces of the UV pulses from (a) the double-pass off-axis Kr*F and (b) the final excimer amplifier. Δx represents the spatial extent of the fluorescence trace in the fused silica sample.

Fig. 4
Fig. 4

Signal-to-noise contrast ratio for a typical TPF measurement in fused silica.

Fig. 5
Fig. 5

Inverse transmittance versus incident irradiance. The straight-line fit corresponds to a TPA coefficient of β ∼ 1 × 10-10 cm/W.

Metrics