Abstract

Optical limiting, pulse reshaping, and stabilization effects have been demonstrated based on a two-photon absorption mechanism with a dye-solution-filled hollow fiber system. The nonlinear absorptive medium is the solution of a new dye, trans-4-[p-(N-hydroxyethyl-N-methylamino)styryl]-N-methylpyridinium iodide (ASPI) in dimethyl sulfoxide, with which we filled a 20-cm-long quartz hollow fiber of 100-µm internal diameter. The input optical signal was a laser pulse train that contained ∼30 pulses of 130-ps pulse width. When the input peak intensity reached 400–1000-MW/cm2 levels, obvious optical limiting could be observed and the envelope of the transmitted pulse train became flatter and broader. By using another new dye solution, 4-[N-(2-hydroxyethyl)-N-(methyl)amino phenyl]-4′-(6-hydroxyhexyl sulfonyl)-stilbene (APSS) in benzyl alcohol, which interacted with a series of ∼800-nm laser pulses of ∼8-ns pulse width, we obtained a much higher nonlinear absorption coefficient and a superior optical peak-power stabilization effect.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. W. Tutt, T. F. Boggess, “A review of optical limiting mechanisms and devices using organic, fullerenes, semiconductor and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
    [CrossRef]
  2. A. C. Walker, A. K. Kar, Ji Wei, U. Keller, S. D. Smith, “All-optical power limiting of CO2 laser pulses using cascaded optical bistable elements,” Appl. Phys. Lett. 48, 683–685 (1986).
    [CrossRef]
  3. Y. C. Chang, A. E. Chiou, M. Khoshnevissan, “Linear and two-photon absorptions of Si–Ge strained-layer superlattices,” J. Appl. Phys. 71, 1349–1360 (1992).
    [CrossRef]
  4. E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, T. F. Bogess, “Two-photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24, 613–623 (1985).
  5. D. C. Hutchings, E. W. Van Stryland, “Nondegenerate two-photon absorption in zinc blende semiconductors,” J. Opt. Soc. Am. B 9, 2065–2074 (1992).
    [CrossRef]
  6. G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, A. G. Dillard, “Two-photon absorption and optical-limiting properties of novel organic compounds,” Opt. Lett. 20, 435–437 (1995).
    [CrossRef] [PubMed]
  7. G. S. He, R. Gvishi, P. N. Prasad, B. A. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995).
    [CrossRef]
  8. G. S. He, J. D. Bhawalkar, C. F. Zhao, P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995).
    [CrossRef]
  9. E. P. Ippen, “Low-power quasi-cw Raman oscillator,” Appl. Phys. Lett. 16, 303–305 (1970).
    [CrossRef]
  10. J. Stone, “CW Raman fiber amplifier,” Appl. Phys. Lett. 26, 163–165 (1975).
    [CrossRef]
  11. J. C. Schaefer, I. Chabay, “Generation of enhanced coherent anti-Stokes Raman spectroscopy signal in liquid-filled waveguides,” Opt. Lett. 4, 227–229 (1979).
    [CrossRef]
  12. G. S. He, P. N. Prasad, “Stimulated Kerr scattering and reorientation work of molecules in liquid CS2,” Phys. Rev. A 41, 2687–2697 (1990).
    [CrossRef] [PubMed]
  13. G. S. He, G. C. Xu, “Efficient amplification of a broad-band optical signal through stimulated Kerr scattering in a CS2 liquid-core fiber system,” IEEE J. Quantum Electron. 28, 323–329 (1992).
    [CrossRef]
  14. G. S. He, M. Casstevens, R. Burzynski, X. Li, “Broadband, multiwavelength stimulated-emission source based on stimulated Kerr and Raman scattering in a liquid-core fiber system,” Appl. Opt. 34, 444–454 (1995).
    [CrossRef] [PubMed]
  15. G. S. He, R. Burzynski, P. N. Prasad, “A novel nonlinear optical effect: stimulated Raman–Kerr scattering in a benzene liquid-core fiber,” J. Chem. Phys. 93, 7647–7655 (1990).
    [CrossRef]
  16. C. F. Zhao, G. S. He, J. D. Bhawalkar, C. K. Park, P. N. Prasad, “Newly synthesized dyes and their polymer/glass composites for one- and two-photon pumped solid-state cavity lasing,” Chem. Mater. 7, 1979–1983 (1995).
    [CrossRef]
  17. G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, P. N. Prasad, “Two-photon-pumped cavity lasing in a dye-solution-filled hollow-fiber system,” Opt. Lett. 20, 2393–2395 (1995).
    [CrossRef] [PubMed]
  18. J. D. Bhawalkar, G. S. He, C. K. Park, C. F. Zhao, G. Ruland, P. N. Prasad, “Efficient, two-photon pumped green upconverted cavity lasing in a new dye,” Opt. Commun. 124, 33–37 (1996).
    [CrossRef]

1996 (1)

J. D. Bhawalkar, G. S. He, C. K. Park, C. F. Zhao, G. Ruland, P. N. Prasad, “Efficient, two-photon pumped green upconverted cavity lasing in a new dye,” Opt. Commun. 124, 33–37 (1996).
[CrossRef]

1995 (6)

G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, A. G. Dillard, “Two-photon absorption and optical-limiting properties of novel organic compounds,” Opt. Lett. 20, 435–437 (1995).
[CrossRef] [PubMed]

G. S. He, R. Gvishi, P. N. Prasad, B. A. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995).
[CrossRef]

G. S. He, M. Casstevens, R. Burzynski, X. Li, “Broadband, multiwavelength stimulated-emission source based on stimulated Kerr and Raman scattering in a liquid-core fiber system,” Appl. Opt. 34, 444–454 (1995).
[CrossRef] [PubMed]

C. F. Zhao, G. S. He, J. D. Bhawalkar, C. K. Park, P. N. Prasad, “Newly synthesized dyes and their polymer/glass composites for one- and two-photon pumped solid-state cavity lasing,” Chem. Mater. 7, 1979–1983 (1995).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, P. N. Prasad, “Two-photon-pumped cavity lasing in a dye-solution-filled hollow-fiber system,” Opt. Lett. 20, 2393–2395 (1995).
[CrossRef] [PubMed]

1993 (1)

L. W. Tutt, T. F. Boggess, “A review of optical limiting mechanisms and devices using organic, fullerenes, semiconductor and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

1992 (3)

Y. C. Chang, A. E. Chiou, M. Khoshnevissan, “Linear and two-photon absorptions of Si–Ge strained-layer superlattices,” J. Appl. Phys. 71, 1349–1360 (1992).
[CrossRef]

D. C. Hutchings, E. W. Van Stryland, “Nondegenerate two-photon absorption in zinc blende semiconductors,” J. Opt. Soc. Am. B 9, 2065–2074 (1992).
[CrossRef]

G. S. He, G. C. Xu, “Efficient amplification of a broad-band optical signal through stimulated Kerr scattering in a CS2 liquid-core fiber system,” IEEE J. Quantum Electron. 28, 323–329 (1992).
[CrossRef]

1990 (2)

G. S. He, P. N. Prasad, “Stimulated Kerr scattering and reorientation work of molecules in liquid CS2,” Phys. Rev. A 41, 2687–2697 (1990).
[CrossRef] [PubMed]

G. S. He, R. Burzynski, P. N. Prasad, “A novel nonlinear optical effect: stimulated Raman–Kerr scattering in a benzene liquid-core fiber,” J. Chem. Phys. 93, 7647–7655 (1990).
[CrossRef]

1986 (1)

A. C. Walker, A. K. Kar, Ji Wei, U. Keller, S. D. Smith, “All-optical power limiting of CO2 laser pulses using cascaded optical bistable elements,” Appl. Phys. Lett. 48, 683–685 (1986).
[CrossRef]

1985 (1)

E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, T. F. Bogess, “Two-photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24, 613–623 (1985).

1979 (1)

1975 (1)

J. Stone, “CW Raman fiber amplifier,” Appl. Phys. Lett. 26, 163–165 (1975).
[CrossRef]

1970 (1)

E. P. Ippen, “Low-power quasi-cw Raman oscillator,” Appl. Phys. Lett. 16, 303–305 (1970).
[CrossRef]

Bhatt, J. C.

Bhawalkar, J. D.

J. D. Bhawalkar, G. S. He, C. K. Park, C. F. Zhao, G. Ruland, P. N. Prasad, “Efficient, two-photon pumped green upconverted cavity lasing in a new dye,” Opt. Commun. 124, 33–37 (1996).
[CrossRef]

C. F. Zhao, G. S. He, J. D. Bhawalkar, C. K. Park, P. N. Prasad, “Newly synthesized dyes and their polymer/glass composites for one- and two-photon pumped solid-state cavity lasing,” Chem. Mater. 7, 1979–1983 (1995).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, P. N. Prasad, “Two-photon-pumped cavity lasing in a dye-solution-filled hollow-fiber system,” Opt. Lett. 20, 2393–2395 (1995).
[CrossRef] [PubMed]

G. S. He, J. D. Bhawalkar, C. F. Zhao, P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995).
[CrossRef]

Bogess, T. F.

E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, T. F. Bogess, “Two-photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24, 613–623 (1985).

Boggess, T. F.

L. W. Tutt, T. F. Boggess, “A review of optical limiting mechanisms and devices using organic, fullerenes, semiconductor and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

Burzynski, R.

G. S. He, M. Casstevens, R. Burzynski, X. Li, “Broadband, multiwavelength stimulated-emission source based on stimulated Kerr and Raman scattering in a liquid-core fiber system,” Appl. Opt. 34, 444–454 (1995).
[CrossRef] [PubMed]

G. S. He, R. Burzynski, P. N. Prasad, “A novel nonlinear optical effect: stimulated Raman–Kerr scattering in a benzene liquid-core fiber,” J. Chem. Phys. 93, 7647–7655 (1990).
[CrossRef]

Casstevens, M.

Chabay, I.

Chang, Y. C.

Y. C. Chang, A. E. Chiou, M. Khoshnevissan, “Linear and two-photon absorptions of Si–Ge strained-layer superlattices,” J. Appl. Phys. 71, 1349–1360 (1992).
[CrossRef]

Chiou, A. E.

Y. C. Chang, A. E. Chiou, M. Khoshnevissan, “Linear and two-photon absorptions of Si–Ge strained-layer superlattices,” J. Appl. Phys. 71, 1349–1360 (1992).
[CrossRef]

Dillard, A. G.

Guha, S.

E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, T. F. Bogess, “Two-photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24, 613–623 (1985).

Gvishi, R.

G. S. He, R. Gvishi, P. N. Prasad, B. A. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995).
[CrossRef]

He, G. S.

J. D. Bhawalkar, G. S. He, C. K. Park, C. F. Zhao, G. Ruland, P. N. Prasad, “Efficient, two-photon pumped green upconverted cavity lasing in a new dye,” Opt. Commun. 124, 33–37 (1996).
[CrossRef]

G. S. He, M. Casstevens, R. Burzynski, X. Li, “Broadband, multiwavelength stimulated-emission source based on stimulated Kerr and Raman scattering in a liquid-core fiber system,” Appl. Opt. 34, 444–454 (1995).
[CrossRef] [PubMed]

C. F. Zhao, G. S. He, J. D. Bhawalkar, C. K. Park, P. N. Prasad, “Newly synthesized dyes and their polymer/glass composites for one- and two-photon pumped solid-state cavity lasing,” Chem. Mater. 7, 1979–1983 (1995).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, P. N. Prasad, “Two-photon-pumped cavity lasing in a dye-solution-filled hollow-fiber system,” Opt. Lett. 20, 2393–2395 (1995).
[CrossRef] [PubMed]

G. S. He, R. Gvishi, P. N. Prasad, B. A. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995).
[CrossRef]

G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, A. G. Dillard, “Two-photon absorption and optical-limiting properties of novel organic compounds,” Opt. Lett. 20, 435–437 (1995).
[CrossRef] [PubMed]

G. S. He, J. D. Bhawalkar, C. F. Zhao, P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995).
[CrossRef]

G. S. He, G. C. Xu, “Efficient amplification of a broad-band optical signal through stimulated Kerr scattering in a CS2 liquid-core fiber system,” IEEE J. Quantum Electron. 28, 323–329 (1992).
[CrossRef]

G. S. He, R. Burzynski, P. N. Prasad, “A novel nonlinear optical effect: stimulated Raman–Kerr scattering in a benzene liquid-core fiber,” J. Chem. Phys. 93, 7647–7655 (1990).
[CrossRef]

G. S. He, P. N. Prasad, “Stimulated Kerr scattering and reorientation work of molecules in liquid CS2,” Phys. Rev. A 41, 2687–2697 (1990).
[CrossRef] [PubMed]

Hutchings, D. C.

Ippen, E. P.

E. P. Ippen, “Low-power quasi-cw Raman oscillator,” Appl. Phys. Lett. 16, 303–305 (1970).
[CrossRef]

Kar, A. K.

A. C. Walker, A. K. Kar, Ji Wei, U. Keller, S. D. Smith, “All-optical power limiting of CO2 laser pulses using cascaded optical bistable elements,” Appl. Phys. Lett. 48, 683–685 (1986).
[CrossRef]

Keller, U.

A. C. Walker, A. K. Kar, Ji Wei, U. Keller, S. D. Smith, “All-optical power limiting of CO2 laser pulses using cascaded optical bistable elements,” Appl. Phys. Lett. 48, 683–685 (1986).
[CrossRef]

Khoshnevissan, M.

Y. C. Chang, A. E. Chiou, M. Khoshnevissan, “Linear and two-photon absorptions of Si–Ge strained-layer superlattices,” J. Appl. Phys. 71, 1349–1360 (1992).
[CrossRef]

Li, X.

Park, C. K.

J. D. Bhawalkar, G. S. He, C. K. Park, C. F. Zhao, G. Ruland, P. N. Prasad, “Efficient, two-photon pumped green upconverted cavity lasing in a new dye,” Opt. Commun. 124, 33–37 (1996).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, P. N. Prasad, “Two-photon-pumped cavity lasing in a dye-solution-filled hollow-fiber system,” Opt. Lett. 20, 2393–2395 (1995).
[CrossRef] [PubMed]

C. F. Zhao, G. S. He, J. D. Bhawalkar, C. K. Park, P. N. Prasad, “Newly synthesized dyes and their polymer/glass composites for one- and two-photon pumped solid-state cavity lasing,” Chem. Mater. 7, 1979–1983 (1995).
[CrossRef]

Prasad, P. N.

J. D. Bhawalkar, G. S. He, C. K. Park, C. F. Zhao, G. Ruland, P. N. Prasad, “Efficient, two-photon pumped green upconverted cavity lasing in a new dye,” Opt. Commun. 124, 33–37 (1996).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, P. N. Prasad, “Two-photon-pumped cavity lasing in a dye-solution-filled hollow-fiber system,” Opt. Lett. 20, 2393–2395 (1995).
[CrossRef] [PubMed]

C. F. Zhao, G. S. He, J. D. Bhawalkar, C. K. Park, P. N. Prasad, “Newly synthesized dyes and their polymer/glass composites for one- and two-photon pumped solid-state cavity lasing,” Chem. Mater. 7, 1979–1983 (1995).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995).
[CrossRef]

G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, A. G. Dillard, “Two-photon absorption and optical-limiting properties of novel organic compounds,” Opt. Lett. 20, 435–437 (1995).
[CrossRef] [PubMed]

G. S. He, R. Gvishi, P. N. Prasad, B. A. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995).
[CrossRef]

G. S. He, P. N. Prasad, “Stimulated Kerr scattering and reorientation work of molecules in liquid CS2,” Phys. Rev. A 41, 2687–2697 (1990).
[CrossRef] [PubMed]

G. S. He, R. Burzynski, P. N. Prasad, “A novel nonlinear optical effect: stimulated Raman–Kerr scattering in a benzene liquid-core fiber,” J. Chem. Phys. 93, 7647–7655 (1990).
[CrossRef]

Reinhardt, B. A.

G. S. He, R. Gvishi, P. N. Prasad, B. A. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995).
[CrossRef]

G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, A. G. Dillard, “Two-photon absorption and optical-limiting properties of novel organic compounds,” Opt. Lett. 20, 435–437 (1995).
[CrossRef] [PubMed]

Ruland, G.

J. D. Bhawalkar, G. S. He, C. K. Park, C. F. Zhao, G. Ruland, P. N. Prasad, “Efficient, two-photon pumped green upconverted cavity lasing in a new dye,” Opt. Commun. 124, 33–37 (1996).
[CrossRef]

Schaefer, J. C.

Smirl, A. L.

E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, T. F. Bogess, “Two-photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24, 613–623 (1985).

Smith, S. D.

A. C. Walker, A. K. Kar, Ji Wei, U. Keller, S. D. Smith, “All-optical power limiting of CO2 laser pulses using cascaded optical bistable elements,” Appl. Phys. Lett. 48, 683–685 (1986).
[CrossRef]

Soileau, M. J.

E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, T. F. Bogess, “Two-photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24, 613–623 (1985).

Stone, J.

J. Stone, “CW Raman fiber amplifier,” Appl. Phys. Lett. 26, 163–165 (1975).
[CrossRef]

Tutt, L. W.

L. W. Tutt, T. F. Boggess, “A review of optical limiting mechanisms and devices using organic, fullerenes, semiconductor and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

Van Stryland, E. W.

D. C. Hutchings, E. W. Van Stryland, “Nondegenerate two-photon absorption in zinc blende semiconductors,” J. Opt. Soc. Am. B 9, 2065–2074 (1992).
[CrossRef]

E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, T. F. Bogess, “Two-photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24, 613–623 (1985).

Vanherzeele, H.

E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, T. F. Bogess, “Two-photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24, 613–623 (1985).

Walker, A. C.

A. C. Walker, A. K. Kar, Ji Wei, U. Keller, S. D. Smith, “All-optical power limiting of CO2 laser pulses using cascaded optical bistable elements,” Appl. Phys. Lett. 48, 683–685 (1986).
[CrossRef]

Wei, Ji

A. C. Walker, A. K. Kar, Ji Wei, U. Keller, S. D. Smith, “All-optical power limiting of CO2 laser pulses using cascaded optical bistable elements,” Appl. Phys. Lett. 48, 683–685 (1986).
[CrossRef]

Woodall, M. A.

E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, T. F. Bogess, “Two-photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24, 613–623 (1985).

Xu, G. C.

G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, A. G. Dillard, “Two-photon absorption and optical-limiting properties of novel organic compounds,” Opt. Lett. 20, 435–437 (1995).
[CrossRef] [PubMed]

G. S. He, G. C. Xu, “Efficient amplification of a broad-band optical signal through stimulated Kerr scattering in a CS2 liquid-core fiber system,” IEEE J. Quantum Electron. 28, 323–329 (1992).
[CrossRef]

Zhao, C. F.

J. D. Bhawalkar, G. S. He, C. K. Park, C. F. Zhao, G. Ruland, P. N. Prasad, “Efficient, two-photon pumped green upconverted cavity lasing in a new dye,” Opt. Commun. 124, 33–37 (1996).
[CrossRef]

C. F. Zhao, G. S. He, J. D. Bhawalkar, C. K. Park, P. N. Prasad, “Newly synthesized dyes and their polymer/glass composites for one- and two-photon pumped solid-state cavity lasing,” Chem. Mater. 7, 1979–1983 (1995).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, C. K. Park, P. N. Prasad, “Two-photon-pumped cavity lasing in a dye-solution-filled hollow-fiber system,” Opt. Lett. 20, 2393–2395 (1995).
[CrossRef] [PubMed]

G. S. He, J. D. Bhawalkar, C. F. Zhao, P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

A. C. Walker, A. K. Kar, Ji Wei, U. Keller, S. D. Smith, “All-optical power limiting of CO2 laser pulses using cascaded optical bistable elements,” Appl. Phys. Lett. 48, 683–685 (1986).
[CrossRef]

G. S. He, J. D. Bhawalkar, C. F. Zhao, P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995).
[CrossRef]

E. P. Ippen, “Low-power quasi-cw Raman oscillator,” Appl. Phys. Lett. 16, 303–305 (1970).
[CrossRef]

J. Stone, “CW Raman fiber amplifier,” Appl. Phys. Lett. 26, 163–165 (1975).
[CrossRef]

Chem. Mater. (1)

C. F. Zhao, G. S. He, J. D. Bhawalkar, C. K. Park, P. N. Prasad, “Newly synthesized dyes and their polymer/glass composites for one- and two-photon pumped solid-state cavity lasing,” Chem. Mater. 7, 1979–1983 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. S. He, G. C. Xu, “Efficient amplification of a broad-band optical signal through stimulated Kerr scattering in a CS2 liquid-core fiber system,” IEEE J. Quantum Electron. 28, 323–329 (1992).
[CrossRef]

J. Appl. Phys. (1)

Y. C. Chang, A. E. Chiou, M. Khoshnevissan, “Linear and two-photon absorptions of Si–Ge strained-layer superlattices,” J. Appl. Phys. 71, 1349–1360 (1992).
[CrossRef]

J. Chem. Phys. (1)

G. S. He, R. Burzynski, P. N. Prasad, “A novel nonlinear optical effect: stimulated Raman–Kerr scattering in a benzene liquid-core fiber,” J. Chem. Phys. 93, 7647–7655 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

G. S. He, R. Gvishi, P. N. Prasad, B. A. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995).
[CrossRef]

J. D. Bhawalkar, G. S. He, C. K. Park, C. F. Zhao, G. Ruland, P. N. Prasad, “Efficient, two-photon pumped green upconverted cavity lasing in a new dye,” Opt. Commun. 124, 33–37 (1996).
[CrossRef]

Opt. Eng. (1)

E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, T. F. Bogess, “Two-photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24, 613–623 (1985).

Opt. Lett. (3)

Phys. Rev. A (1)

G. S. He, P. N. Prasad, “Stimulated Kerr scattering and reorientation work of molecules in liquid CS2,” Phys. Rev. A 41, 2687–2697 (1990).
[CrossRef] [PubMed]

Prog. Quantum Electron. (1)

L. W. Tutt, T. F. Boggess, “A review of optical limiting mechanisms and devices using organic, fullerenes, semiconductor and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Linear absorption spectra of a 1-mm-path ASPI dye solution in DMSO of concentration d 0 = 6.3 × 10-4 M/L (solid curve) and a 1-mm-path pure DMSO sample (dashed curve). The molecular chemical structure of ASPI is at the top right-hand corner. (b) Linear absorption spectra of a 1-mm-path APSS dye solution in benzyl alcohol of d 0 = 1 × 10-3 M/L (solid curve) and a 1-mm-path pure benzyl alcohol sample (dashed curve). The molecular chemical structure of APSS is at the top right-hand corner.

Fig. 2
Fig. 2

Experimental setup for optical limiting and pulse-reshaping measurements with a nonlinear absorptive hollow fiber configuration.

Fig. 3
Fig. 3

Relative pulse intensity distributions for (a) the input pulse train and (b)–(e) transmitted pulse trains at various input peak-intensity levels.

Fig. 4
Fig. 4

Relative envelope distributions for curve (a) the input pulse train and curves (b)–(e) transmitted pulse trains at various input peak-intensity levels.

Fig. 5
Fig. 5

Nonlinear transmissivity T i as a function of the input peak intensity. The solid curve represents that predicted by Eq. (5) with a best-fit parameter of β = 0.043 cm/GW.

Fig. 6
Fig. 6

Relative envelope distributions of the input pulse train and the transmitted pulse train at an input peak-intensity level of 1.5 GW/cm2. The solid curve represents that predicted by Eq. (5) with β = 0.043 cm/GW.

Fig. 7
Fig. 7

(a) Measured nonlinear transmissivity as a function of the average input intensity. The solid curve is the theoretical curve with the best-fit parameter of β = 1.45 cm/GW. (b) The measured average output intensity as a function of average input intensity. The dashed curve is the theoretical curve with the same best-fit parameter of β = 1.45 cm/GW. The concentration of the APSS solution was d 0 = 0.02 M/L. The dotted line represents the behavior of a linear medium with β = 0.

Fig. 8
Fig. 8

(a) Measured peak-intensity fluctuations of input laser pulses. (b) The measured peak-intensity fluctuations of output laser pulses. The average input intensity level and repetition rate were 1.2 GW/cm2 and 2 Hz, respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

dI/dz+αI+βI2=0,
Iz=I0exp-αz1+β/αI0-β/αI0exp-αz,
Iz=I0exp-αz1+βzI0,
Tz=Iz/I0=exp-αz1+βzI0=T01+βzI0=T0Ti.
Ti=11+βzI0.
β=σ2N0=σ2NAd0×10-3,

Metrics