Abstract

Two methods of producing the long pulse lengths that promote efficient extraction of energy from low-gain, quasi-four-level lasers are analyzed. A long pulse length output can mitigate laser-induced damage effects and can be generated in quasi-four-level lasers by two disparate methods. One method utilizes Q-switching techniques in resonators designed to extend the pulse length and another utilizes the first pulse in a relaxation oscillation pulse train. Models for quasi-four-level lasers are derived here taking into account the nonnegligible thermal population of the lower laser level. Closed-form expressions are derived for both modes of operation of quasi-four-level laser systems so the parametric dependencies of both forms of operation become obvious, allowing facile comparison. In addition, a combined absorption and quantum efficiency, germane for flash-lamp pumping, is calculated for both Cr and Er sensitizers. Although the former has the advantage of broad absorption bands, the latter has the advantage of a quantum efficiency approaching 3.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (30)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription