Abstract

Many ground-based studies of the dynamics of the lower thermosphere and ionosphere have been performed using meridian scanning photometers and all-sky cameras. The two instruments strike different balances between quality and quantity or sensitivity versus large field of view. A large divergence angle in a wide-angle system requires large bandwidth filters that limit detectability of faint atmospheric emissions that are due to low signal-to-background ratio. All-sky imaging to as low as 80-deg zenith angle is important in addressing issues such as horizontal wavelength of individual waves and size of wave packets in the neutral atmosphere, and size and dynamics of red arcs and F-layer patches. A new instrument for remote sensing of the Earth’s upper atmosphere and its near-space environment from the ground is described. It affords true all-sky imaging at near-monochromatic wavelengths for faint airglow and auroral emissions by combining a two-mirror scanner with a zenith-looking photometer.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. T. Elvey, W. Stoffregen, “Aurora and airglow - auroral morphology by all-sky camera,” Ann. Int. Geophys. Year 5, 117–151 (1957).
  2. T. N. Davis, “The application of image orthicon techniques to auroral observation,” Space Sci. Rev. 6, 222–247 (1966).
    [CrossRef]
  3. S. B. Mende, R. H. Eather, E. K. Aamodt, “Instrument for the monochromatic observation of all sky auroral images,” Appl. Opt. 16, 1691–1700 (1977).
    [CrossRef] [PubMed]
  4. A. V. Jones, R. L. Gattinger, “TV morphology of some episodes of pulsating auroras,” Can. J. Phys. 59, 1077–1082 (1981).
    [CrossRef]
  5. S. K. Babey, J. S. Murphree, E. P. King, L. L. Cogger, C. D. Anger, “Intensified charge-coupled-device imager for auroral studies,” Opt. Eng. 25, 1149–1154 (1986).
    [CrossRef]
  6. T. Ono, M. Ejiri, T. Hashimoto, “Monochromatic auroral images observed at Syowa station in Antarctica,” J. Geomagn. Geoelectr. 39, 65–95 (1987).
    [CrossRef]
  7. I. Oznovich, R. Yee, A. Schiffler, D. J. McEwen, G. J. Sofko, “The all-sky camera revitalized,” Appl. Opt. 33, 7141–7150 (1994).
    [CrossRef] [PubMed]
  8. R. H. Eather, D. L. Reasoner, “Spectrophotometry of faint light sources with a tilting-filter photometer,” Appl. Opt. 8, 227–242 (1969).
    [CrossRef] [PubMed]
  9. W. Sawchuk, C. D. Anger, “A dual wavelength ground-based auroral scanner,” Planet. Space Sci. 20, 1935–1940 (1972).
    [CrossRef]
  10. C. D. Anger, “Advances in auroral imaging from space,” Adv. Space Res. 2, 97–105 (1983).
  11. J. W. Chamberlain, “Physics of the Aurora and Airglow,” reprint edition (American Geophysical Union, Washington, D.C., 1995), pp. 486–489.
  12. A. L. Broadfoot, K. R. Kendall, “The airglow spectrum, 3100–10,000 Å,” J. Geophys. Res. 73, 426–428 (1968).
    [CrossRef]
  13. I. Oznovich, D. J. McEwen, G. G. Sivjee, “Temperature and airglow brightness oscillations in the polar mesosphere and lower thermosphere,” Planet. Space Sci. 43, 1121–1130 (1995).
    [CrossRef]
  14. K. Makita, C.-I. Meng, S.-I. Akasofu, “Transpolar auroras, their particle precipitation, and IMF By component,” J. Geophys. Res. 96, 14,085–14,095 (1991).
    [CrossRef]
  15. I. Oznovich, D. J. McEwen, “Auroral emissions at the north magnetic pole: a February 17, 1993 case study,” J. Geomagn. Geoelectr. 46, 861–871 (1994).

1995 (1)

I. Oznovich, D. J. McEwen, G. G. Sivjee, “Temperature and airglow brightness oscillations in the polar mesosphere and lower thermosphere,” Planet. Space Sci. 43, 1121–1130 (1995).
[CrossRef]

1994 (2)

I. Oznovich, D. J. McEwen, “Auroral emissions at the north magnetic pole: a February 17, 1993 case study,” J. Geomagn. Geoelectr. 46, 861–871 (1994).

I. Oznovich, R. Yee, A. Schiffler, D. J. McEwen, G. J. Sofko, “The all-sky camera revitalized,” Appl. Opt. 33, 7141–7150 (1994).
[CrossRef] [PubMed]

1991 (1)

K. Makita, C.-I. Meng, S.-I. Akasofu, “Transpolar auroras, their particle precipitation, and IMF By component,” J. Geophys. Res. 96, 14,085–14,095 (1991).
[CrossRef]

1987 (1)

T. Ono, M. Ejiri, T. Hashimoto, “Monochromatic auroral images observed at Syowa station in Antarctica,” J. Geomagn. Geoelectr. 39, 65–95 (1987).
[CrossRef]

1986 (1)

S. K. Babey, J. S. Murphree, E. P. King, L. L. Cogger, C. D. Anger, “Intensified charge-coupled-device imager for auroral studies,” Opt. Eng. 25, 1149–1154 (1986).
[CrossRef]

1983 (1)

C. D. Anger, “Advances in auroral imaging from space,” Adv. Space Res. 2, 97–105 (1983).

1981 (1)

A. V. Jones, R. L. Gattinger, “TV morphology of some episodes of pulsating auroras,” Can. J. Phys. 59, 1077–1082 (1981).
[CrossRef]

1977 (1)

1972 (1)

W. Sawchuk, C. D. Anger, “A dual wavelength ground-based auroral scanner,” Planet. Space Sci. 20, 1935–1940 (1972).
[CrossRef]

1969 (1)

1968 (1)

A. L. Broadfoot, K. R. Kendall, “The airglow spectrum, 3100–10,000 Å,” J. Geophys. Res. 73, 426–428 (1968).
[CrossRef]

1966 (1)

T. N. Davis, “The application of image orthicon techniques to auroral observation,” Space Sci. Rev. 6, 222–247 (1966).
[CrossRef]

1957 (1)

C. T. Elvey, W. Stoffregen, “Aurora and airglow - auroral morphology by all-sky camera,” Ann. Int. Geophys. Year 5, 117–151 (1957).

Aamodt, E. K.

Akasofu, S.-I.

K. Makita, C.-I. Meng, S.-I. Akasofu, “Transpolar auroras, their particle precipitation, and IMF By component,” J. Geophys. Res. 96, 14,085–14,095 (1991).
[CrossRef]

Anger, C. D.

S. K. Babey, J. S. Murphree, E. P. King, L. L. Cogger, C. D. Anger, “Intensified charge-coupled-device imager for auroral studies,” Opt. Eng. 25, 1149–1154 (1986).
[CrossRef]

C. D. Anger, “Advances in auroral imaging from space,” Adv. Space Res. 2, 97–105 (1983).

W. Sawchuk, C. D. Anger, “A dual wavelength ground-based auroral scanner,” Planet. Space Sci. 20, 1935–1940 (1972).
[CrossRef]

Babey, S. K.

S. K. Babey, J. S. Murphree, E. P. King, L. L. Cogger, C. D. Anger, “Intensified charge-coupled-device imager for auroral studies,” Opt. Eng. 25, 1149–1154 (1986).
[CrossRef]

Broadfoot, A. L.

A. L. Broadfoot, K. R. Kendall, “The airglow spectrum, 3100–10,000 Å,” J. Geophys. Res. 73, 426–428 (1968).
[CrossRef]

Chamberlain, J. W.

J. W. Chamberlain, “Physics of the Aurora and Airglow,” reprint edition (American Geophysical Union, Washington, D.C., 1995), pp. 486–489.

Cogger, L. L.

S. K. Babey, J. S. Murphree, E. P. King, L. L. Cogger, C. D. Anger, “Intensified charge-coupled-device imager for auroral studies,” Opt. Eng. 25, 1149–1154 (1986).
[CrossRef]

Davis, T. N.

T. N. Davis, “The application of image orthicon techniques to auroral observation,” Space Sci. Rev. 6, 222–247 (1966).
[CrossRef]

Eather, R. H.

Ejiri, M.

T. Ono, M. Ejiri, T. Hashimoto, “Monochromatic auroral images observed at Syowa station in Antarctica,” J. Geomagn. Geoelectr. 39, 65–95 (1987).
[CrossRef]

Elvey, C. T.

C. T. Elvey, W. Stoffregen, “Aurora and airglow - auroral morphology by all-sky camera,” Ann. Int. Geophys. Year 5, 117–151 (1957).

Gattinger, R. L.

A. V. Jones, R. L. Gattinger, “TV morphology of some episodes of pulsating auroras,” Can. J. Phys. 59, 1077–1082 (1981).
[CrossRef]

Hashimoto, T.

T. Ono, M. Ejiri, T. Hashimoto, “Monochromatic auroral images observed at Syowa station in Antarctica,” J. Geomagn. Geoelectr. 39, 65–95 (1987).
[CrossRef]

Jones, A. V.

A. V. Jones, R. L. Gattinger, “TV morphology of some episodes of pulsating auroras,” Can. J. Phys. 59, 1077–1082 (1981).
[CrossRef]

Kendall, K. R.

A. L. Broadfoot, K. R. Kendall, “The airglow spectrum, 3100–10,000 Å,” J. Geophys. Res. 73, 426–428 (1968).
[CrossRef]

King, E. P.

S. K. Babey, J. S. Murphree, E. P. King, L. L. Cogger, C. D. Anger, “Intensified charge-coupled-device imager for auroral studies,” Opt. Eng. 25, 1149–1154 (1986).
[CrossRef]

Makita, K.

K. Makita, C.-I. Meng, S.-I. Akasofu, “Transpolar auroras, their particle precipitation, and IMF By component,” J. Geophys. Res. 96, 14,085–14,095 (1991).
[CrossRef]

McEwen, D. J.

I. Oznovich, D. J. McEwen, G. G. Sivjee, “Temperature and airglow brightness oscillations in the polar mesosphere and lower thermosphere,” Planet. Space Sci. 43, 1121–1130 (1995).
[CrossRef]

I. Oznovich, R. Yee, A. Schiffler, D. J. McEwen, G. J. Sofko, “The all-sky camera revitalized,” Appl. Opt. 33, 7141–7150 (1994).
[CrossRef] [PubMed]

I. Oznovich, D. J. McEwen, “Auroral emissions at the north magnetic pole: a February 17, 1993 case study,” J. Geomagn. Geoelectr. 46, 861–871 (1994).

Mende, S. B.

Meng, C.-I.

K. Makita, C.-I. Meng, S.-I. Akasofu, “Transpolar auroras, their particle precipitation, and IMF By component,” J. Geophys. Res. 96, 14,085–14,095 (1991).
[CrossRef]

Murphree, J. S.

S. K. Babey, J. S. Murphree, E. P. King, L. L. Cogger, C. D. Anger, “Intensified charge-coupled-device imager for auroral studies,” Opt. Eng. 25, 1149–1154 (1986).
[CrossRef]

Ono, T.

T. Ono, M. Ejiri, T. Hashimoto, “Monochromatic auroral images observed at Syowa station in Antarctica,” J. Geomagn. Geoelectr. 39, 65–95 (1987).
[CrossRef]

Oznovich, I.

I. Oznovich, D. J. McEwen, G. G. Sivjee, “Temperature and airglow brightness oscillations in the polar mesosphere and lower thermosphere,” Planet. Space Sci. 43, 1121–1130 (1995).
[CrossRef]

I. Oznovich, R. Yee, A. Schiffler, D. J. McEwen, G. J. Sofko, “The all-sky camera revitalized,” Appl. Opt. 33, 7141–7150 (1994).
[CrossRef] [PubMed]

I. Oznovich, D. J. McEwen, “Auroral emissions at the north magnetic pole: a February 17, 1993 case study,” J. Geomagn. Geoelectr. 46, 861–871 (1994).

Reasoner, D. L.

Sawchuk, W.

W. Sawchuk, C. D. Anger, “A dual wavelength ground-based auroral scanner,” Planet. Space Sci. 20, 1935–1940 (1972).
[CrossRef]

Schiffler, A.

Sivjee, G. G.

I. Oznovich, D. J. McEwen, G. G. Sivjee, “Temperature and airglow brightness oscillations in the polar mesosphere and lower thermosphere,” Planet. Space Sci. 43, 1121–1130 (1995).
[CrossRef]

Sofko, G. J.

Stoffregen, W.

C. T. Elvey, W. Stoffregen, “Aurora and airglow - auroral morphology by all-sky camera,” Ann. Int. Geophys. Year 5, 117–151 (1957).

Yee, R.

Adv. Space Res. (1)

C. D. Anger, “Advances in auroral imaging from space,” Adv. Space Res. 2, 97–105 (1983).

Ann. Int. Geophys. Year (1)

C. T. Elvey, W. Stoffregen, “Aurora and airglow - auroral morphology by all-sky camera,” Ann. Int. Geophys. Year 5, 117–151 (1957).

Appl. Opt. (3)

Can. J. Phys. (1)

A. V. Jones, R. L. Gattinger, “TV morphology of some episodes of pulsating auroras,” Can. J. Phys. 59, 1077–1082 (1981).
[CrossRef]

J. Geomagn. Geoelectr. (2)

T. Ono, M. Ejiri, T. Hashimoto, “Monochromatic auroral images observed at Syowa station in Antarctica,” J. Geomagn. Geoelectr. 39, 65–95 (1987).
[CrossRef]

I. Oznovich, D. J. McEwen, “Auroral emissions at the north magnetic pole: a February 17, 1993 case study,” J. Geomagn. Geoelectr. 46, 861–871 (1994).

J. Geophys. Res. (2)

K. Makita, C.-I. Meng, S.-I. Akasofu, “Transpolar auroras, their particle precipitation, and IMF By component,” J. Geophys. Res. 96, 14,085–14,095 (1991).
[CrossRef]

A. L. Broadfoot, K. R. Kendall, “The airglow spectrum, 3100–10,000 Å,” J. Geophys. Res. 73, 426–428 (1968).
[CrossRef]

Opt. Eng. (1)

S. K. Babey, J. S. Murphree, E. P. King, L. L. Cogger, C. D. Anger, “Intensified charge-coupled-device imager for auroral studies,” Opt. Eng. 25, 1149–1154 (1986).
[CrossRef]

Planet. Space Sci. (2)

W. Sawchuk, C. D. Anger, “A dual wavelength ground-based auroral scanner,” Planet. Space Sci. 20, 1935–1940 (1972).
[CrossRef]

I. Oznovich, D. J. McEwen, G. G. Sivjee, “Temperature and airglow brightness oscillations in the polar mesosphere and lower thermosphere,” Planet. Space Sci. 43, 1121–1130 (1995).
[CrossRef]

Space Sci. Rev. (1)

T. N. Davis, “The application of image orthicon techniques to auroral observation,” Space Sci. Rev. 6, 222–247 (1966).
[CrossRef]

Other (1)

J. W. Chamberlain, “Physics of the Aurora and Airglow,” reprint edition (American Geophysical Union, Washington, D.C., 1995), pp. 486–489.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the MASS.

Fig. 2
Fig. 2

Absolute transmission curves of the sodium filter of the MASS in the level (solid curve) and tilted (dashed curve) positions.

Fig. 3
Fig. 3

Zenith viewing geometry of space from the ground.

Fig. 4
Fig. 4

(a) Number of azimuthal IFOV’s N Δλ, (b) photometer integration time per IFOV in milliseconds, (c) rotation period of the azimuthal mirror in seconds. The actual (dashed line) differs from the specified (bold solid curve) characteristics for the smallest 8° of zenith angle.

Fig. 5
Fig. 5

Image sequence of a wave that propagated from north to south. Data were obtained by the MASS from central Saskatchewan, Canada, on 25 February 1996.

Tables (1)

Tables Icon

Table 1 Specified Instrument Characteristics of the MASS

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

α=θ-arcsinRR+hsin θ,
γ=αR+h.
NΔθ=θH-θLΔθ+1,
NΔλ=2πl sin θ/Δϕ=2π sin θ/Δλ,
N=θLθHNΔλθdθ/Δθ=2πcos θL-cos θH/ΔλΔθ,
ηθ=α2-αα1-α,
B=4π×10-6/AΩτ1τ2T.

Metrics