Abstract

We introduce an incoherent adaptive imaging system based on optimization of an image quality metric measured using a coherent optical system. Experimental results and numerical simulations are presented that demonstrate adaptive correction of phase-distorted extended source images containing objects located at multiple distances.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Hardy, “Adaptive optics—a progress review,” in Active and Adaptive Optical Systems, M. A. Early, ed., Proc. SPIE1542, 2–17 (1991).
    [CrossRef]
  2. B. Tyson, Principles of Adaptive Optics (Academic, New York, 1991).
  3. G. D. Love, J. S. Fender, S. R. Restaino, “Adaptive wavefront shaping with liquid crystals,” Opt. Photon. News16–21 (October1995).
  4. M. A. Vorontsov, V. A. Katulin, A. F. Naumov, “Wavefront control by a feedback interferometer,” Opt. Commun. 71, 35–38 (1989).
    [CrossRef]
  5. D. G. Sandler, L. Cuellar, M. Lefebvre, T. Barret, R. Arnold, P. Johnson, A. Rego, G. Smith, G. Taylor, B. Spivey, “Shearing interferometry for laser-guide-star atmospheric correction at large D/r0,” J. Opt. Soc. Am. A 11, 858–873 (1994).
    [CrossRef]
  6. R. Q. Fugate, “Laser beacon adaptive optics,” Opt. Photon. News, 14–19 (June1994).
  7. D. L. Fried, J. F. Belsher, “Analysis of fundamental limits to artificial-guide-star adaptive-optics-system performance for astronomical imaging,” J. Opt. Soc. Am. A 11, 277–287 (1994).
    [CrossRef]
  8. J. H. Hardy, “Active optics: a new technology for the control of light,” Proc. IEEE 66, 651–697 (1978).
    [CrossRef]
  9. D. C. Johnston, B. M. Welsh, “Analysis of multiconjugate adaptive optics,” J. Opt. Soc. Am. A 11, 394–408 (1994).
    [CrossRef]
  10. R. A. Muller, A. Buffington, “Real-time correction of atmospherically degraded telescope images through image sharpening,” J. Opt. Soc. Am. 64, 1200–1210 (1974).
    [CrossRef]
  11. A. Buffington, F. S. Crawford, R. A. Muller, A. J. Schwemin, R. G. Smits, “Correction of atmospheric distortion with an image-sharpening telescope,” J. Opt. Soc. Am. 67, 298–303 (1977).
    [CrossRef]
  12. M. C. Roggemann, C. A. Stoudt, B. M. Welsh, “Image-spectrum signal-to-noise-ratio improvements by statistical frame selection for adaptive-optics imaging through atmospheric turbulence,” Opt. Eng. 67, 3254–3264 (1994).
    [CrossRef]
  13. M. C. Roggemann, E. L. Caudill, D. W. Tyler, M. J. Fox, M. A. Von Bokern, L. C. Matson, “Compensated speckle imaging: theory and experimental results,” Appl. Opt. 33, 3099–3110 (1994).
    [CrossRef] [PubMed]
  14. M. A. Vorontsov, G. W. Carhart, D. V. Pruidze, J. C. Ricklin, D. G. Voelz, “Image quality criteria for an adaptive imaging system based on statistical analysis of the speckle field,” J. Opt. Soc. Am. A 13, 1456–1466 (1996).
    [CrossRef]
  15. M. A. Vorontsov, J. C. Ricklin, G. W. Carhart, “Optical simulation of phase-distorted imaging systems: nonlinear and adaptive optics approach,” Opt. Eng. 34, 3229–3238 (1995).
    [CrossRef]
  16. J. C. Ricklin, M. A. Vorontsov, G. W. Carhart, D. Gose, W. B. Miller, “Turbulent phase screen for the study of imaging system performance,” J. Mod. Opt. 42(1) , 13–17 (1995).
    [CrossRef]
  17. C. Schwartz, E. Ribak, S. G. Lipson, “Bimorph adaptive mirrors and curvature sensing,” J. Opt. Soc. Am. A 11, 895–902 (1994).
    [CrossRef]
  18. M. A. Vorontsov, A. V. Kudryashov, S. I. Nazarkin, V. I. Shmal’gauzen, “Flexible mirror for adaptive light-beam formation systems,” Sov. J. Quantum Electron. 14, 839–841 (1984).
    [CrossRef]
  19. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968).

1996 (1)

1995 (3)

M. A. Vorontsov, J. C. Ricklin, G. W. Carhart, “Optical simulation of phase-distorted imaging systems: nonlinear and adaptive optics approach,” Opt. Eng. 34, 3229–3238 (1995).
[CrossRef]

J. C. Ricklin, M. A. Vorontsov, G. W. Carhart, D. Gose, W. B. Miller, “Turbulent phase screen for the study of imaging system performance,” J. Mod. Opt. 42(1) , 13–17 (1995).
[CrossRef]

G. D. Love, J. S. Fender, S. R. Restaino, “Adaptive wavefront shaping with liquid crystals,” Opt. Photon. News16–21 (October1995).

1994 (7)

1989 (1)

M. A. Vorontsov, V. A. Katulin, A. F. Naumov, “Wavefront control by a feedback interferometer,” Opt. Commun. 71, 35–38 (1989).
[CrossRef]

1984 (1)

M. A. Vorontsov, A. V. Kudryashov, S. I. Nazarkin, V. I. Shmal’gauzen, “Flexible mirror for adaptive light-beam formation systems,” Sov. J. Quantum Electron. 14, 839–841 (1984).
[CrossRef]

1978 (1)

J. H. Hardy, “Active optics: a new technology for the control of light,” Proc. IEEE 66, 651–697 (1978).
[CrossRef]

1977 (1)

1974 (1)

Arnold, R.

Barret, T.

Belsher, J. F.

Buffington, A.

Carhart, G. W.

M. A. Vorontsov, G. W. Carhart, D. V. Pruidze, J. C. Ricklin, D. G. Voelz, “Image quality criteria for an adaptive imaging system based on statistical analysis of the speckle field,” J. Opt. Soc. Am. A 13, 1456–1466 (1996).
[CrossRef]

J. C. Ricklin, M. A. Vorontsov, G. W. Carhart, D. Gose, W. B. Miller, “Turbulent phase screen for the study of imaging system performance,” J. Mod. Opt. 42(1) , 13–17 (1995).
[CrossRef]

M. A. Vorontsov, J. C. Ricklin, G. W. Carhart, “Optical simulation of phase-distorted imaging systems: nonlinear and adaptive optics approach,” Opt. Eng. 34, 3229–3238 (1995).
[CrossRef]

Caudill, E. L.

Crawford, F. S.

Cuellar, L.

Fender, J. S.

G. D. Love, J. S. Fender, S. R. Restaino, “Adaptive wavefront shaping with liquid crystals,” Opt. Photon. News16–21 (October1995).

Fox, M. J.

Fried, D. L.

Fugate, R. Q.

R. Q. Fugate, “Laser beacon adaptive optics,” Opt. Photon. News, 14–19 (June1994).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968).

Gose, D.

J. C. Ricklin, M. A. Vorontsov, G. W. Carhart, D. Gose, W. B. Miller, “Turbulent phase screen for the study of imaging system performance,” J. Mod. Opt. 42(1) , 13–17 (1995).
[CrossRef]

Hardy, J. H.

J. H. Hardy, “Active optics: a new technology for the control of light,” Proc. IEEE 66, 651–697 (1978).
[CrossRef]

Hardy, J. W.

J. W. Hardy, “Adaptive optics—a progress review,” in Active and Adaptive Optical Systems, M. A. Early, ed., Proc. SPIE1542, 2–17 (1991).
[CrossRef]

Johnson, P.

Johnston, D. C.

Katulin, V. A.

M. A. Vorontsov, V. A. Katulin, A. F. Naumov, “Wavefront control by a feedback interferometer,” Opt. Commun. 71, 35–38 (1989).
[CrossRef]

Kudryashov, A. V.

M. A. Vorontsov, A. V. Kudryashov, S. I. Nazarkin, V. I. Shmal’gauzen, “Flexible mirror for adaptive light-beam formation systems,” Sov. J. Quantum Electron. 14, 839–841 (1984).
[CrossRef]

Lefebvre, M.

Lipson, S. G.

Love, G. D.

G. D. Love, J. S. Fender, S. R. Restaino, “Adaptive wavefront shaping with liquid crystals,” Opt. Photon. News16–21 (October1995).

Matson, L. C.

Miller, W. B.

J. C. Ricklin, M. A. Vorontsov, G. W. Carhart, D. Gose, W. B. Miller, “Turbulent phase screen for the study of imaging system performance,” J. Mod. Opt. 42(1) , 13–17 (1995).
[CrossRef]

Muller, R. A.

Naumov, A. F.

M. A. Vorontsov, V. A. Katulin, A. F. Naumov, “Wavefront control by a feedback interferometer,” Opt. Commun. 71, 35–38 (1989).
[CrossRef]

Nazarkin, S. I.

M. A. Vorontsov, A. V. Kudryashov, S. I. Nazarkin, V. I. Shmal’gauzen, “Flexible mirror for adaptive light-beam formation systems,” Sov. J. Quantum Electron. 14, 839–841 (1984).
[CrossRef]

Pruidze, D. V.

Rego, A.

Restaino, S. R.

G. D. Love, J. S. Fender, S. R. Restaino, “Adaptive wavefront shaping with liquid crystals,” Opt. Photon. News16–21 (October1995).

Ribak, E.

Ricklin, J. C.

M. A. Vorontsov, G. W. Carhart, D. V. Pruidze, J. C. Ricklin, D. G. Voelz, “Image quality criteria for an adaptive imaging system based on statistical analysis of the speckle field,” J. Opt. Soc. Am. A 13, 1456–1466 (1996).
[CrossRef]

J. C. Ricklin, M. A. Vorontsov, G. W. Carhart, D. Gose, W. B. Miller, “Turbulent phase screen for the study of imaging system performance,” J. Mod. Opt. 42(1) , 13–17 (1995).
[CrossRef]

M. A. Vorontsov, J. C. Ricklin, G. W. Carhart, “Optical simulation of phase-distorted imaging systems: nonlinear and adaptive optics approach,” Opt. Eng. 34, 3229–3238 (1995).
[CrossRef]

Roggemann, M. C.

M. C. Roggemann, C. A. Stoudt, B. M. Welsh, “Image-spectrum signal-to-noise-ratio improvements by statistical frame selection for adaptive-optics imaging through atmospheric turbulence,” Opt. Eng. 67, 3254–3264 (1994).
[CrossRef]

M. C. Roggemann, E. L. Caudill, D. W. Tyler, M. J. Fox, M. A. Von Bokern, L. C. Matson, “Compensated speckle imaging: theory and experimental results,” Appl. Opt. 33, 3099–3110 (1994).
[CrossRef] [PubMed]

Sandler, D. G.

Schwartz, C.

Schwemin, A. J.

Shmal’gauzen, V. I.

M. A. Vorontsov, A. V. Kudryashov, S. I. Nazarkin, V. I. Shmal’gauzen, “Flexible mirror for adaptive light-beam formation systems,” Sov. J. Quantum Electron. 14, 839–841 (1984).
[CrossRef]

Smith, G.

Smits, R. G.

Spivey, B.

Stoudt, C. A.

M. C. Roggemann, C. A. Stoudt, B. M. Welsh, “Image-spectrum signal-to-noise-ratio improvements by statistical frame selection for adaptive-optics imaging through atmospheric turbulence,” Opt. Eng. 67, 3254–3264 (1994).
[CrossRef]

Taylor, G.

Tyler, D. W.

Tyson, B.

B. Tyson, Principles of Adaptive Optics (Academic, New York, 1991).

Voelz, D. G.

Von Bokern, M. A.

Vorontsov, M. A.

M. A. Vorontsov, G. W. Carhart, D. V. Pruidze, J. C. Ricklin, D. G. Voelz, “Image quality criteria for an adaptive imaging system based on statistical analysis of the speckle field,” J. Opt. Soc. Am. A 13, 1456–1466 (1996).
[CrossRef]

J. C. Ricklin, M. A. Vorontsov, G. W. Carhart, D. Gose, W. B. Miller, “Turbulent phase screen for the study of imaging system performance,” J. Mod. Opt. 42(1) , 13–17 (1995).
[CrossRef]

M. A. Vorontsov, J. C. Ricklin, G. W. Carhart, “Optical simulation of phase-distorted imaging systems: nonlinear and adaptive optics approach,” Opt. Eng. 34, 3229–3238 (1995).
[CrossRef]

M. A. Vorontsov, V. A. Katulin, A. F. Naumov, “Wavefront control by a feedback interferometer,” Opt. Commun. 71, 35–38 (1989).
[CrossRef]

M. A. Vorontsov, A. V. Kudryashov, S. I. Nazarkin, V. I. Shmal’gauzen, “Flexible mirror for adaptive light-beam formation systems,” Sov. J. Quantum Electron. 14, 839–841 (1984).
[CrossRef]

Welsh, B. M.

D. C. Johnston, B. M. Welsh, “Analysis of multiconjugate adaptive optics,” J. Opt. Soc. Am. A 11, 394–408 (1994).
[CrossRef]

M. C. Roggemann, C. A. Stoudt, B. M. Welsh, “Image-spectrum signal-to-noise-ratio improvements by statistical frame selection for adaptive-optics imaging through atmospheric turbulence,” Opt. Eng. 67, 3254–3264 (1994).
[CrossRef]

Appl. Opt. (1)

J. Mod. Opt. (1)

J. C. Ricklin, M. A. Vorontsov, G. W. Carhart, D. Gose, W. B. Miller, “Turbulent phase screen for the study of imaging system performance,” J. Mod. Opt. 42(1) , 13–17 (1995).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (5)

Opt. Commun. (1)

M. A. Vorontsov, V. A. Katulin, A. F. Naumov, “Wavefront control by a feedback interferometer,” Opt. Commun. 71, 35–38 (1989).
[CrossRef]

Opt. Eng. (2)

M. A. Vorontsov, J. C. Ricklin, G. W. Carhart, “Optical simulation of phase-distorted imaging systems: nonlinear and adaptive optics approach,” Opt. Eng. 34, 3229–3238 (1995).
[CrossRef]

M. C. Roggemann, C. A. Stoudt, B. M. Welsh, “Image-spectrum signal-to-noise-ratio improvements by statistical frame selection for adaptive-optics imaging through atmospheric turbulence,” Opt. Eng. 67, 3254–3264 (1994).
[CrossRef]

Opt. Photon. News (2)

G. D. Love, J. S. Fender, S. R. Restaino, “Adaptive wavefront shaping with liquid crystals,” Opt. Photon. News16–21 (October1995).

R. Q. Fugate, “Laser beacon adaptive optics,” Opt. Photon. News, 14–19 (June1994).

Proc. IEEE (1)

J. H. Hardy, “Active optics: a new technology for the control of light,” Proc. IEEE 66, 651–697 (1978).
[CrossRef]

Sov. J. Quantum Electron. (1)

M. A. Vorontsov, A. V. Kudryashov, S. I. Nazarkin, V. I. Shmal’gauzen, “Flexible mirror for adaptive light-beam formation systems,” Sov. J. Quantum Electron. 14, 839–841 (1984).
[CrossRef]

Other (3)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968).

J. W. Hardy, “Adaptive optics—a progress review,” in Active and Adaptive Optical Systems, M. A. Early, ed., Proc. SPIE1542, 2–17 (1991).
[CrossRef]

B. Tyson, Principles of Adaptive Optics (Academic, New York, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Optical scheme for adaptive imaging system with sample patterns (a)–(c).

Fig. 2
Fig. 2

Deformable mirror: schematic (top left), electrode geometry (top right), and mirror surface interferograms (a)–(c) with associated images (d)–(f) for (a) and (d) defocus-type aberration, (b) and (e) astigmatism-type aberration, and (c) and (f) higher-order aberration.

Fig. 3
Fig. 3

Optical scheme for image quality analyzer with speckle field produced by (a) a rotating metal disc and (b) an optical fiber bundle.

Fig. 4
Fig. 4

Imaging system with defocus-type wave-front distortion: (a) normalized spectral criterion J ph (solid curve) and sharpness function J 2 (dotted curve) discrimination curves, and (b) adaptation process curve in an adaptive system with defocus aberration control. Feedback is off in the region n A < n < n B .

Fig. 5
Fig. 5

Adaptation process curves for the normalized spectral criterion J ph with corresponding improved images in an imaging system with (a) large-scale static aberrations and (b) static large-scale and dynamic small-scale phase distortions. Small-scale phase distortion standard deviation was of the order of 1.0 π.

Fig. 6
Fig. 6

Spectral criterion J ph evolution curves in an adaptive imaging system with defocus aberration control for a moving object: (a) feedback is off and (b) feedback is on during the intervals 0 < t < t A and t > t B.

Fig. 7
Fig. 7

(a) Contour plot of the normalized image quality criterion J ph versus voltages u a and u d applied to deformable mirror electrodes to produce astigmatism-type and defocus-type aberrations. (b) Criterion J ph versus the number of adaptation process iterations in an adaptive system with ten control channels. For 1 < n < n A, only defocus aberration was applied; for the region n > n B only astigmatism-type aberration was applied; and n A < n < n B indicates where feedback was off. Interferograms and the images corresponding to points A and B in (a) are shown in Fig. 2 (a), (d) and (b), and (e), respectively.

Fig. 8
Fig. 8

Adaptation process evolution curve for an adaptive system with ten control channels. The region 1 < n < n A indicates residual defocus aberration compensation and n > n B the compensation of higher-order phase distortions depicted in the interferogram in Fig. 2(c). For n A < n < n B, feedback is off.

Fig. 9
Fig. 9

Normalized image quality criterion J ph as a function of the voltage-controlling imaging system defocus aberration for different objects: (1) giraffe slide, (2) tree slide, (3) collocated giraffe and tree, and (4) separated giraffe and tree.

Fig. 10
Fig. 10

Giraffe and tree discrimination curve global minimum shift versus distance Δ separating the objects.

Fig. 11
Fig. 11

Adaptation process evolution curve for a slowly moving object. The giraffe slide is moved slowly toward the tree slide 1 < n < n 1; giraffe and tree are collocated n 1 < n < n 2; giraffe slide moves away from the tree n > n 2. At n = n 3, the distance separating the slides is the same as at the beginning.

Fig. 12
Fig. 12

Images obtained during adaptive system operation corresponding to different stages in the evolution curve in Fig. 11: (a) initial image (n = 1); (b) image after first 12 iteration steps; (c) image immediately before jumping to the discrimination curve global minimum associated with the tree image; (d) image immediately following this jump; (e) collocated image when n 2 > n > n 1; (f) image when n = n 3.

Fig. 13
Fig. 13

Numerical simulation of the normalized image quality criteria J 2 (curves 1 and 2) and J ph (curves 3 and 4) as a function of the voltage-controlling imaging system defocus aberration for positive (solid curves) and negative (dotted curves) images containing additive noise (η = 0.5 and 0.5 q 0 <q < q 0). Images with noise corresponding to u d = 0 and u d = 200 V are shown in (a) and (b).

Fig. 14
Fig. 14

Numerical simulation of adaptation process dynamics in a system with defocus aberration control (controlling voltage versus iteration number) using (a) the image quality criterion J ph and (b) the sharpness function J 2. Noise level is (1) η = 0.5 and (2) η = 0.65.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Jph=Iph2rFd2rF=FAphr4d2rF,
uin+1=uin+γiGδJin,  i=1, , 10,

Metrics