Abstract

Light-scattering measurements of optically levitated microdroplets containing three components, glycerin, water, and ammonium sulfate, are presented. Evaporation of the microdroplet is studied by means of morphology-dependent resonances observed in both Raman spectra as well as elastically scattered light and by the simultaneous measurement of the laser power. The phase transition from the liquid to the solid state of ammonium sulfate inside the microdroplet is observed by means of morphology-dependent resonances and Raman scattering.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. N. Tang, H. R. Munkelwitz, N. Wang, “Water activity measurements with single suspended droplets: the NaCl–H2O and KCl–H2O Systems,” J. Colloid Interface Sci. 114, 409–415 (1986).
    [CrossRef]
  2. S. Arnold, M. Neumann, A. B. Pluchino, “Molecular spectroscopy of a single aerosol particle,” Opt. Lett. 9, 4–6 (1984).
    [CrossRef] [PubMed]
  3. G. S. Grader, S. Arnold, R. C. Flagan, J. H. Seinfeld, “Fourier transform infrared spectroscopy of a single aerosol particle,” J. Chem. Phys. 86, 5897–5903 (1987).
    [CrossRef]
  4. S. Arnold, A. B. Pluchino, “Infrared-spectrum of a single aerosol-particle by photothermal modulation of structure resonances,” Appl. Opt. 21, 4194–4196 (1982).
    [CrossRef]
  5. K. H. Fung, I. N. Tang, “Raman spectra of single suspended supersaturated ammonium bisulfate droplets,” Chem. Phys. Lett. 147, 509–513 (1988).
    [CrossRef]
  6. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156 (1970).
    [CrossRef]
  7. A. Ashkin, J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
    [CrossRef]
  8. A. Ashkin, J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys.Rev. Lett. 38, 1351–1354 (1977).
    [CrossRef]
  9. R. Thurn, W. Kiefer, “Raman-microsampling technique applying optical levitation by radiation pressure,” Appl. Spectrosc. 38, 78–83 (1984).
    [CrossRef]
  10. R. Thurn, W. Kiefer, “Structural resonances observed in the Raman spectra of optically levitated liquid droplets,” Appl. Opt. 24, 1515–1519 (1985).
    [CrossRef] [PubMed]
  11. W. Kiefer, “Micro-Raman spectroscopy of particles in the micro-size range: a short review,” Croat. Chim. Acta 61, 473–486 (1988).
  12. K. H. Fung, I. N. Tang, “Relative Raman scattering cross-section measurements with suspended particles,” Appl. Spectrosc. 45, 734–737 (1991).
    [CrossRef]
  13. K. Schaschek, J. Popp, W. Kiefer, “Observation of morphology-dependent input and output resonances in time-dependent Raman spectra of optically levitated microdroplets,” J. Raman Spectrosc. 24, 69–75 (1993).
    [CrossRef]
  14. J. Popp, M. Lankers, K. Schaschek, J. T. Hodges, W. Kiefer, “Observation of sudden temperature jumps in optically levitated microdroplets due to morphology-dependent input resonances,” Appl. Opt. 13, 2380–2386 (1995).
    [CrossRef]
  15. G. Schweiger, “Observation of input and output structural resonances in the Raman spectrum of a single spheroidal dielectric microparticle,” Opt. Lett. 15, 156–158 (1990).
    [CrossRef] [PubMed]
  16. G. Schweiger, “Observation of morphology-dependent resonances caused by the input field in the Raman spectrum of microdroplets,” J. Raman Spectrosc. 21, 165–168 (1990).
    [CrossRef]
  17. K. H. Fung, I. N. Tang, “Raman scattering from single solution droplets,” Appl. Opt. 27, 206–208 (1988).
    [CrossRef] [PubMed]
  18. G. G. Hoffmann, J. F. Lübben, B. Schrader, “Composition analysis of optically levitated aerosol single particles,” J. Mol. Struct. 349, 145–148 (1995).
    [CrossRef]
  19. J. Popp, “Elastische und inelastische Lichtstreuung an einzelnen sphärischen Mikropartikeln,” Ph.D. dissertation (University of Würzburg, Würzburg, Germany, 1994).
  20. K. E. Lawrence, G. W. Rice, V. A. Fassel, “Direct liquid sample introduction for flow injection analysis and liquid chromatography with inductively coupled argon plasma spectrometric detection,” Anal. Chem. 56, 289–292 (1984).
    [CrossRef]
  21. M. Trunk, M. Lankers, J. Popp, W. Kiefer, “Simple and inexpensive design of an uniform-size droplet generator,” Appl. Spectrosc. 48, 1291–1293 (1994).
    [CrossRef]
  22. C. K. Chan, R. C. Flagan, J. H. Seinfeld, “Resonance structure in elastic and Raman scattering from microspheres,” Appl. Opt. 30, 459–467 (1991).
    [CrossRef] [PubMed]
  23. P. R. Conwell, P. W. Barber, C. K. Rushforth, “Resonant spectra of dielectric spheres,” J. Opt. Soc. Am. A 1, 62–67 (1984).
    [CrossRef]
  24. S. C. Hill, R. E. Benner, C. K. Rushforth, D. R. Conwell, “Structural resonances observed in the fluorescence emission from small spheres on substrates,” Appl. Opt. 23, 1680–1683 (1984).
    [CrossRef] [PubMed]
  25. P. Chylek, V. Ramaswamy, A. Ashkin, J. M. Dziedzic, “Simultaneous determination of refractive index and size of spherical dielectric particles from light scattering data,” Appl. Opt. 22, 2302–2307 (1983).
    [CrossRef] [PubMed]
  26. F. Guilloteau, G. Grehan, G. Gouesbet, “Optical levitation experiments to assess the validity of the generalized Lorenz–Mie theory,” Appl. Opt. 31, 2942–2951 (1992).
    [CrossRef] [PubMed]
  27. M. Kerker, The Scattering of Light (Academic, Orlando, Fla., 1987).
  28. K. Schaschek, “Untersuchung gestaltabhängiger Resonanzen in zeitaufgelösten Raman-Spektren optisch levitierter Mikro-Flüssigkeitströpfchen,” Ph.D. dissertation (University of Würzburg, Würzburg, Germany, 1992).
  29. P. Chýlek, “Resonance structure of Mie scattering: distance between resonances,” J. Opt. Soc. Am. A 7, 1609–1613 (1990).
    [CrossRef]
  30. K. Schaschek, J. Popp, W. Kiefer, “Morphology dependent resonances in Raman spectra of optically levitated microparticles: determination of radius and evaporation rate of single glycerol/water droplets by means of internal mode assignment,” Ber. Bunsenges. Phys. Chem. 97, 1007–1012 (1993).
    [CrossRef]
  31. J. F. Lübben, B. Schrader, “Chemical composition analysis and temperature determination of optically levitated single aerosol particles by means of a compact Raman spectrometer,” J. Mol. Struct. (to be published).

1995 (2)

J. Popp, M. Lankers, K. Schaschek, J. T. Hodges, W. Kiefer, “Observation of sudden temperature jumps in optically levitated microdroplets due to morphology-dependent input resonances,” Appl. Opt. 13, 2380–2386 (1995).
[CrossRef]

G. G. Hoffmann, J. F. Lübben, B. Schrader, “Composition analysis of optically levitated aerosol single particles,” J. Mol. Struct. 349, 145–148 (1995).
[CrossRef]

1994 (1)

1993 (2)

K. Schaschek, J. Popp, W. Kiefer, “Morphology dependent resonances in Raman spectra of optically levitated microparticles: determination of radius and evaporation rate of single glycerol/water droplets by means of internal mode assignment,” Ber. Bunsenges. Phys. Chem. 97, 1007–1012 (1993).
[CrossRef]

K. Schaschek, J. Popp, W. Kiefer, “Observation of morphology-dependent input and output resonances in time-dependent Raman spectra of optically levitated microdroplets,” J. Raman Spectrosc. 24, 69–75 (1993).
[CrossRef]

1992 (1)

1991 (2)

1990 (3)

1988 (3)

W. Kiefer, “Micro-Raman spectroscopy of particles in the micro-size range: a short review,” Croat. Chim. Acta 61, 473–486 (1988).

K. H. Fung, I. N. Tang, “Raman spectra of single suspended supersaturated ammonium bisulfate droplets,” Chem. Phys. Lett. 147, 509–513 (1988).
[CrossRef]

K. H. Fung, I. N. Tang, “Raman scattering from single solution droplets,” Appl. Opt. 27, 206–208 (1988).
[CrossRef] [PubMed]

1987 (1)

G. S. Grader, S. Arnold, R. C. Flagan, J. H. Seinfeld, “Fourier transform infrared spectroscopy of a single aerosol particle,” J. Chem. Phys. 86, 5897–5903 (1987).
[CrossRef]

1986 (1)

I. N. Tang, H. R. Munkelwitz, N. Wang, “Water activity measurements with single suspended droplets: the NaCl–H2O and KCl–H2O Systems,” J. Colloid Interface Sci. 114, 409–415 (1986).
[CrossRef]

1985 (1)

1984 (5)

1983 (1)

1982 (1)

1977 (1)

A. Ashkin, J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys.Rev. Lett. 38, 1351–1354 (1977).
[CrossRef]

1971 (1)

A. Ashkin, J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[CrossRef]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156 (1970).
[CrossRef]

Arnold, S.

Ashkin, A.

P. Chylek, V. Ramaswamy, A. Ashkin, J. M. Dziedzic, “Simultaneous determination of refractive index and size of spherical dielectric particles from light scattering data,” Appl. Opt. 22, 2302–2307 (1983).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys.Rev. Lett. 38, 1351–1354 (1977).
[CrossRef]

A. Ashkin, J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[CrossRef]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156 (1970).
[CrossRef]

Barber, P. W.

Benner, R. E.

Chan, C. K.

Chylek, P.

Chýlek, P.

Conwell, D. R.

Conwell, P. R.

Dziedzic, J. M.

P. Chylek, V. Ramaswamy, A. Ashkin, J. M. Dziedzic, “Simultaneous determination of refractive index and size of spherical dielectric particles from light scattering data,” Appl. Opt. 22, 2302–2307 (1983).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys.Rev. Lett. 38, 1351–1354 (1977).
[CrossRef]

A. Ashkin, J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[CrossRef]

Fassel, V. A.

K. E. Lawrence, G. W. Rice, V. A. Fassel, “Direct liquid sample introduction for flow injection analysis and liquid chromatography with inductively coupled argon plasma spectrometric detection,” Anal. Chem. 56, 289–292 (1984).
[CrossRef]

Flagan, R. C.

C. K. Chan, R. C. Flagan, J. H. Seinfeld, “Resonance structure in elastic and Raman scattering from microspheres,” Appl. Opt. 30, 459–467 (1991).
[CrossRef] [PubMed]

G. S. Grader, S. Arnold, R. C. Flagan, J. H. Seinfeld, “Fourier transform infrared spectroscopy of a single aerosol particle,” J. Chem. Phys. 86, 5897–5903 (1987).
[CrossRef]

Fung, K. H.

Gouesbet, G.

Grader, G. S.

G. S. Grader, S. Arnold, R. C. Flagan, J. H. Seinfeld, “Fourier transform infrared spectroscopy of a single aerosol particle,” J. Chem. Phys. 86, 5897–5903 (1987).
[CrossRef]

Grehan, G.

Guilloteau, F.

Hill, S. C.

Hodges, J. T.

J. Popp, M. Lankers, K. Schaschek, J. T. Hodges, W. Kiefer, “Observation of sudden temperature jumps in optically levitated microdroplets due to morphology-dependent input resonances,” Appl. Opt. 13, 2380–2386 (1995).
[CrossRef]

Hoffmann, G. G.

G. G. Hoffmann, J. F. Lübben, B. Schrader, “Composition analysis of optically levitated aerosol single particles,” J. Mol. Struct. 349, 145–148 (1995).
[CrossRef]

Kerker, M.

M. Kerker, The Scattering of Light (Academic, Orlando, Fla., 1987).

Kiefer, W.

J. Popp, M. Lankers, K. Schaschek, J. T. Hodges, W. Kiefer, “Observation of sudden temperature jumps in optically levitated microdroplets due to morphology-dependent input resonances,” Appl. Opt. 13, 2380–2386 (1995).
[CrossRef]

M. Trunk, M. Lankers, J. Popp, W. Kiefer, “Simple and inexpensive design of an uniform-size droplet generator,” Appl. Spectrosc. 48, 1291–1293 (1994).
[CrossRef]

K. Schaschek, J. Popp, W. Kiefer, “Observation of morphology-dependent input and output resonances in time-dependent Raman spectra of optically levitated microdroplets,” J. Raman Spectrosc. 24, 69–75 (1993).
[CrossRef]

K. Schaschek, J. Popp, W. Kiefer, “Morphology dependent resonances in Raman spectra of optically levitated microparticles: determination of radius and evaporation rate of single glycerol/water droplets by means of internal mode assignment,” Ber. Bunsenges. Phys. Chem. 97, 1007–1012 (1993).
[CrossRef]

W. Kiefer, “Micro-Raman spectroscopy of particles in the micro-size range: a short review,” Croat. Chim. Acta 61, 473–486 (1988).

R. Thurn, W. Kiefer, “Structural resonances observed in the Raman spectra of optically levitated liquid droplets,” Appl. Opt. 24, 1515–1519 (1985).
[CrossRef] [PubMed]

R. Thurn, W. Kiefer, “Raman-microsampling technique applying optical levitation by radiation pressure,” Appl. Spectrosc. 38, 78–83 (1984).
[CrossRef]

Lankers, M.

J. Popp, M. Lankers, K. Schaschek, J. T. Hodges, W. Kiefer, “Observation of sudden temperature jumps in optically levitated microdroplets due to morphology-dependent input resonances,” Appl. Opt. 13, 2380–2386 (1995).
[CrossRef]

M. Trunk, M. Lankers, J. Popp, W. Kiefer, “Simple and inexpensive design of an uniform-size droplet generator,” Appl. Spectrosc. 48, 1291–1293 (1994).
[CrossRef]

Lawrence, K. E.

K. E. Lawrence, G. W. Rice, V. A. Fassel, “Direct liquid sample introduction for flow injection analysis and liquid chromatography with inductively coupled argon plasma spectrometric detection,” Anal. Chem. 56, 289–292 (1984).
[CrossRef]

Lübben, J. F.

G. G. Hoffmann, J. F. Lübben, B. Schrader, “Composition analysis of optically levitated aerosol single particles,” J. Mol. Struct. 349, 145–148 (1995).
[CrossRef]

J. F. Lübben, B. Schrader, “Chemical composition analysis and temperature determination of optically levitated single aerosol particles by means of a compact Raman spectrometer,” J. Mol. Struct. (to be published).

Munkelwitz, H. R.

I. N. Tang, H. R. Munkelwitz, N. Wang, “Water activity measurements with single suspended droplets: the NaCl–H2O and KCl–H2O Systems,” J. Colloid Interface Sci. 114, 409–415 (1986).
[CrossRef]

Neumann, M.

Pluchino, A. B.

Popp, J.

J. Popp, M. Lankers, K. Schaschek, J. T. Hodges, W. Kiefer, “Observation of sudden temperature jumps in optically levitated microdroplets due to morphology-dependent input resonances,” Appl. Opt. 13, 2380–2386 (1995).
[CrossRef]

M. Trunk, M. Lankers, J. Popp, W. Kiefer, “Simple and inexpensive design of an uniform-size droplet generator,” Appl. Spectrosc. 48, 1291–1293 (1994).
[CrossRef]

K. Schaschek, J. Popp, W. Kiefer, “Observation of morphology-dependent input and output resonances in time-dependent Raman spectra of optically levitated microdroplets,” J. Raman Spectrosc. 24, 69–75 (1993).
[CrossRef]

K. Schaschek, J. Popp, W. Kiefer, “Morphology dependent resonances in Raman spectra of optically levitated microparticles: determination of radius and evaporation rate of single glycerol/water droplets by means of internal mode assignment,” Ber. Bunsenges. Phys. Chem. 97, 1007–1012 (1993).
[CrossRef]

J. Popp, “Elastische und inelastische Lichtstreuung an einzelnen sphärischen Mikropartikeln,” Ph.D. dissertation (University of Würzburg, Würzburg, Germany, 1994).

Ramaswamy, V.

Rice, G. W.

K. E. Lawrence, G. W. Rice, V. A. Fassel, “Direct liquid sample introduction for flow injection analysis and liquid chromatography with inductively coupled argon plasma spectrometric detection,” Anal. Chem. 56, 289–292 (1984).
[CrossRef]

Rushforth, C. K.

Schaschek, K.

J. Popp, M. Lankers, K. Schaschek, J. T. Hodges, W. Kiefer, “Observation of sudden temperature jumps in optically levitated microdroplets due to morphology-dependent input resonances,” Appl. Opt. 13, 2380–2386 (1995).
[CrossRef]

K. Schaschek, J. Popp, W. Kiefer, “Observation of morphology-dependent input and output resonances in time-dependent Raman spectra of optically levitated microdroplets,” J. Raman Spectrosc. 24, 69–75 (1993).
[CrossRef]

K. Schaschek, J. Popp, W. Kiefer, “Morphology dependent resonances in Raman spectra of optically levitated microparticles: determination of radius and evaporation rate of single glycerol/water droplets by means of internal mode assignment,” Ber. Bunsenges. Phys. Chem. 97, 1007–1012 (1993).
[CrossRef]

K. Schaschek, “Untersuchung gestaltabhängiger Resonanzen in zeitaufgelösten Raman-Spektren optisch levitierter Mikro-Flüssigkeitströpfchen,” Ph.D. dissertation (University of Würzburg, Würzburg, Germany, 1992).

Schrader, B.

G. G. Hoffmann, J. F. Lübben, B. Schrader, “Composition analysis of optically levitated aerosol single particles,” J. Mol. Struct. 349, 145–148 (1995).
[CrossRef]

J. F. Lübben, B. Schrader, “Chemical composition analysis and temperature determination of optically levitated single aerosol particles by means of a compact Raman spectrometer,” J. Mol. Struct. (to be published).

Schweiger, G.

G. Schweiger, “Observation of input and output structural resonances in the Raman spectrum of a single spheroidal dielectric microparticle,” Opt. Lett. 15, 156–158 (1990).
[CrossRef] [PubMed]

G. Schweiger, “Observation of morphology-dependent resonances caused by the input field in the Raman spectrum of microdroplets,” J. Raman Spectrosc. 21, 165–168 (1990).
[CrossRef]

Seinfeld, J. H.

C. K. Chan, R. C. Flagan, J. H. Seinfeld, “Resonance structure in elastic and Raman scattering from microspheres,” Appl. Opt. 30, 459–467 (1991).
[CrossRef] [PubMed]

G. S. Grader, S. Arnold, R. C. Flagan, J. H. Seinfeld, “Fourier transform infrared spectroscopy of a single aerosol particle,” J. Chem. Phys. 86, 5897–5903 (1987).
[CrossRef]

Tang, I. N.

K. H. Fung, I. N. Tang, “Relative Raman scattering cross-section measurements with suspended particles,” Appl. Spectrosc. 45, 734–737 (1991).
[CrossRef]

K. H. Fung, I. N. Tang, “Raman spectra of single suspended supersaturated ammonium bisulfate droplets,” Chem. Phys. Lett. 147, 509–513 (1988).
[CrossRef]

K. H. Fung, I. N. Tang, “Raman scattering from single solution droplets,” Appl. Opt. 27, 206–208 (1988).
[CrossRef] [PubMed]

I. N. Tang, H. R. Munkelwitz, N. Wang, “Water activity measurements with single suspended droplets: the NaCl–H2O and KCl–H2O Systems,” J. Colloid Interface Sci. 114, 409–415 (1986).
[CrossRef]

Thurn, R.

Trunk, M.

Wang, N.

I. N. Tang, H. R. Munkelwitz, N. Wang, “Water activity measurements with single suspended droplets: the NaCl–H2O and KCl–H2O Systems,” J. Colloid Interface Sci. 114, 409–415 (1986).
[CrossRef]

Anal. Chem. (1)

K. E. Lawrence, G. W. Rice, V. A. Fassel, “Direct liquid sample introduction for flow injection analysis and liquid chromatography with inductively coupled argon plasma spectrometric detection,” Anal. Chem. 56, 289–292 (1984).
[CrossRef]

Appl. Opt. (8)

J. Popp, M. Lankers, K. Schaschek, J. T. Hodges, W. Kiefer, “Observation of sudden temperature jumps in optically levitated microdroplets due to morphology-dependent input resonances,” Appl. Opt. 13, 2380–2386 (1995).
[CrossRef]

S. Arnold, A. B. Pluchino, “Infrared-spectrum of a single aerosol-particle by photothermal modulation of structure resonances,” Appl. Opt. 21, 4194–4196 (1982).
[CrossRef]

S. C. Hill, R. E. Benner, C. K. Rushforth, D. R. Conwell, “Structural resonances observed in the fluorescence emission from small spheres on substrates,” Appl. Opt. 23, 1680–1683 (1984).
[CrossRef] [PubMed]

R. Thurn, W. Kiefer, “Structural resonances observed in the Raman spectra of optically levitated liquid droplets,” Appl. Opt. 24, 1515–1519 (1985).
[CrossRef] [PubMed]

C. K. Chan, R. C. Flagan, J. H. Seinfeld, “Resonance structure in elastic and Raman scattering from microspheres,” Appl. Opt. 30, 459–467 (1991).
[CrossRef] [PubMed]

F. Guilloteau, G. Grehan, G. Gouesbet, “Optical levitation experiments to assess the validity of the generalized Lorenz–Mie theory,” Appl. Opt. 31, 2942–2951 (1992).
[CrossRef] [PubMed]

P. Chylek, V. Ramaswamy, A. Ashkin, J. M. Dziedzic, “Simultaneous determination of refractive index and size of spherical dielectric particles from light scattering data,” Appl. Opt. 22, 2302–2307 (1983).
[CrossRef] [PubMed]

K. H. Fung, I. N. Tang, “Raman scattering from single solution droplets,” Appl. Opt. 27, 206–208 (1988).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

A. Ashkin, J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[CrossRef]

Appl. Spectrosc. (3)

Ber. Bunsenges. Phys. Chem. (1)

K. Schaschek, J. Popp, W. Kiefer, “Morphology dependent resonances in Raman spectra of optically levitated microparticles: determination of radius and evaporation rate of single glycerol/water droplets by means of internal mode assignment,” Ber. Bunsenges. Phys. Chem. 97, 1007–1012 (1993).
[CrossRef]

Chem. Phys. Lett. (1)

K. H. Fung, I. N. Tang, “Raman spectra of single suspended supersaturated ammonium bisulfate droplets,” Chem. Phys. Lett. 147, 509–513 (1988).
[CrossRef]

Croat. Chim. Acta (1)

W. Kiefer, “Micro-Raman spectroscopy of particles in the micro-size range: a short review,” Croat. Chim. Acta 61, 473–486 (1988).

J. Chem. Phys. (1)

G. S. Grader, S. Arnold, R. C. Flagan, J. H. Seinfeld, “Fourier transform infrared spectroscopy of a single aerosol particle,” J. Chem. Phys. 86, 5897–5903 (1987).
[CrossRef]

J. Colloid Interface Sci. (1)

I. N. Tang, H. R. Munkelwitz, N. Wang, “Water activity measurements with single suspended droplets: the NaCl–H2O and KCl–H2O Systems,” J. Colloid Interface Sci. 114, 409–415 (1986).
[CrossRef]

J. Mol. Struct. (1)

G. G. Hoffmann, J. F. Lübben, B. Schrader, “Composition analysis of optically levitated aerosol single particles,” J. Mol. Struct. 349, 145–148 (1995).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Raman Spectrosc. (2)

G. Schweiger, “Observation of morphology-dependent resonances caused by the input field in the Raman spectrum of microdroplets,” J. Raman Spectrosc. 21, 165–168 (1990).
[CrossRef]

K. Schaschek, J. Popp, W. Kiefer, “Observation of morphology-dependent input and output resonances in time-dependent Raman spectra of optically levitated microdroplets,” J. Raman Spectrosc. 24, 69–75 (1993).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156 (1970).
[CrossRef]

Phys.Rev. Lett. (1)

A. Ashkin, J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys.Rev. Lett. 38, 1351–1354 (1977).
[CrossRef]

Other (4)

M. Kerker, The Scattering of Light (Academic, Orlando, Fla., 1987).

K. Schaschek, “Untersuchung gestaltabhängiger Resonanzen in zeitaufgelösten Raman-Spektren optisch levitierter Mikro-Flüssigkeitströpfchen,” Ph.D. dissertation (University of Würzburg, Würzburg, Germany, 1992).

J. Popp, “Elastische und inelastische Lichtstreuung an einzelnen sphärischen Mikropartikeln,” Ph.D. dissertation (University of Würzburg, Würzburg, Germany, 1994).

J. F. Lübben, B. Schrader, “Chemical composition analysis and temperature determination of optically levitated single aerosol particles by means of a compact Raman spectrometer,” J. Mol. Struct. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Elastically scattered light from a microdroplet [mixture at start of the experiment: 48% glycerol, 40% H2O, and 12% (NH4)2SO4] as a function of time. The sharp peaks are due to MDR’s.

Fig. 2
Fig. 2

(a) MDR’s in the elastically scattered light of a H2O/glycerol/(NH4)2SO4 droplet as a function of time. A turning back of the resonances can be detected within the first 30 min (see text). (b) Recorded laser power as a function of time of the same droplet. Resonances are marked by R x.

Fig. 3
Fig. 3

Time dependence of MDR’s in the Raman spectra of levitated microdroplets as revealed by a contour plot. A, Starting period (250–450 s) of the evaporation of a microdroplet [composition of the mixture at start (t = 0 s): 48% glycerol, 40% H2O, and 12% (NH4)2SO4]. B, Arrow at 1609 s indicates phase transition from the liquid to the solid state [composition of the mixture at start (t = 0 s): 37.5% glycerol, 31.25% H2O, and 31.25% (NH4)2SO4]. For more details, see text.

Fig. 4
Fig. 4

Raman spectra of the totally symmetric sulfate ion vibration: (a), (b), glycerol/H2O solution of (NH4)2SO4 (microdroplet); (c), (d), after the phase transition in the microdroplet; (e) bulk spectrum of solid (NH4)2SO4; (f) bulk spectrum of the glycerol/H2O solution of (NH4)2SO4.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

x=2πaλ,

Metrics