Abstract

An antimonide diode laser operating near 2.65 µm was used to measure absorption lines of NO gas in the first overtone band. A blended line pair of NO that is sufficiently free of interference from H2O to permit the selective detection of NO under reduced pressure conditions was identified. With wavelength-modulation spectroscopy, a rms noise level equivalent to an absorbance of 3.2 × 10-5 was achieved at a measurement integration time (for a single spectral data point) of 0.1 s. The corresponding detection sensitivity (signal-to-noise ratio of 2) for NO in air at reduced pressure was ∼15 ppm m (ppm is parts in 106). Antimonide diode lasers show substantial promise for gas-sensing applications because they can gain access to relatively strong absorption lines of several gases of environmental interest at operating wavelengths at which cryogenic cooling is not required.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. T. Cassidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1186–1190 (1982).
  2. D. E. Cooper, R. U. Martinelli, “Near-infrared diode lasers monitor molecular species,” Laser Focus World 28 (11) , 133–146 (1992).
  3. D. S. Bomse, “Diode lasers: finding trace gases in the lab and the plant,” Photonics Spectra 29 (6) , 88–94 (1995).
  4. M. Feher, P. A. Martin, “Tunable diode laser monitoring of atmospheric trace gas constituents,” Spectrochim. Acta. Part A 51, 1579–1599 (1995).
    [CrossRef]
  5. A. Fried, B. Henry, J. Fox, J. R. Drummond, R. Sams, “High precision tunable diode laser absorption spectroscopy: application for measuring long-lived atmospheric gases,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Böttner, M. Tacke, G. Restelli, eds. (Kluwer, Dordrecht, The Netherlands, 1992), pp. 3–12.
  6. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
    [CrossRef]
  7. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
    [CrossRef] [PubMed]
  8. D. S. Bomse, J. A. Silver, A. C. Stanton, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
    [CrossRef] [PubMed]
  9. P. Werle, F. Slemr, M. Gehrtz, C. Braüchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
    [CrossRef]
  10. W. Lenth, “Optical heterodyne spectroscopy with frequency- and amplitude-modulated semiconductor lasers,” Opt. Lett. 11, 575–577 (1983).
    [CrossRef]
  11. D. E. Cooper, T. F. Gallagher, “Double frequency modulation spectroscopy: high modulation frequency with low-bandwidth detectors,” Appl. Opt. 24, 1327–1334 (1985).
    [CrossRef] [PubMed]
  12. A. N. Baranov, A. N. Imenkov, M. P. Mikhailova, Yu. P. Yakovlev, “Semiconductor lasers and photodiodes for gas analysis in the spectral range 1.8–2.5 µm,” in Tunable Siode Laser Applications, A. I. Nadezhdinskii, A. M. Prokhorov, eds., Proc. SPIE1724, 78–82 (1992).
  13. S. J. Eglash, H. K. Choi, “InAsSb/AlAsSb double-heterostructure diode lasers emitting at 4 µm,” Appl. Phys. Lett. 64, 833–835 (1994).
    [CrossRef]
  14. S. R. Kurtz, R. M. Biefeld, L. R. Dawson, K. C. Baucom, A. J. Howard, “Midwave (4 µm) infrared lasers and light-emitting diodes with biaxially compressed InAsSb active regions,” Appl. Phys. Lett. 64, 812–814 (1994).
    [CrossRef]
  15. H. Lee, P. K. York, R. J. Menna, R. U. Martinelli, D. Z. Garbuzov, S. Y. Narayan, J. C. Connolly, “Room-temperature 2.78 µm AlGaAsSb/InGaAsSb quantum-well lasers,” Appl. Phys. Lett. 66, 1942–1944 (1995).
    [CrossRef]
  16. H. Chow, R. H. Miles, T. C. Hasenberg, A. R. Kost, Y.-H. Zhang, H. L. Dunlap, L. West, “Mid-wave infrared diode lasers based on GaInSb/InAs and InAs/AlSb superlattices,” Appl. Phys. Lett. 67, 3700–3702 (1995).
    [CrossRef]
  17. H. K. Choi, G. W. Turner, M. J. Manfra, M. K. Connors, “175 K continuous wave operation of InAsSb/InAlAsSb quantum-well diode lasers emitting at 3.5 µm,” Appl. Phys. Lett. 68, 2936–2938 (1996).
    [CrossRef]
  18. R. U. Martinelli, “Mid-infrared wavelengths enhance trace-gas sensing,” Laser Focus World 32 (3) , 77–81 (1996).
  19. M. A. H. Smith, C. P. Rinsland, B. Fridovich, K. N. Rao, “Intensities and collision broadening parameters from infrared spectra,” in Molecular Spectroscopy: Modern Research, K. N. Rao, ed. (Academic, New York, 1985), Vol III, pp. 111–248.
  20. L. S. Rothman, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, A. Goldman, S. Massie, P. Varanasi, K. Yoshino, “The hitran molecular spectroscopic database and HAWKS (hitran atmospheric workstation),” J. Quant. Spectrosc. Radiat. Transfer (1997).
  21. K. L. Haller, P. C. Hobbs, “Doble beam laser absorption spectroscopy: shot-noise limited performance at baseband with a novel electronic noise canceller,” in Optical Methods for Ultrasensitive Analysis: Techniques and Applications, B. L. Fearey, ed., Proc SPIE1435, 298–309 (1991).
  22. D. B. Oh, D. C. Hovde, “Wavelength-modulation detection of acetylene with a near-infrared external-cavity diode laser,” Appl. Opt. 34, 7002–7005 (1995).
    [CrossRef] [PubMed]
  23. D. M. Sonnenfroh, M. G. Allen, “Ultrasensitive, visible tunable diode laser detection of NO 2,” Appl. Opt. 35, 4053–4058 (1996).
    [CrossRef] [PubMed]

1997

L. S. Rothman, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, A. Goldman, S. Massie, P. Varanasi, K. Yoshino, “The hitran molecular spectroscopic database and HAWKS (hitran atmospheric workstation),” J. Quant. Spectrosc. Radiat. Transfer (1997).

1996

H. K. Choi, G. W. Turner, M. J. Manfra, M. K. Connors, “175 K continuous wave operation of InAsSb/InAlAsSb quantum-well diode lasers emitting at 3.5 µm,” Appl. Phys. Lett. 68, 2936–2938 (1996).
[CrossRef]

R. U. Martinelli, “Mid-infrared wavelengths enhance trace-gas sensing,” Laser Focus World 32 (3) , 77–81 (1996).

D. M. Sonnenfroh, M. G. Allen, “Ultrasensitive, visible tunable diode laser detection of NO 2,” Appl. Opt. 35, 4053–4058 (1996).
[CrossRef] [PubMed]

1995

D. B. Oh, D. C. Hovde, “Wavelength-modulation detection of acetylene with a near-infrared external-cavity diode laser,” Appl. Opt. 34, 7002–7005 (1995).
[CrossRef] [PubMed]

H. Lee, P. K. York, R. J. Menna, R. U. Martinelli, D. Z. Garbuzov, S. Y. Narayan, J. C. Connolly, “Room-temperature 2.78 µm AlGaAsSb/InGaAsSb quantum-well lasers,” Appl. Phys. Lett. 66, 1942–1944 (1995).
[CrossRef]

H. Chow, R. H. Miles, T. C. Hasenberg, A. R. Kost, Y.-H. Zhang, H. L. Dunlap, L. West, “Mid-wave infrared diode lasers based on GaInSb/InAs and InAs/AlSb superlattices,” Appl. Phys. Lett. 67, 3700–3702 (1995).
[CrossRef]

D. S. Bomse, “Diode lasers: finding trace gases in the lab and the plant,” Photonics Spectra 29 (6) , 88–94 (1995).

M. Feher, P. A. Martin, “Tunable diode laser monitoring of atmospheric trace gas constituents,” Spectrochim. Acta. Part A 51, 1579–1599 (1995).
[CrossRef]

1994

S. J. Eglash, H. K. Choi, “InAsSb/AlAsSb double-heterostructure diode lasers emitting at 4 µm,” Appl. Phys. Lett. 64, 833–835 (1994).
[CrossRef]

S. R. Kurtz, R. M. Biefeld, L. R. Dawson, K. C. Baucom, A. J. Howard, “Midwave (4 µm) infrared lasers and light-emitting diodes with biaxially compressed InAsSb active regions,” Appl. Phys. Lett. 64, 812–814 (1994).
[CrossRef]

1992

1989

P. Werle, F. Slemr, M. Gehrtz, C. Braüchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[CrossRef]

1985

1983

1982

D. T. Cassidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1186–1190 (1982).

1981

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Allen, M. G.

Baranov, A. N.

A. N. Baranov, A. N. Imenkov, M. P. Mikhailova, Yu. P. Yakovlev, “Semiconductor lasers and photodiodes for gas analysis in the spectral range 1.8–2.5 µm,” in Tunable Siode Laser Applications, A. I. Nadezhdinskii, A. M. Prokhorov, eds., Proc. SPIE1724, 78–82 (1992).

Baucom, K. C.

S. R. Kurtz, R. M. Biefeld, L. R. Dawson, K. C. Baucom, A. J. Howard, “Midwave (4 µm) infrared lasers and light-emitting diodes with biaxially compressed InAsSb active regions,” Appl. Phys. Lett. 64, 812–814 (1994).
[CrossRef]

Biefeld, R. M.

S. R. Kurtz, R. M. Biefeld, L. R. Dawson, K. C. Baucom, A. J. Howard, “Midwave (4 µm) infrared lasers and light-emitting diodes with biaxially compressed InAsSb active regions,” Appl. Phys. Lett. 64, 812–814 (1994).
[CrossRef]

Bomse, D. S.

Braüchle, C.

P. Werle, F. Slemr, M. Gehrtz, C. Braüchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[CrossRef]

Cassidy, D. T.

D. T. Cassidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1186–1190 (1982).

Choi, H. K.

H. K. Choi, G. W. Turner, M. J. Manfra, M. K. Connors, “175 K continuous wave operation of InAsSb/InAlAsSb quantum-well diode lasers emitting at 3.5 µm,” Appl. Phys. Lett. 68, 2936–2938 (1996).
[CrossRef]

S. J. Eglash, H. K. Choi, “InAsSb/AlAsSb double-heterostructure diode lasers emitting at 4 µm,” Appl. Phys. Lett. 64, 833–835 (1994).
[CrossRef]

Chow, H.

H. Chow, R. H. Miles, T. C. Hasenberg, A. R. Kost, Y.-H. Zhang, H. L. Dunlap, L. West, “Mid-wave infrared diode lasers based on GaInSb/InAs and InAs/AlSb superlattices,” Appl. Phys. Lett. 67, 3700–3702 (1995).
[CrossRef]

Connolly, J. C.

H. Lee, P. K. York, R. J. Menna, R. U. Martinelli, D. Z. Garbuzov, S. Y. Narayan, J. C. Connolly, “Room-temperature 2.78 µm AlGaAsSb/InGaAsSb quantum-well lasers,” Appl. Phys. Lett. 66, 1942–1944 (1995).
[CrossRef]

Connors, M. K.

H. K. Choi, G. W. Turner, M. J. Manfra, M. K. Connors, “175 K continuous wave operation of InAsSb/InAlAsSb quantum-well diode lasers emitting at 3.5 µm,” Appl. Phys. Lett. 68, 2936–2938 (1996).
[CrossRef]

Cooper, D. E.

D. E. Cooper, R. U. Martinelli, “Near-infrared diode lasers monitor molecular species,” Laser Focus World 28 (11) , 133–146 (1992).

D. E. Cooper, T. F. Gallagher, “Double frequency modulation spectroscopy: high modulation frequency with low-bandwidth detectors,” Appl. Opt. 24, 1327–1334 (1985).
[CrossRef] [PubMed]

Dana, V.

L. S. Rothman, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, A. Goldman, S. Massie, P. Varanasi, K. Yoshino, “The hitran molecular spectroscopic database and HAWKS (hitran atmospheric workstation),” J. Quant. Spectrosc. Radiat. Transfer (1997).

Dawson, L. R.

S. R. Kurtz, R. M. Biefeld, L. R. Dawson, K. C. Baucom, A. J. Howard, “Midwave (4 µm) infrared lasers and light-emitting diodes with biaxially compressed InAsSb active regions,” Appl. Phys. Lett. 64, 812–814 (1994).
[CrossRef]

Drummond, J. R.

A. Fried, B. Henry, J. Fox, J. R. Drummond, R. Sams, “High precision tunable diode laser absorption spectroscopy: application for measuring long-lived atmospheric gases,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Böttner, M. Tacke, G. Restelli, eds. (Kluwer, Dordrecht, The Netherlands, 1992), pp. 3–12.

Dunlap, H. L.

H. Chow, R. H. Miles, T. C. Hasenberg, A. R. Kost, Y.-H. Zhang, H. L. Dunlap, L. West, “Mid-wave infrared diode lasers based on GaInSb/InAs and InAs/AlSb superlattices,” Appl. Phys. Lett. 67, 3700–3702 (1995).
[CrossRef]

Eglash, S. J.

S. J. Eglash, H. K. Choi, “InAsSb/AlAsSb double-heterostructure diode lasers emitting at 4 µm,” Appl. Phys. Lett. 64, 833–835 (1994).
[CrossRef]

Feher, M.

M. Feher, P. A. Martin, “Tunable diode laser monitoring of atmospheric trace gas constituents,” Spectrochim. Acta. Part A 51, 1579–1599 (1995).
[CrossRef]

Flaud, J.-M.

L. S. Rothman, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, A. Goldman, S. Massie, P. Varanasi, K. Yoshino, “The hitran molecular spectroscopic database and HAWKS (hitran atmospheric workstation),” J. Quant. Spectrosc. Radiat. Transfer (1997).

Fox, J.

A. Fried, B. Henry, J. Fox, J. R. Drummond, R. Sams, “High precision tunable diode laser absorption spectroscopy: application for measuring long-lived atmospheric gases,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Böttner, M. Tacke, G. Restelli, eds. (Kluwer, Dordrecht, The Netherlands, 1992), pp. 3–12.

Fridovich, B.

M. A. H. Smith, C. P. Rinsland, B. Fridovich, K. N. Rao, “Intensities and collision broadening parameters from infrared spectra,” in Molecular Spectroscopy: Modern Research, K. N. Rao, ed. (Academic, New York, 1985), Vol III, pp. 111–248.

Fried, A.

A. Fried, B. Henry, J. Fox, J. R. Drummond, R. Sams, “High precision tunable diode laser absorption spectroscopy: application for measuring long-lived atmospheric gases,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Böttner, M. Tacke, G. Restelli, eds. (Kluwer, Dordrecht, The Netherlands, 1992), pp. 3–12.

Gallagher, T. F.

Gamache, R. R.

L. S. Rothman, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, A. Goldman, S. Massie, P. Varanasi, K. Yoshino, “The hitran molecular spectroscopic database and HAWKS (hitran atmospheric workstation),” J. Quant. Spectrosc. Radiat. Transfer (1997).

Garbuzov, D. Z.

H. Lee, P. K. York, R. J. Menna, R. U. Martinelli, D. Z. Garbuzov, S. Y. Narayan, J. C. Connolly, “Room-temperature 2.78 µm AlGaAsSb/InGaAsSb quantum-well lasers,” Appl. Phys. Lett. 66, 1942–1944 (1995).
[CrossRef]

Gehrtz, M.

P. Werle, F. Slemr, M. Gehrtz, C. Braüchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[CrossRef]

Goldman, A.

L. S. Rothman, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, A. Goldman, S. Massie, P. Varanasi, K. Yoshino, “The hitran molecular spectroscopic database and HAWKS (hitran atmospheric workstation),” J. Quant. Spectrosc. Radiat. Transfer (1997).

Haller, K. L.

K. L. Haller, P. C. Hobbs, “Doble beam laser absorption spectroscopy: shot-noise limited performance at baseband with a novel electronic noise canceller,” in Optical Methods for Ultrasensitive Analysis: Techniques and Applications, B. L. Fearey, ed., Proc SPIE1435, 298–309 (1991).

Hasenberg, T. C.

H. Chow, R. H. Miles, T. C. Hasenberg, A. R. Kost, Y.-H. Zhang, H. L. Dunlap, L. West, “Mid-wave infrared diode lasers based on GaInSb/InAs and InAs/AlSb superlattices,” Appl. Phys. Lett. 67, 3700–3702 (1995).
[CrossRef]

Henry, B.

A. Fried, B. Henry, J. Fox, J. R. Drummond, R. Sams, “High precision tunable diode laser absorption spectroscopy: application for measuring long-lived atmospheric gases,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Böttner, M. Tacke, G. Restelli, eds. (Kluwer, Dordrecht, The Netherlands, 1992), pp. 3–12.

Hobbs, P. C.

K. L. Haller, P. C. Hobbs, “Doble beam laser absorption spectroscopy: shot-noise limited performance at baseband with a novel electronic noise canceller,” in Optical Methods for Ultrasensitive Analysis: Techniques and Applications, B. L. Fearey, ed., Proc SPIE1435, 298–309 (1991).

Hovde, D. C.

Howard, A. J.

S. R. Kurtz, R. M. Biefeld, L. R. Dawson, K. C. Baucom, A. J. Howard, “Midwave (4 µm) infrared lasers and light-emitting diodes with biaxially compressed InAsSb active regions,” Appl. Phys. Lett. 64, 812–814 (1994).
[CrossRef]

Imenkov, A. N.

A. N. Baranov, A. N. Imenkov, M. P. Mikhailova, Yu. P. Yakovlev, “Semiconductor lasers and photodiodes for gas analysis in the spectral range 1.8–2.5 µm,” in Tunable Siode Laser Applications, A. I. Nadezhdinskii, A. M. Prokhorov, eds., Proc. SPIE1724, 78–82 (1992).

Kost, A. R.

H. Chow, R. H. Miles, T. C. Hasenberg, A. R. Kost, Y.-H. Zhang, H. L. Dunlap, L. West, “Mid-wave infrared diode lasers based on GaInSb/InAs and InAs/AlSb superlattices,” Appl. Phys. Lett. 67, 3700–3702 (1995).
[CrossRef]

Kurtz, S. R.

S. R. Kurtz, R. M. Biefeld, L. R. Dawson, K. C. Baucom, A. J. Howard, “Midwave (4 µm) infrared lasers and light-emitting diodes with biaxially compressed InAsSb active regions,” Appl. Phys. Lett. 64, 812–814 (1994).
[CrossRef]

Labrie, D.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Lee, H.

H. Lee, P. K. York, R. J. Menna, R. U. Martinelli, D. Z. Garbuzov, S. Y. Narayan, J. C. Connolly, “Room-temperature 2.78 µm AlGaAsSb/InGaAsSb quantum-well lasers,” Appl. Phys. Lett. 66, 1942–1944 (1995).
[CrossRef]

Lenth, W.

Mandin, J.-Y.

L. S. Rothman, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, A. Goldman, S. Massie, P. Varanasi, K. Yoshino, “The hitran molecular spectroscopic database and HAWKS (hitran atmospheric workstation),” J. Quant. Spectrosc. Radiat. Transfer (1997).

Manfra, M. J.

H. K. Choi, G. W. Turner, M. J. Manfra, M. K. Connors, “175 K continuous wave operation of InAsSb/InAlAsSb quantum-well diode lasers emitting at 3.5 µm,” Appl. Phys. Lett. 68, 2936–2938 (1996).
[CrossRef]

Martin, P. A.

M. Feher, P. A. Martin, “Tunable diode laser monitoring of atmospheric trace gas constituents,” Spectrochim. Acta. Part A 51, 1579–1599 (1995).
[CrossRef]

Martinelli, R. U.

R. U. Martinelli, “Mid-infrared wavelengths enhance trace-gas sensing,” Laser Focus World 32 (3) , 77–81 (1996).

H. Lee, P. K. York, R. J. Menna, R. U. Martinelli, D. Z. Garbuzov, S. Y. Narayan, J. C. Connolly, “Room-temperature 2.78 µm AlGaAsSb/InGaAsSb quantum-well lasers,” Appl. Phys. Lett. 66, 1942–1944 (1995).
[CrossRef]

D. E. Cooper, R. U. Martinelli, “Near-infrared diode lasers monitor molecular species,” Laser Focus World 28 (11) , 133–146 (1992).

Massie, S.

L. S. Rothman, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, A. Goldman, S. Massie, P. Varanasi, K. Yoshino, “The hitran molecular spectroscopic database and HAWKS (hitran atmospheric workstation),” J. Quant. Spectrosc. Radiat. Transfer (1997).

McCann, A.

L. S. Rothman, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, A. Goldman, S. Massie, P. Varanasi, K. Yoshino, “The hitran molecular spectroscopic database and HAWKS (hitran atmospheric workstation),” J. Quant. Spectrosc. Radiat. Transfer (1997).

Menna, R. J.

H. Lee, P. K. York, R. J. Menna, R. U. Martinelli, D. Z. Garbuzov, S. Y. Narayan, J. C. Connolly, “Room-temperature 2.78 µm AlGaAsSb/InGaAsSb quantum-well lasers,” Appl. Phys. Lett. 66, 1942–1944 (1995).
[CrossRef]

Mikhailova, M. P.

A. N. Baranov, A. N. Imenkov, M. P. Mikhailova, Yu. P. Yakovlev, “Semiconductor lasers and photodiodes for gas analysis in the spectral range 1.8–2.5 µm,” in Tunable Siode Laser Applications, A. I. Nadezhdinskii, A. M. Prokhorov, eds., Proc. SPIE1724, 78–82 (1992).

Miles, R. H.

H. Chow, R. H. Miles, T. C. Hasenberg, A. R. Kost, Y.-H. Zhang, H. L. Dunlap, L. West, “Mid-wave infrared diode lasers based on GaInSb/InAs and InAs/AlSb superlattices,” Appl. Phys. Lett. 67, 3700–3702 (1995).
[CrossRef]

Narayan, S. Y.

H. Lee, P. K. York, R. J. Menna, R. U. Martinelli, D. Z. Garbuzov, S. Y. Narayan, J. C. Connolly, “Room-temperature 2.78 µm AlGaAsSb/InGaAsSb quantum-well lasers,” Appl. Phys. Lett. 66, 1942–1944 (1995).
[CrossRef]

Oh, D. B.

Perrin, A.

L. S. Rothman, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, A. Goldman, S. Massie, P. Varanasi, K. Yoshino, “The hitran molecular spectroscopic database and HAWKS (hitran atmospheric workstation),” J. Quant. Spectrosc. Radiat. Transfer (1997).

Rao, K. N.

M. A. H. Smith, C. P. Rinsland, B. Fridovich, K. N. Rao, “Intensities and collision broadening parameters from infrared spectra,” in Molecular Spectroscopy: Modern Research, K. N. Rao, ed. (Academic, New York, 1985), Vol III, pp. 111–248.

Reid, J.

D. T. Cassidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1186–1190 (1982).

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Rinsland, C. P.

M. A. H. Smith, C. P. Rinsland, B. Fridovich, K. N. Rao, “Intensities and collision broadening parameters from infrared spectra,” in Molecular Spectroscopy: Modern Research, K. N. Rao, ed. (Academic, New York, 1985), Vol III, pp. 111–248.

Rothman, L. S.

L. S. Rothman, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, A. Goldman, S. Massie, P. Varanasi, K. Yoshino, “The hitran molecular spectroscopic database and HAWKS (hitran atmospheric workstation),” J. Quant. Spectrosc. Radiat. Transfer (1997).

Sams, R.

A. Fried, B. Henry, J. Fox, J. R. Drummond, R. Sams, “High precision tunable diode laser absorption spectroscopy: application for measuring long-lived atmospheric gases,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Böttner, M. Tacke, G. Restelli, eds. (Kluwer, Dordrecht, The Netherlands, 1992), pp. 3–12.

Schroeder, J.

L. S. Rothman, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, A. Goldman, S. Massie, P. Varanasi, K. Yoshino, “The hitran molecular spectroscopic database and HAWKS (hitran atmospheric workstation),” J. Quant. Spectrosc. Radiat. Transfer (1997).

Silver, J. A.

Slemr, F.

P. Werle, F. Slemr, M. Gehrtz, C. Braüchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[CrossRef]

Smith, M. A. H.

M. A. H. Smith, C. P. Rinsland, B. Fridovich, K. N. Rao, “Intensities and collision broadening parameters from infrared spectra,” in Molecular Spectroscopy: Modern Research, K. N. Rao, ed. (Academic, New York, 1985), Vol III, pp. 111–248.

Sonnenfroh, D. M.

Stanton, A. C.

Turner, G. W.

H. K. Choi, G. W. Turner, M. J. Manfra, M. K. Connors, “175 K continuous wave operation of InAsSb/InAlAsSb quantum-well diode lasers emitting at 3.5 µm,” Appl. Phys. Lett. 68, 2936–2938 (1996).
[CrossRef]

Varanasi, P.

L. S. Rothman, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, A. Goldman, S. Massie, P. Varanasi, K. Yoshino, “The hitran molecular spectroscopic database and HAWKS (hitran atmospheric workstation),” J. Quant. Spectrosc. Radiat. Transfer (1997).

Wattson, R. B.

L. S. Rothman, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, A. Goldman, S. Massie, P. Varanasi, K. Yoshino, “The hitran molecular spectroscopic database and HAWKS (hitran atmospheric workstation),” J. Quant. Spectrosc. Radiat. Transfer (1997).

Werle, P.

P. Werle, F. Slemr, M. Gehrtz, C. Braüchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[CrossRef]

West, L.

H. Chow, R. H. Miles, T. C. Hasenberg, A. R. Kost, Y.-H. Zhang, H. L. Dunlap, L. West, “Mid-wave infrared diode lasers based on GaInSb/InAs and InAs/AlSb superlattices,” Appl. Phys. Lett. 67, 3700–3702 (1995).
[CrossRef]

Yakovlev, Yu. P.

A. N. Baranov, A. N. Imenkov, M. P. Mikhailova, Yu. P. Yakovlev, “Semiconductor lasers and photodiodes for gas analysis in the spectral range 1.8–2.5 µm,” in Tunable Siode Laser Applications, A. I. Nadezhdinskii, A. M. Prokhorov, eds., Proc. SPIE1724, 78–82 (1992).

York, P. K.

H. Lee, P. K. York, R. J. Menna, R. U. Martinelli, D. Z. Garbuzov, S. Y. Narayan, J. C. Connolly, “Room-temperature 2.78 µm AlGaAsSb/InGaAsSb quantum-well lasers,” Appl. Phys. Lett. 66, 1942–1944 (1995).
[CrossRef]

Yoshino, K.

L. S. Rothman, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, A. Goldman, S. Massie, P. Varanasi, K. Yoshino, “The hitran molecular spectroscopic database and HAWKS (hitran atmospheric workstation),” J. Quant. Spectrosc. Radiat. Transfer (1997).

Zhang, Y.-H.

H. Chow, R. H. Miles, T. C. Hasenberg, A. R. Kost, Y.-H. Zhang, H. L. Dunlap, L. West, “Mid-wave infrared diode lasers based on GaInSb/InAs and InAs/AlSb superlattices,” Appl. Phys. Lett. 67, 3700–3702 (1995).
[CrossRef]

Appl. Opt.

Appl. Phys. B

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

P. Werle, F. Slemr, M. Gehrtz, C. Braüchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989).
[CrossRef]

Appl. Phys. Lett.

S. J. Eglash, H. K. Choi, “InAsSb/AlAsSb double-heterostructure diode lasers emitting at 4 µm,” Appl. Phys. Lett. 64, 833–835 (1994).
[CrossRef]

S. R. Kurtz, R. M. Biefeld, L. R. Dawson, K. C. Baucom, A. J. Howard, “Midwave (4 µm) infrared lasers and light-emitting diodes with biaxially compressed InAsSb active regions,” Appl. Phys. Lett. 64, 812–814 (1994).
[CrossRef]

H. Lee, P. K. York, R. J. Menna, R. U. Martinelli, D. Z. Garbuzov, S. Y. Narayan, J. C. Connolly, “Room-temperature 2.78 µm AlGaAsSb/InGaAsSb quantum-well lasers,” Appl. Phys. Lett. 66, 1942–1944 (1995).
[CrossRef]

H. Chow, R. H. Miles, T. C. Hasenberg, A. R. Kost, Y.-H. Zhang, H. L. Dunlap, L. West, “Mid-wave infrared diode lasers based on GaInSb/InAs and InAs/AlSb superlattices,” Appl. Phys. Lett. 67, 3700–3702 (1995).
[CrossRef]

H. K. Choi, G. W. Turner, M. J. Manfra, M. K. Connors, “175 K continuous wave operation of InAsSb/InAlAsSb quantum-well diode lasers emitting at 3.5 µm,” Appl. Phys. Lett. 68, 2936–2938 (1996).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

L. S. Rothman, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, A. Goldman, S. Massie, P. Varanasi, K. Yoshino, “The hitran molecular spectroscopic database and HAWKS (hitran atmospheric workstation),” J. Quant. Spectrosc. Radiat. Transfer (1997).

Laser Focus World

R. U. Martinelli, “Mid-infrared wavelengths enhance trace-gas sensing,” Laser Focus World 32 (3) , 77–81 (1996).

D. E. Cooper, R. U. Martinelli, “Near-infrared diode lasers monitor molecular species,” Laser Focus World 28 (11) , 133–146 (1992).

Opt. Lett.

Photonics Spectra

D. S. Bomse, “Diode lasers: finding trace gases in the lab and the plant,” Photonics Spectra 29 (6) , 88–94 (1995).

Spectrochim. Acta. Part A

M. Feher, P. A. Martin, “Tunable diode laser monitoring of atmospheric trace gas constituents,” Spectrochim. Acta. Part A 51, 1579–1599 (1995).
[CrossRef]

Other

A. Fried, B. Henry, J. Fox, J. R. Drummond, R. Sams, “High precision tunable diode laser absorption spectroscopy: application for measuring long-lived atmospheric gases,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Böttner, M. Tacke, G. Restelli, eds. (Kluwer, Dordrecht, The Netherlands, 1992), pp. 3–12.

M. A. H. Smith, C. P. Rinsland, B. Fridovich, K. N. Rao, “Intensities and collision broadening parameters from infrared spectra,” in Molecular Spectroscopy: Modern Research, K. N. Rao, ed. (Academic, New York, 1985), Vol III, pp. 111–248.

K. L. Haller, P. C. Hobbs, “Doble beam laser absorption spectroscopy: shot-noise limited performance at baseband with a novel electronic noise canceller,” in Optical Methods for Ultrasensitive Analysis: Techniques and Applications, B. L. Fearey, ed., Proc SPIE1435, 298–309 (1991).

A. N. Baranov, A. N. Imenkov, M. P. Mikhailova, Yu. P. Yakovlev, “Semiconductor lasers and photodiodes for gas analysis in the spectral range 1.8–2.5 µm,” in Tunable Siode Laser Applications, A. I. Nadezhdinskii, A. M. Prokhorov, eds., Proc. SPIE1724, 78–82 (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Absorption feature of NO at different cell pressures, measured near 2.65 µm with an antimonide diode laser. The pressure of pure NO in a 50-cm absorption path length ranges from 2.3 to 140 Torr.

Fig. 2
Fig. 2

NO absorption feature of Fig. 1 measured by WMS with 2f detection at 100 kHz. The sample pressure for this scan is 3.4 Torr. The rms noise in the baseline, recorded with an effective measurement time per data point of 0.1 s, is equivalent to an absorbance of 3.2 × 10-5.

Metrics