Abstract

A multiphoton ionization excitation of N2 following collisional energy exchange with optically excited H2O was demonstrated, and its potential for measuring H2O–N2 mixing at the molecular level was evaluated. In this process, N2 is sensitized by a collisional energy exchange with H2O molecules excited by a tunable KrF laser. The sensitized N2 molecules are further excited and ionized by two additional photons of the same laser pulse. Independent images of sensitized N2+ emission at 391.4 nm and by OH at 308 nm formed by the dissociation of excited H2O were obtained along a laser beam traversing slow dry-air and N2 jets entering room air. Although effects of O2 and N2 collisional quenching were noted, such images can potentially be used to measure H2O–N2 molecular mixing and the concentration of H2O independently. The detection of H2O nucleation by this technique suggests that imaging of H2O droplet evaporation or visualizing and monitoring H2O condensation may also be possible.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. K. Batchelor, “Small-scale variation of convected quantities like temperature in turbulent fluid, Part 1. General discussion and the case of small conductivity,” J. Fluid Mech. 5, 113–133 (1959).
    [CrossRef]
  2. G. L. Brown, A. Roshko, “On density effects and large structure in turbulent mixing layers,” J. Fluid Mech. 64, 775–816 (1974).
    [CrossRef]
  3. P. P. Wegener, A. A. Pouring, “Experiments on condensation of water vapor by homogeneous nucleation in nozzles,” Phys. Fluids 7, 352–361 (1964).
    [CrossRef]
  4. B. Shirinzadeh, M. E. Hillard, R. J. Exton, “Condensation effects on Rayleigh scattering measurements in a supersonic wind tunnel,” AIAA J. 29, 242–246 (1991).
    [CrossRef]
  5. M. G. Mungal, P. E. Dimotakis, “Mixing and combustion with low heat release in a turbulent shear layer,” J. Fluid Mech. 148, 349–382 (1984).
    [CrossRef]
  6. M. W. Smith, G. B. Northam, “Instantaneous planar visualization of reacting supersonic flows using silane seeding,” AIAA paper 91-1690 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991).
  7. M. M. Koochesfahani, P. E. Dimotakis, “Mixing and chemical reactions in a turbulent liquid mixing layer,” J. Fluid Mech. 170, 83–112 (1986).
    [CrossRef]
  8. M. Winter, J. C. Hermanson, G. M. Dobbs, “Imaging of molecular mixing in a gas-phase turbulent jet by collisional energy-transfer fluorescence” AIAA paper 92-0381 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1992).
  9. B. Yip, A. Lozano, R. K. Hanson, “Sensitized phosphorescence: a gas phase molecular mixing diagnostic,” Exp. Fluids 17, 16–23 (1994).
    [CrossRef]
  10. P. H. Paul, N. T. Clemens, “Subresolution measurements of unmixed fluid using electronic quenching of NO A2Σ+,” Opt. Lett. 18, 161–163 (1993).
    [CrossRef] [PubMed]
  11. N. T. Clemens, M. G. Mungal, “Two- and three-dimensional effects in the supersonic mixing layer,” AIAA J. 30, 973–981 (1992).
    [CrossRef]
  12. J. A. Guthrie, X. X. Wang, L. J. Radziemski, “Resonance-enhanced multiphoton ionization of N2 at 193 nm and 248 nm detected by N2+ fluorescence,” Chem. Phys. Lett. 170, 117–120 (1990).
    [CrossRef]
  13. C. Parigger, D. H. Plemmons, J. O. Hornkohl, J. W. L. Lewis, “Temperature measurements from first-negative N2+ spectra produced by laser-induced multiphoton ionization and optical breakdown of nitrogen,” Appl. Opt. 34, 3331–3335 (1995).
    [CrossRef] [PubMed]
  14. L. P. Goss, T. H. Chen, D. D. Trump, B. Sarka, A. S. Nejad, “Flow-tagging velocimetry using UV-photodissociation of water vapor,” AIAA paper 91-0355 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991).
  15. A. Lofthus, P. H. Krupenie, “The spectrum of molecular nitrogen,” J. Phys. Chem. Ref. Data 6, 113–307 (1977).
    [CrossRef]
  16. G. Meijer, J. J. ter Meulen, P. Andresen, A. Bath, “Sensitive quantum state selective detection of H2O and D2O by (2 + 1) resonance enhanced multiphoton ionization,” J. Chem. Phys. 85, 6914–6922 (1986).
    [CrossRef]
  17. R. N. Dixon, “The role of inter-state Renner-Teller coupling in the dissociation of triatomic molecules, a time-dependent approach,” Mol. Phys. 54, 333–350 (1985).
    [CrossRef]
  18. R. W. Pitz, T. S. Cheng, J. A. Wehrmeyer, C. F. Hess, “Two-photon predissociative fluorescence of H2O by a KrF laser for concentration and temperature measurement in flames,” Appl. Phys. B 56, 94–100 (1993).
    [CrossRef]
  19. H. Neij, M. Aldén, “Application of two-photon laser-induced fluorescence for visualization of water vapor in combustion environments,” Appl. Opt. 33, 6514–6523 (1994).
    [CrossRef] [PubMed]
  20. N. van Neen, P. Brewer, P. Das, R. Bersohn, “Detection of the a1Πg(v′ = 0, 1) ← X1Σg+(v″ = 0) transition in N2 by laser-induced fluorescence,” J. Chem. Phys. 77, 4326–4329 (1982).
    [CrossRef]
  21. W. J. Marinelli, W. J. Kessler, B. D. Green, W. A. M. Blumberg, “Quenching of N2 (a1Πg, v′ = 0) by N2, O2, CO, CO2, CH4, H2, and Ar,” J. Chem. Phys. 90, 2167–2173 (1989).
    [CrossRef]
  22. W. B. Lewis, W. R. Wadt, “Laser-induced fluorescence in N2 and N2+ by multiple-photon excitation at 266 nm,” Chem. Phys. Lett. 78, 266–269 (1981).
    [CrossRef]
  23. M. Aldén, W. Wendt, “Detection of nitrogen molecules through multi-photon laser excitation and N2+ fluorescence,” Opt. Commun. 69, 31–36 (1988).
    [CrossRef]
  24. S. T. Pratt, P. M. Dehmer, J. L. Dehmer, “Photoelectron studies of resonant multiphoton ionization of molecular nitrogen,” J. Chem. Phys. 81, 3444–3451 (1984).
    [CrossRef]
  25. I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and quenching rate coefficients for directly excited rotational levels of OH (A2Σ+, v′ = 0),” J. Chem. Phys. 76, 1824–1831 (1982).
    [CrossRef]
  26. J. M. Soler, N. Garcia, “Nonequilibrium internal and translational temperature of clusters in homogeneous nucleation,” Phys. Rev. A 27, 3300–3306 (1983).
    [CrossRef]
  27. K. Wark, Thermodynamics, 5th ed. (McGraw-Hill, New York, 1988), Chap. 13, p. 509.
  28. G. Laufer, Introduction to Optics and Lasers in Engineering, (Cambridge U. Press, Cambridge, 1996), Chap. 11, pp. 347, 357–358.
  29. W. G. Vincenti, C. H. Kruger, Introduction to Physical Gas Dynamics (Krieger, Malabar, Fla., 1986), Chap. 1, p. 19.
  30. B. E. Wyslouzil, G. Wilemski, M. G. Beals, M. B. Frish, “Effect of carrier gas pressure on condensation in a supersonic nozzle,” Phys. Fluids 6, 2845–2854 (1994).
    [CrossRef]
  31. Y. Viisanen, R. Strey, H. Reiss, “Homogeneous nucleation rates for water,” J. Chem. Phys. 99, 4680–4692 (1993).
    [CrossRef]

1995

1994

H. Neij, M. Aldén, “Application of two-photon laser-induced fluorescence for visualization of water vapor in combustion environments,” Appl. Opt. 33, 6514–6523 (1994).
[CrossRef] [PubMed]

B. Yip, A. Lozano, R. K. Hanson, “Sensitized phosphorescence: a gas phase molecular mixing diagnostic,” Exp. Fluids 17, 16–23 (1994).
[CrossRef]

B. E. Wyslouzil, G. Wilemski, M. G. Beals, M. B. Frish, “Effect of carrier gas pressure on condensation in a supersonic nozzle,” Phys. Fluids 6, 2845–2854 (1994).
[CrossRef]

1993

Y. Viisanen, R. Strey, H. Reiss, “Homogeneous nucleation rates for water,” J. Chem. Phys. 99, 4680–4692 (1993).
[CrossRef]

R. W. Pitz, T. S. Cheng, J. A. Wehrmeyer, C. F. Hess, “Two-photon predissociative fluorescence of H2O by a KrF laser for concentration and temperature measurement in flames,” Appl. Phys. B 56, 94–100 (1993).
[CrossRef]

P. H. Paul, N. T. Clemens, “Subresolution measurements of unmixed fluid using electronic quenching of NO A2Σ+,” Opt. Lett. 18, 161–163 (1993).
[CrossRef] [PubMed]

1992

N. T. Clemens, M. G. Mungal, “Two- and three-dimensional effects in the supersonic mixing layer,” AIAA J. 30, 973–981 (1992).
[CrossRef]

1991

B. Shirinzadeh, M. E. Hillard, R. J. Exton, “Condensation effects on Rayleigh scattering measurements in a supersonic wind tunnel,” AIAA J. 29, 242–246 (1991).
[CrossRef]

1990

J. A. Guthrie, X. X. Wang, L. J. Radziemski, “Resonance-enhanced multiphoton ionization of N2 at 193 nm and 248 nm detected by N2+ fluorescence,” Chem. Phys. Lett. 170, 117–120 (1990).
[CrossRef]

1989

W. J. Marinelli, W. J. Kessler, B. D. Green, W. A. M. Blumberg, “Quenching of N2 (a1Πg, v′ = 0) by N2, O2, CO, CO2, CH4, H2, and Ar,” J. Chem. Phys. 90, 2167–2173 (1989).
[CrossRef]

1988

M. Aldén, W. Wendt, “Detection of nitrogen molecules through multi-photon laser excitation and N2+ fluorescence,” Opt. Commun. 69, 31–36 (1988).
[CrossRef]

1986

G. Meijer, J. J. ter Meulen, P. Andresen, A. Bath, “Sensitive quantum state selective detection of H2O and D2O by (2 + 1) resonance enhanced multiphoton ionization,” J. Chem. Phys. 85, 6914–6922 (1986).
[CrossRef]

M. M. Koochesfahani, P. E. Dimotakis, “Mixing and chemical reactions in a turbulent liquid mixing layer,” J. Fluid Mech. 170, 83–112 (1986).
[CrossRef]

1985

R. N. Dixon, “The role of inter-state Renner-Teller coupling in the dissociation of triatomic molecules, a time-dependent approach,” Mol. Phys. 54, 333–350 (1985).
[CrossRef]

1984

M. G. Mungal, P. E. Dimotakis, “Mixing and combustion with low heat release in a turbulent shear layer,” J. Fluid Mech. 148, 349–382 (1984).
[CrossRef]

S. T. Pratt, P. M. Dehmer, J. L. Dehmer, “Photoelectron studies of resonant multiphoton ionization of molecular nitrogen,” J. Chem. Phys. 81, 3444–3451 (1984).
[CrossRef]

1983

J. M. Soler, N. Garcia, “Nonequilibrium internal and translational temperature of clusters in homogeneous nucleation,” Phys. Rev. A 27, 3300–3306 (1983).
[CrossRef]

1982

I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and quenching rate coefficients for directly excited rotational levels of OH (A2Σ+, v′ = 0),” J. Chem. Phys. 76, 1824–1831 (1982).
[CrossRef]

N. van Neen, P. Brewer, P. Das, R. Bersohn, “Detection of the a1Πg(v′ = 0, 1) ← X1Σg+(v″ = 0) transition in N2 by laser-induced fluorescence,” J. Chem. Phys. 77, 4326–4329 (1982).
[CrossRef]

1981

W. B. Lewis, W. R. Wadt, “Laser-induced fluorescence in N2 and N2+ by multiple-photon excitation at 266 nm,” Chem. Phys. Lett. 78, 266–269 (1981).
[CrossRef]

1977

A. Lofthus, P. H. Krupenie, “The spectrum of molecular nitrogen,” J. Phys. Chem. Ref. Data 6, 113–307 (1977).
[CrossRef]

1974

G. L. Brown, A. Roshko, “On density effects and large structure in turbulent mixing layers,” J. Fluid Mech. 64, 775–816 (1974).
[CrossRef]

1964

P. P. Wegener, A. A. Pouring, “Experiments on condensation of water vapor by homogeneous nucleation in nozzles,” Phys. Fluids 7, 352–361 (1964).
[CrossRef]

1959

G. K. Batchelor, “Small-scale variation of convected quantities like temperature in turbulent fluid, Part 1. General discussion and the case of small conductivity,” J. Fluid Mech. 5, 113–133 (1959).
[CrossRef]

Aldén, M.

H. Neij, M. Aldén, “Application of two-photon laser-induced fluorescence for visualization of water vapor in combustion environments,” Appl. Opt. 33, 6514–6523 (1994).
[CrossRef] [PubMed]

M. Aldén, W. Wendt, “Detection of nitrogen molecules through multi-photon laser excitation and N2+ fluorescence,” Opt. Commun. 69, 31–36 (1988).
[CrossRef]

Andresen, P.

G. Meijer, J. J. ter Meulen, P. Andresen, A. Bath, “Sensitive quantum state selective detection of H2O and D2O by (2 + 1) resonance enhanced multiphoton ionization,” J. Chem. Phys. 85, 6914–6922 (1986).
[CrossRef]

Batchelor, G. K.

G. K. Batchelor, “Small-scale variation of convected quantities like temperature in turbulent fluid, Part 1. General discussion and the case of small conductivity,” J. Fluid Mech. 5, 113–133 (1959).
[CrossRef]

Bath, A.

G. Meijer, J. J. ter Meulen, P. Andresen, A. Bath, “Sensitive quantum state selective detection of H2O and D2O by (2 + 1) resonance enhanced multiphoton ionization,” J. Chem. Phys. 85, 6914–6922 (1986).
[CrossRef]

Beals, M. G.

B. E. Wyslouzil, G. Wilemski, M. G. Beals, M. B. Frish, “Effect of carrier gas pressure on condensation in a supersonic nozzle,” Phys. Fluids 6, 2845–2854 (1994).
[CrossRef]

Bersohn, R.

N. van Neen, P. Brewer, P. Das, R. Bersohn, “Detection of the a1Πg(v′ = 0, 1) ← X1Σg+(v″ = 0) transition in N2 by laser-induced fluorescence,” J. Chem. Phys. 77, 4326–4329 (1982).
[CrossRef]

Blumberg, W. A. M.

W. J. Marinelli, W. J. Kessler, B. D. Green, W. A. M. Blumberg, “Quenching of N2 (a1Πg, v′ = 0) by N2, O2, CO, CO2, CH4, H2, and Ar,” J. Chem. Phys. 90, 2167–2173 (1989).
[CrossRef]

Brewer, P.

N. van Neen, P. Brewer, P. Das, R. Bersohn, “Detection of the a1Πg(v′ = 0, 1) ← X1Σg+(v″ = 0) transition in N2 by laser-induced fluorescence,” J. Chem. Phys. 77, 4326–4329 (1982).
[CrossRef]

Brown, G. L.

G. L. Brown, A. Roshko, “On density effects and large structure in turbulent mixing layers,” J. Fluid Mech. 64, 775–816 (1974).
[CrossRef]

Chen, T. H.

L. P. Goss, T. H. Chen, D. D. Trump, B. Sarka, A. S. Nejad, “Flow-tagging velocimetry using UV-photodissociation of water vapor,” AIAA paper 91-0355 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991).

Cheng, T. S.

R. W. Pitz, T. S. Cheng, J. A. Wehrmeyer, C. F. Hess, “Two-photon predissociative fluorescence of H2O by a KrF laser for concentration and temperature measurement in flames,” Appl. Phys. B 56, 94–100 (1993).
[CrossRef]

Clemens, N. T.

P. H. Paul, N. T. Clemens, “Subresolution measurements of unmixed fluid using electronic quenching of NO A2Σ+,” Opt. Lett. 18, 161–163 (1993).
[CrossRef] [PubMed]

N. T. Clemens, M. G. Mungal, “Two- and three-dimensional effects in the supersonic mixing layer,” AIAA J. 30, 973–981 (1992).
[CrossRef]

Das, P.

N. van Neen, P. Brewer, P. Das, R. Bersohn, “Detection of the a1Πg(v′ = 0, 1) ← X1Σg+(v″ = 0) transition in N2 by laser-induced fluorescence,” J. Chem. Phys. 77, 4326–4329 (1982).
[CrossRef]

Dehmer, J. L.

S. T. Pratt, P. M. Dehmer, J. L. Dehmer, “Photoelectron studies of resonant multiphoton ionization of molecular nitrogen,” J. Chem. Phys. 81, 3444–3451 (1984).
[CrossRef]

Dehmer, P. M.

S. T. Pratt, P. M. Dehmer, J. L. Dehmer, “Photoelectron studies of resonant multiphoton ionization of molecular nitrogen,” J. Chem. Phys. 81, 3444–3451 (1984).
[CrossRef]

Dimotakis, P. E.

M. M. Koochesfahani, P. E. Dimotakis, “Mixing and chemical reactions in a turbulent liquid mixing layer,” J. Fluid Mech. 170, 83–112 (1986).
[CrossRef]

M. G. Mungal, P. E. Dimotakis, “Mixing and combustion with low heat release in a turbulent shear layer,” J. Fluid Mech. 148, 349–382 (1984).
[CrossRef]

Dixon, R. N.

R. N. Dixon, “The role of inter-state Renner-Teller coupling in the dissociation of triatomic molecules, a time-dependent approach,” Mol. Phys. 54, 333–350 (1985).
[CrossRef]

Dobbs, G. M.

M. Winter, J. C. Hermanson, G. M. Dobbs, “Imaging of molecular mixing in a gas-phase turbulent jet by collisional energy-transfer fluorescence” AIAA paper 92-0381 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1992).

Exton, R. J.

B. Shirinzadeh, M. E. Hillard, R. J. Exton, “Condensation effects on Rayleigh scattering measurements in a supersonic wind tunnel,” AIAA J. 29, 242–246 (1991).
[CrossRef]

Frish, M. B.

B. E. Wyslouzil, G. Wilemski, M. G. Beals, M. B. Frish, “Effect of carrier gas pressure on condensation in a supersonic nozzle,” Phys. Fluids 6, 2845–2854 (1994).
[CrossRef]

Garcia, N.

J. M. Soler, N. Garcia, “Nonequilibrium internal and translational temperature of clusters in homogeneous nucleation,” Phys. Rev. A 27, 3300–3306 (1983).
[CrossRef]

Goss, L. P.

L. P. Goss, T. H. Chen, D. D. Trump, B. Sarka, A. S. Nejad, “Flow-tagging velocimetry using UV-photodissociation of water vapor,” AIAA paper 91-0355 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991).

Green, B. D.

W. J. Marinelli, W. J. Kessler, B. D. Green, W. A. M. Blumberg, “Quenching of N2 (a1Πg, v′ = 0) by N2, O2, CO, CO2, CH4, H2, and Ar,” J. Chem. Phys. 90, 2167–2173 (1989).
[CrossRef]

Guthrie, J. A.

J. A. Guthrie, X. X. Wang, L. J. Radziemski, “Resonance-enhanced multiphoton ionization of N2 at 193 nm and 248 nm detected by N2+ fluorescence,” Chem. Phys. Lett. 170, 117–120 (1990).
[CrossRef]

Hanson, R. K.

B. Yip, A. Lozano, R. K. Hanson, “Sensitized phosphorescence: a gas phase molecular mixing diagnostic,” Exp. Fluids 17, 16–23 (1994).
[CrossRef]

Hermanson, J. C.

M. Winter, J. C. Hermanson, G. M. Dobbs, “Imaging of molecular mixing in a gas-phase turbulent jet by collisional energy-transfer fluorescence” AIAA paper 92-0381 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1992).

Hess, C. F.

R. W. Pitz, T. S. Cheng, J. A. Wehrmeyer, C. F. Hess, “Two-photon predissociative fluorescence of H2O by a KrF laser for concentration and temperature measurement in flames,” Appl. Phys. B 56, 94–100 (1993).
[CrossRef]

Hillard, M. E.

B. Shirinzadeh, M. E. Hillard, R. J. Exton, “Condensation effects on Rayleigh scattering measurements in a supersonic wind tunnel,” AIAA J. 29, 242–246 (1991).
[CrossRef]

Hornkohl, J. O.

Kessler, W. J.

W. J. Marinelli, W. J. Kessler, B. D. Green, W. A. M. Blumberg, “Quenching of N2 (a1Πg, v′ = 0) by N2, O2, CO, CO2, CH4, H2, and Ar,” J. Chem. Phys. 90, 2167–2173 (1989).
[CrossRef]

Koochesfahani, M. M.

M. M. Koochesfahani, P. E. Dimotakis, “Mixing and chemical reactions in a turbulent liquid mixing layer,” J. Fluid Mech. 170, 83–112 (1986).
[CrossRef]

Kruger, C. H.

W. G. Vincenti, C. H. Kruger, Introduction to Physical Gas Dynamics (Krieger, Malabar, Fla., 1986), Chap. 1, p. 19.

Krupenie, P. H.

A. Lofthus, P. H. Krupenie, “The spectrum of molecular nitrogen,” J. Phys. Chem. Ref. Data 6, 113–307 (1977).
[CrossRef]

Laudenslager, J. B.

I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and quenching rate coefficients for directly excited rotational levels of OH (A2Σ+, v′ = 0),” J. Chem. Phys. 76, 1824–1831 (1982).
[CrossRef]

Laufer, G.

G. Laufer, Introduction to Optics and Lasers in Engineering, (Cambridge U. Press, Cambridge, 1996), Chap. 11, pp. 347, 357–358.

Lewis, J. W. L.

Lewis, W. B.

W. B. Lewis, W. R. Wadt, “Laser-induced fluorescence in N2 and N2+ by multiple-photon excitation at 266 nm,” Chem. Phys. Lett. 78, 266–269 (1981).
[CrossRef]

Lofthus, A.

A. Lofthus, P. H. Krupenie, “The spectrum of molecular nitrogen,” J. Phys. Chem. Ref. Data 6, 113–307 (1977).
[CrossRef]

Lozano, A.

B. Yip, A. Lozano, R. K. Hanson, “Sensitized phosphorescence: a gas phase molecular mixing diagnostic,” Exp. Fluids 17, 16–23 (1994).
[CrossRef]

Marinelli, W. J.

W. J. Marinelli, W. J. Kessler, B. D. Green, W. A. M. Blumberg, “Quenching of N2 (a1Πg, v′ = 0) by N2, O2, CO, CO2, CH4, H2, and Ar,” J. Chem. Phys. 90, 2167–2173 (1989).
[CrossRef]

McDermid, I. S.

I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and quenching rate coefficients for directly excited rotational levels of OH (A2Σ+, v′ = 0),” J. Chem. Phys. 76, 1824–1831 (1982).
[CrossRef]

Meijer, G.

G. Meijer, J. J. ter Meulen, P. Andresen, A. Bath, “Sensitive quantum state selective detection of H2O and D2O by (2 + 1) resonance enhanced multiphoton ionization,” J. Chem. Phys. 85, 6914–6922 (1986).
[CrossRef]

Mungal, M. G.

N. T. Clemens, M. G. Mungal, “Two- and three-dimensional effects in the supersonic mixing layer,” AIAA J. 30, 973–981 (1992).
[CrossRef]

M. G. Mungal, P. E. Dimotakis, “Mixing and combustion with low heat release in a turbulent shear layer,” J. Fluid Mech. 148, 349–382 (1984).
[CrossRef]

Neij, H.

Nejad, A. S.

L. P. Goss, T. H. Chen, D. D. Trump, B. Sarka, A. S. Nejad, “Flow-tagging velocimetry using UV-photodissociation of water vapor,” AIAA paper 91-0355 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991).

Northam, G. B.

M. W. Smith, G. B. Northam, “Instantaneous planar visualization of reacting supersonic flows using silane seeding,” AIAA paper 91-1690 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991).

Parigger, C.

Paul, P. H.

Pitz, R. W.

R. W. Pitz, T. S. Cheng, J. A. Wehrmeyer, C. F. Hess, “Two-photon predissociative fluorescence of H2O by a KrF laser for concentration and temperature measurement in flames,” Appl. Phys. B 56, 94–100 (1993).
[CrossRef]

Plemmons, D. H.

Pouring, A. A.

P. P. Wegener, A. A. Pouring, “Experiments on condensation of water vapor by homogeneous nucleation in nozzles,” Phys. Fluids 7, 352–361 (1964).
[CrossRef]

Pratt, S. T.

S. T. Pratt, P. M. Dehmer, J. L. Dehmer, “Photoelectron studies of resonant multiphoton ionization of molecular nitrogen,” J. Chem. Phys. 81, 3444–3451 (1984).
[CrossRef]

Radziemski, L. J.

J. A. Guthrie, X. X. Wang, L. J. Radziemski, “Resonance-enhanced multiphoton ionization of N2 at 193 nm and 248 nm detected by N2+ fluorescence,” Chem. Phys. Lett. 170, 117–120 (1990).
[CrossRef]

Reiss, H.

Y. Viisanen, R. Strey, H. Reiss, “Homogeneous nucleation rates for water,” J. Chem. Phys. 99, 4680–4692 (1993).
[CrossRef]

Roshko, A.

G. L. Brown, A. Roshko, “On density effects and large structure in turbulent mixing layers,” J. Fluid Mech. 64, 775–816 (1974).
[CrossRef]

Sarka, B.

L. P. Goss, T. H. Chen, D. D. Trump, B. Sarka, A. S. Nejad, “Flow-tagging velocimetry using UV-photodissociation of water vapor,” AIAA paper 91-0355 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991).

Shirinzadeh, B.

B. Shirinzadeh, M. E. Hillard, R. J. Exton, “Condensation effects on Rayleigh scattering measurements in a supersonic wind tunnel,” AIAA J. 29, 242–246 (1991).
[CrossRef]

Smith, M. W.

M. W. Smith, G. B. Northam, “Instantaneous planar visualization of reacting supersonic flows using silane seeding,” AIAA paper 91-1690 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991).

Soler, J. M.

J. M. Soler, N. Garcia, “Nonequilibrium internal and translational temperature of clusters in homogeneous nucleation,” Phys. Rev. A 27, 3300–3306 (1983).
[CrossRef]

Strey, R.

Y. Viisanen, R. Strey, H. Reiss, “Homogeneous nucleation rates for water,” J. Chem. Phys. 99, 4680–4692 (1993).
[CrossRef]

ter Meulen, J. J.

G. Meijer, J. J. ter Meulen, P. Andresen, A. Bath, “Sensitive quantum state selective detection of H2O and D2O by (2 + 1) resonance enhanced multiphoton ionization,” J. Chem. Phys. 85, 6914–6922 (1986).
[CrossRef]

Trump, D. D.

L. P. Goss, T. H. Chen, D. D. Trump, B. Sarka, A. S. Nejad, “Flow-tagging velocimetry using UV-photodissociation of water vapor,” AIAA paper 91-0355 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991).

van Neen, N.

N. van Neen, P. Brewer, P. Das, R. Bersohn, “Detection of the a1Πg(v′ = 0, 1) ← X1Σg+(v″ = 0) transition in N2 by laser-induced fluorescence,” J. Chem. Phys. 77, 4326–4329 (1982).
[CrossRef]

Viisanen, Y.

Y. Viisanen, R. Strey, H. Reiss, “Homogeneous nucleation rates for water,” J. Chem. Phys. 99, 4680–4692 (1993).
[CrossRef]

Vincenti, W. G.

W. G. Vincenti, C. H. Kruger, Introduction to Physical Gas Dynamics (Krieger, Malabar, Fla., 1986), Chap. 1, p. 19.

Wadt, W. R.

W. B. Lewis, W. R. Wadt, “Laser-induced fluorescence in N2 and N2+ by multiple-photon excitation at 266 nm,” Chem. Phys. Lett. 78, 266–269 (1981).
[CrossRef]

Wang, X. X.

J. A. Guthrie, X. X. Wang, L. J. Radziemski, “Resonance-enhanced multiphoton ionization of N2 at 193 nm and 248 nm detected by N2+ fluorescence,” Chem. Phys. Lett. 170, 117–120 (1990).
[CrossRef]

Wark, K.

K. Wark, Thermodynamics, 5th ed. (McGraw-Hill, New York, 1988), Chap. 13, p. 509.

Wegener, P. P.

P. P. Wegener, A. A. Pouring, “Experiments on condensation of water vapor by homogeneous nucleation in nozzles,” Phys. Fluids 7, 352–361 (1964).
[CrossRef]

Wehrmeyer, J. A.

R. W. Pitz, T. S. Cheng, J. A. Wehrmeyer, C. F. Hess, “Two-photon predissociative fluorescence of H2O by a KrF laser for concentration and temperature measurement in flames,” Appl. Phys. B 56, 94–100 (1993).
[CrossRef]

Wendt, W.

M. Aldén, W. Wendt, “Detection of nitrogen molecules through multi-photon laser excitation and N2+ fluorescence,” Opt. Commun. 69, 31–36 (1988).
[CrossRef]

Wilemski, G.

B. E. Wyslouzil, G. Wilemski, M. G. Beals, M. B. Frish, “Effect of carrier gas pressure on condensation in a supersonic nozzle,” Phys. Fluids 6, 2845–2854 (1994).
[CrossRef]

Winter, M.

M. Winter, J. C. Hermanson, G. M. Dobbs, “Imaging of molecular mixing in a gas-phase turbulent jet by collisional energy-transfer fluorescence” AIAA paper 92-0381 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1992).

Wyslouzil, B. E.

B. E. Wyslouzil, G. Wilemski, M. G. Beals, M. B. Frish, “Effect of carrier gas pressure on condensation in a supersonic nozzle,” Phys. Fluids 6, 2845–2854 (1994).
[CrossRef]

Yip, B.

B. Yip, A. Lozano, R. K. Hanson, “Sensitized phosphorescence: a gas phase molecular mixing diagnostic,” Exp. Fluids 17, 16–23 (1994).
[CrossRef]

AIAA J.

B. Shirinzadeh, M. E. Hillard, R. J. Exton, “Condensation effects on Rayleigh scattering measurements in a supersonic wind tunnel,” AIAA J. 29, 242–246 (1991).
[CrossRef]

N. T. Clemens, M. G. Mungal, “Two- and three-dimensional effects in the supersonic mixing layer,” AIAA J. 30, 973–981 (1992).
[CrossRef]

Appl. Opt.

Appl. Phys. B

R. W. Pitz, T. S. Cheng, J. A. Wehrmeyer, C. F. Hess, “Two-photon predissociative fluorescence of H2O by a KrF laser for concentration and temperature measurement in flames,” Appl. Phys. B 56, 94–100 (1993).
[CrossRef]

Chem. Phys. Lett.

J. A. Guthrie, X. X. Wang, L. J. Radziemski, “Resonance-enhanced multiphoton ionization of N2 at 193 nm and 248 nm detected by N2+ fluorescence,” Chem. Phys. Lett. 170, 117–120 (1990).
[CrossRef]

W. B. Lewis, W. R. Wadt, “Laser-induced fluorescence in N2 and N2+ by multiple-photon excitation at 266 nm,” Chem. Phys. Lett. 78, 266–269 (1981).
[CrossRef]

Exp. Fluids

B. Yip, A. Lozano, R. K. Hanson, “Sensitized phosphorescence: a gas phase molecular mixing diagnostic,” Exp. Fluids 17, 16–23 (1994).
[CrossRef]

J. Chem. Phys.

G. Meijer, J. J. ter Meulen, P. Andresen, A. Bath, “Sensitive quantum state selective detection of H2O and D2O by (2 + 1) resonance enhanced multiphoton ionization,” J. Chem. Phys. 85, 6914–6922 (1986).
[CrossRef]

N. van Neen, P. Brewer, P. Das, R. Bersohn, “Detection of the a1Πg(v′ = 0, 1) ← X1Σg+(v″ = 0) transition in N2 by laser-induced fluorescence,” J. Chem. Phys. 77, 4326–4329 (1982).
[CrossRef]

W. J. Marinelli, W. J. Kessler, B. D. Green, W. A. M. Blumberg, “Quenching of N2 (a1Πg, v′ = 0) by N2, O2, CO, CO2, CH4, H2, and Ar,” J. Chem. Phys. 90, 2167–2173 (1989).
[CrossRef]

S. T. Pratt, P. M. Dehmer, J. L. Dehmer, “Photoelectron studies of resonant multiphoton ionization of molecular nitrogen,” J. Chem. Phys. 81, 3444–3451 (1984).
[CrossRef]

I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and quenching rate coefficients for directly excited rotational levels of OH (A2Σ+, v′ = 0),” J. Chem. Phys. 76, 1824–1831 (1982).
[CrossRef]

Y. Viisanen, R. Strey, H. Reiss, “Homogeneous nucleation rates for water,” J. Chem. Phys. 99, 4680–4692 (1993).
[CrossRef]

J. Fluid Mech.

M. M. Koochesfahani, P. E. Dimotakis, “Mixing and chemical reactions in a turbulent liquid mixing layer,” J. Fluid Mech. 170, 83–112 (1986).
[CrossRef]

M. G. Mungal, P. E. Dimotakis, “Mixing and combustion with low heat release in a turbulent shear layer,” J. Fluid Mech. 148, 349–382 (1984).
[CrossRef]

G. K. Batchelor, “Small-scale variation of convected quantities like temperature in turbulent fluid, Part 1. General discussion and the case of small conductivity,” J. Fluid Mech. 5, 113–133 (1959).
[CrossRef]

G. L. Brown, A. Roshko, “On density effects and large structure in turbulent mixing layers,” J. Fluid Mech. 64, 775–816 (1974).
[CrossRef]

J. Phys. Chem. Ref. Data

A. Lofthus, P. H. Krupenie, “The spectrum of molecular nitrogen,” J. Phys. Chem. Ref. Data 6, 113–307 (1977).
[CrossRef]

Mol. Phys.

R. N. Dixon, “The role of inter-state Renner-Teller coupling in the dissociation of triatomic molecules, a time-dependent approach,” Mol. Phys. 54, 333–350 (1985).
[CrossRef]

Opt. Commun.

M. Aldén, W. Wendt, “Detection of nitrogen molecules through multi-photon laser excitation and N2+ fluorescence,” Opt. Commun. 69, 31–36 (1988).
[CrossRef]

Opt. Lett.

Phys. Fluids

P. P. Wegener, A. A. Pouring, “Experiments on condensation of water vapor by homogeneous nucleation in nozzles,” Phys. Fluids 7, 352–361 (1964).
[CrossRef]

B. E. Wyslouzil, G. Wilemski, M. G. Beals, M. B. Frish, “Effect of carrier gas pressure on condensation in a supersonic nozzle,” Phys. Fluids 6, 2845–2854 (1994).
[CrossRef]

Phys. Rev. A

J. M. Soler, N. Garcia, “Nonequilibrium internal and translational temperature of clusters in homogeneous nucleation,” Phys. Rev. A 27, 3300–3306 (1983).
[CrossRef]

Other

K. Wark, Thermodynamics, 5th ed. (McGraw-Hill, New York, 1988), Chap. 13, p. 509.

G. Laufer, Introduction to Optics and Lasers in Engineering, (Cambridge U. Press, Cambridge, 1996), Chap. 11, pp. 347, 357–358.

W. G. Vincenti, C. H. Kruger, Introduction to Physical Gas Dynamics (Krieger, Malabar, Fla., 1986), Chap. 1, p. 19.

M. W. Smith, G. B. Northam, “Instantaneous planar visualization of reacting supersonic flows using silane seeding,” AIAA paper 91-1690 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991).

M. Winter, J. C. Hermanson, G. M. Dobbs, “Imaging of molecular mixing in a gas-phase turbulent jet by collisional energy-transfer fluorescence” AIAA paper 92-0381 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1992).

L. P. Goss, T. H. Chen, D. D. Trump, B. Sarka, A. S. Nejad, “Flow-tagging velocimetry using UV-photodissociation of water vapor,” AIAA paper 91-0355 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Excitation spectrum of N2 ionization obtained in dry N2 (lower trace) and in room air (upper trace) by a 70-mJ KrF laser beam focused to 0.5 mm × 1 mm.

Fig. 2
Fig. 2

Energy-level diagram that shows the electronic levels of H2O, the levels of N2 and N2+, and the proposed H2O-sensitized ionization excitation path.

Fig. 3
Fig. 3

Variation of the OH emission at 308 nm with P H2O following excitation of H2O by two photons at 248 nm.

Fig. 4
Fig. 4

Variation of the net normalized H2O-sensitized N2+ emission with P H2O in a H2O–N2 mixture at constant pressures.

Fig. 5
Fig. 5

Variation of P H 2O max with cell pressure obtained in a H2O–N2 mixture.

Fig. 6
Fig. 6

Images of H2O-sensitized emission of the penetration of a dry-N2 jet into quiescent room air with 2% molar concentration of H2O: (a) raw image of the 391.4-nm emission at 0.5 tube diameter from the exit, (b) image of the 308-nm OH emission induced in atmospheric air, (c) normalized image of the H2O-sensitized emission, (d) like (c) but at two tube diameters downstream from the exit plane.

Fig. 7
Fig. 7

Single-pulse image of the background-corrected and-normalized H2O-sensitized emission by a dry-air jet penetrating atmospheric room air.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

nem=K exp-WkT,
RDA=kabsIL2w0ηDA,
ηDA=kDAn0w1w0mkDAn0w1w0m+kNRWw1
RDAkabskDAkNRWIL2n0w0m+1.
FwIL21-ξξm+1.
ξmax=m+1m+2.
FwRDAη1η2η3.
η1=kabsNILkabsNIL+kQ1w0+kQ2n0+kQ3nox+KNRN
FdIL3n0η1η3,

Metrics