Abstract

The use of laser-induced fluorescence (LIF) from acetone is becoming increasingly widespread as a diagnostic of mixing processes in both reacting and nonreacting flows. One of the major reasons for its increasing use is that the acetone LIF signal is believed to be nearly independent of pressure because of fast intersystem crossing from the first excited singlet state, from which the fluorescence signal originates, to the first excited triplet state, which does not fluoresce. To evaluate the use of acetone LIF at pressures higher than atmospheric, we have performed a study of acetone LIF in a flowing gas cell at pressures up to 8 atm. We used four different buffer gases: air, nitrogen, methane, and helium. Surprisingly, we find that the acetone fluorescence quantum efficiency increases slightly (∼30%–50%) as the buffer-gas pressure increases from 0.6 to 5 atm for all four buffer gases. When the buffer gas is air, we observe a decrease in the acetone fluorescence quantum efficiency as the buffer-gas pressure is increased from 5 to 8 atm; for the other three buffer gases the quantum efficiency is constant to within experimental error in this pressure regime. The observed pressure dependence of the acetone fluorescence signal is explained by use of a four-level model. The increase in the fluorescence quantum efficiency with pressure is probably the result of incomplete vibrational relaxation coupled with an increase in the intersystem crossing rate with increasing vibrational excitation in the first excited singlet manifold.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Lozano, “Laser-excited luminescent tracers for planar concentration measurements in gaseous jets,” Ph.D. dissertation (High Temperature Gasdynamics Laboratory, Department of Mechanical Engineering, Stanford University, Stanford, California, 1992), HTGL report T-284.
  2. A. Lozano, B. Yip, R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
    [CrossRef]
  3. A. Lozano, S. H. Smith, M. G. Mungal, R. K. Hanson, “Concentration measurements in a transverse jet by planar laser-induced fluorescence of acetone,” AIAA J. 32, 218–221 (1993).
    [CrossRef]
  4. N. P. Tait, D. A. Greenhalgh, “2D laser induced fluorescence imaging of parent fuel fraction in nonpremixed combustion,” in Proceedings of the Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1621–1628.
    [CrossRef]
  5. D. Wolff, H. Schluter, V. Beushausen, P. Andresen, “Quantitative determination of fuel air mixture distributions in an internal combustion engine using PLIF of acetone,” Ber. Bunsenges. Phys. Chem. 97, 1738–1741 (1993).
    [CrossRef]
  6. P. H. Paul, N. T. Clemens, “Planar laser-induced fluorescence imaging of lifted H2–air flames,” Paper AIAA-93-0800, presented at the Thirty-First Aerospace Sciences Meeting, Reno, Nevada, 11–14 January 1993.
  7. B. Yip, M. F. Miller, A. Lozano, R. K. Hanson, “A combined OH/acetone planar laser-induced fluorescence imaging technique for visualizing combusting flows,” Exp. Fluids 17, 330–336 (1994).
    [CrossRef]
  8. A. Bunyajitradulya, D. Papamoschou, “Acetone PLIF imaging of turbulent shear layer structure at high convective Mach number,” Paper AIAA-94-0617, presented at the Thirty-Second Aerospace Sciences Meeting, Reno, Nevada, 10–13 January 1994.
  9. W. M. VanLerberghe, J. C. Dutton, R. P. Lucht, L. S. Yuen, “Penetration and mixing studies of a sonic transverse jet injected into a Mach 1.6 crossflow,” Paper AIAA-94-2246, presented at the Twenty-Fifth AIAA Fluid Dynamics Conference, Colorado Springs, Colorado, 20–23 June 1994.
  10. N. T. Clemens, P. H. Paul, “Effects of heat release on the near field flow structure of hydrogen jet diffusion flames,” Combust. Flame 102, 271–284 (1995).
    [CrossRef]
  11. P. J. Rubas, M. A. Paul, S. M. Green, R. E. Coverdill, R. P. Lucht, J. E. Peters, M. L. Willi, A. W. Wells, “Experimental program on fuel/air mixing and combustion in a direct-injection natural gas engine,” Paper 3, presented at 1996 Meeting of the Central States Section of the Combustion Institute, St. Louis, Missouri, 5–7 May 1996.
  12. F. Grisch, M. C. Thurber, R. K. Hanson, “Acetone fluorescence for temperature measurement,” Paper 95F-192, presented at the 1995 Fall Meeting of the Western States Section of the Combustion Institute, Stanford, California, 30–31 October 1995.
  13. F. Ossler, M. Aldén, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone and acetone: implications to combustion diagnostics,” Appl. Phys. B. (1997).
    [CrossRef]
  14. G. M. Breuer, E. K. C. Lee, “Fluorescence decay times of cyclic ketones, acetone, and butanol in the gas phase,” J. Phys. Chem. 75, 989–990 (1971).
    [CrossRef]
  15. G. D. Greenblatt, S. Ruhman, Y. Haas, “Fluorescence decay kinetics of acetone vapour at low pressures,” Chem. Phys. Lett. 112, 200–206 (1984).
    [CrossRef]

1997 (1)

F. Ossler, M. Aldén, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone and acetone: implications to combustion diagnostics,” Appl. Phys. B. (1997).
[CrossRef]

1995 (1)

N. T. Clemens, P. H. Paul, “Effects of heat release on the near field flow structure of hydrogen jet diffusion flames,” Combust. Flame 102, 271–284 (1995).
[CrossRef]

1994 (1)

B. Yip, M. F. Miller, A. Lozano, R. K. Hanson, “A combined OH/acetone planar laser-induced fluorescence imaging technique for visualizing combusting flows,” Exp. Fluids 17, 330–336 (1994).
[CrossRef]

1993 (2)

A. Lozano, S. H. Smith, M. G. Mungal, R. K. Hanson, “Concentration measurements in a transverse jet by planar laser-induced fluorescence of acetone,” AIAA J. 32, 218–221 (1993).
[CrossRef]

D. Wolff, H. Schluter, V. Beushausen, P. Andresen, “Quantitative determination of fuel air mixture distributions in an internal combustion engine using PLIF of acetone,” Ber. Bunsenges. Phys. Chem. 97, 1738–1741 (1993).
[CrossRef]

1992 (1)

A. Lozano, B. Yip, R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
[CrossRef]

1984 (1)

G. D. Greenblatt, S. Ruhman, Y. Haas, “Fluorescence decay kinetics of acetone vapour at low pressures,” Chem. Phys. Lett. 112, 200–206 (1984).
[CrossRef]

1971 (1)

G. M. Breuer, E. K. C. Lee, “Fluorescence decay times of cyclic ketones, acetone, and butanol in the gas phase,” J. Phys. Chem. 75, 989–990 (1971).
[CrossRef]

Aldén, M.

F. Ossler, M. Aldén, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone and acetone: implications to combustion diagnostics,” Appl. Phys. B. (1997).
[CrossRef]

Andresen, P.

D. Wolff, H. Schluter, V. Beushausen, P. Andresen, “Quantitative determination of fuel air mixture distributions in an internal combustion engine using PLIF of acetone,” Ber. Bunsenges. Phys. Chem. 97, 1738–1741 (1993).
[CrossRef]

Beushausen, V.

D. Wolff, H. Schluter, V. Beushausen, P. Andresen, “Quantitative determination of fuel air mixture distributions in an internal combustion engine using PLIF of acetone,” Ber. Bunsenges. Phys. Chem. 97, 1738–1741 (1993).
[CrossRef]

Breuer, G. M.

G. M. Breuer, E. K. C. Lee, “Fluorescence decay times of cyclic ketones, acetone, and butanol in the gas phase,” J. Phys. Chem. 75, 989–990 (1971).
[CrossRef]

Bunyajitradulya, A.

A. Bunyajitradulya, D. Papamoschou, “Acetone PLIF imaging of turbulent shear layer structure at high convective Mach number,” Paper AIAA-94-0617, presented at the Thirty-Second Aerospace Sciences Meeting, Reno, Nevada, 10–13 January 1994.

Clemens, N. T.

N. T. Clemens, P. H. Paul, “Effects of heat release on the near field flow structure of hydrogen jet diffusion flames,” Combust. Flame 102, 271–284 (1995).
[CrossRef]

P. H. Paul, N. T. Clemens, “Planar laser-induced fluorescence imaging of lifted H2–air flames,” Paper AIAA-93-0800, presented at the Thirty-First Aerospace Sciences Meeting, Reno, Nevada, 11–14 January 1993.

Coverdill, R. E.

P. J. Rubas, M. A. Paul, S. M. Green, R. E. Coverdill, R. P. Lucht, J. E. Peters, M. L. Willi, A. W. Wells, “Experimental program on fuel/air mixing and combustion in a direct-injection natural gas engine,” Paper 3, presented at 1996 Meeting of the Central States Section of the Combustion Institute, St. Louis, Missouri, 5–7 May 1996.

Dutton, J. C.

W. M. VanLerberghe, J. C. Dutton, R. P. Lucht, L. S. Yuen, “Penetration and mixing studies of a sonic transverse jet injected into a Mach 1.6 crossflow,” Paper AIAA-94-2246, presented at the Twenty-Fifth AIAA Fluid Dynamics Conference, Colorado Springs, Colorado, 20–23 June 1994.

Green, S. M.

P. J. Rubas, M. A. Paul, S. M. Green, R. E. Coverdill, R. P. Lucht, J. E. Peters, M. L. Willi, A. W. Wells, “Experimental program on fuel/air mixing and combustion in a direct-injection natural gas engine,” Paper 3, presented at 1996 Meeting of the Central States Section of the Combustion Institute, St. Louis, Missouri, 5–7 May 1996.

Greenblatt, G. D.

G. D. Greenblatt, S. Ruhman, Y. Haas, “Fluorescence decay kinetics of acetone vapour at low pressures,” Chem. Phys. Lett. 112, 200–206 (1984).
[CrossRef]

Greenhalgh, D. A.

N. P. Tait, D. A. Greenhalgh, “2D laser induced fluorescence imaging of parent fuel fraction in nonpremixed combustion,” in Proceedings of the Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1621–1628.
[CrossRef]

Grisch, F.

F. Grisch, M. C. Thurber, R. K. Hanson, “Acetone fluorescence for temperature measurement,” Paper 95F-192, presented at the 1995 Fall Meeting of the Western States Section of the Combustion Institute, Stanford, California, 30–31 October 1995.

Haas, Y.

G. D. Greenblatt, S. Ruhman, Y. Haas, “Fluorescence decay kinetics of acetone vapour at low pressures,” Chem. Phys. Lett. 112, 200–206 (1984).
[CrossRef]

Hanson, R. K.

B. Yip, M. F. Miller, A. Lozano, R. K. Hanson, “A combined OH/acetone planar laser-induced fluorescence imaging technique for visualizing combusting flows,” Exp. Fluids 17, 330–336 (1994).
[CrossRef]

A. Lozano, S. H. Smith, M. G. Mungal, R. K. Hanson, “Concentration measurements in a transverse jet by planar laser-induced fluorescence of acetone,” AIAA J. 32, 218–221 (1993).
[CrossRef]

A. Lozano, B. Yip, R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
[CrossRef]

F. Grisch, M. C. Thurber, R. K. Hanson, “Acetone fluorescence for temperature measurement,” Paper 95F-192, presented at the 1995 Fall Meeting of the Western States Section of the Combustion Institute, Stanford, California, 30–31 October 1995.

Lee, E. K. C.

G. M. Breuer, E. K. C. Lee, “Fluorescence decay times of cyclic ketones, acetone, and butanol in the gas phase,” J. Phys. Chem. 75, 989–990 (1971).
[CrossRef]

Lozano, A.

B. Yip, M. F. Miller, A. Lozano, R. K. Hanson, “A combined OH/acetone planar laser-induced fluorescence imaging technique for visualizing combusting flows,” Exp. Fluids 17, 330–336 (1994).
[CrossRef]

A. Lozano, S. H. Smith, M. G. Mungal, R. K. Hanson, “Concentration measurements in a transverse jet by planar laser-induced fluorescence of acetone,” AIAA J. 32, 218–221 (1993).
[CrossRef]

A. Lozano, B. Yip, R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
[CrossRef]

A. Lozano, “Laser-excited luminescent tracers for planar concentration measurements in gaseous jets,” Ph.D. dissertation (High Temperature Gasdynamics Laboratory, Department of Mechanical Engineering, Stanford University, Stanford, California, 1992), HTGL report T-284.

Lucht, R. P.

W. M. VanLerberghe, J. C. Dutton, R. P. Lucht, L. S. Yuen, “Penetration and mixing studies of a sonic transverse jet injected into a Mach 1.6 crossflow,” Paper AIAA-94-2246, presented at the Twenty-Fifth AIAA Fluid Dynamics Conference, Colorado Springs, Colorado, 20–23 June 1994.

P. J. Rubas, M. A. Paul, S. M. Green, R. E. Coverdill, R. P. Lucht, J. E. Peters, M. L. Willi, A. W. Wells, “Experimental program on fuel/air mixing and combustion in a direct-injection natural gas engine,” Paper 3, presented at 1996 Meeting of the Central States Section of the Combustion Institute, St. Louis, Missouri, 5–7 May 1996.

Miller, M. F.

B. Yip, M. F. Miller, A. Lozano, R. K. Hanson, “A combined OH/acetone planar laser-induced fluorescence imaging technique for visualizing combusting flows,” Exp. Fluids 17, 330–336 (1994).
[CrossRef]

Mungal, M. G.

A. Lozano, S. H. Smith, M. G. Mungal, R. K. Hanson, “Concentration measurements in a transverse jet by planar laser-induced fluorescence of acetone,” AIAA J. 32, 218–221 (1993).
[CrossRef]

Ossler, F.

F. Ossler, M. Aldén, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone and acetone: implications to combustion diagnostics,” Appl. Phys. B. (1997).
[CrossRef]

Papamoschou, D.

A. Bunyajitradulya, D. Papamoschou, “Acetone PLIF imaging of turbulent shear layer structure at high convective Mach number,” Paper AIAA-94-0617, presented at the Thirty-Second Aerospace Sciences Meeting, Reno, Nevada, 10–13 January 1994.

Paul, M. A.

P. J. Rubas, M. A. Paul, S. M. Green, R. E. Coverdill, R. P. Lucht, J. E. Peters, M. L. Willi, A. W. Wells, “Experimental program on fuel/air mixing and combustion in a direct-injection natural gas engine,” Paper 3, presented at 1996 Meeting of the Central States Section of the Combustion Institute, St. Louis, Missouri, 5–7 May 1996.

Paul, P. H.

N. T. Clemens, P. H. Paul, “Effects of heat release on the near field flow structure of hydrogen jet diffusion flames,” Combust. Flame 102, 271–284 (1995).
[CrossRef]

P. H. Paul, N. T. Clemens, “Planar laser-induced fluorescence imaging of lifted H2–air flames,” Paper AIAA-93-0800, presented at the Thirty-First Aerospace Sciences Meeting, Reno, Nevada, 11–14 January 1993.

Peters, J. E.

P. J. Rubas, M. A. Paul, S. M. Green, R. E. Coverdill, R. P. Lucht, J. E. Peters, M. L. Willi, A. W. Wells, “Experimental program on fuel/air mixing and combustion in a direct-injection natural gas engine,” Paper 3, presented at 1996 Meeting of the Central States Section of the Combustion Institute, St. Louis, Missouri, 5–7 May 1996.

Rubas, P. J.

P. J. Rubas, M. A. Paul, S. M. Green, R. E. Coverdill, R. P. Lucht, J. E. Peters, M. L. Willi, A. W. Wells, “Experimental program on fuel/air mixing and combustion in a direct-injection natural gas engine,” Paper 3, presented at 1996 Meeting of the Central States Section of the Combustion Institute, St. Louis, Missouri, 5–7 May 1996.

Ruhman, S.

G. D. Greenblatt, S. Ruhman, Y. Haas, “Fluorescence decay kinetics of acetone vapour at low pressures,” Chem. Phys. Lett. 112, 200–206 (1984).
[CrossRef]

Schluter, H.

D. Wolff, H. Schluter, V. Beushausen, P. Andresen, “Quantitative determination of fuel air mixture distributions in an internal combustion engine using PLIF of acetone,” Ber. Bunsenges. Phys. Chem. 97, 1738–1741 (1993).
[CrossRef]

Smith, S. H.

A. Lozano, S. H. Smith, M. G. Mungal, R. K. Hanson, “Concentration measurements in a transverse jet by planar laser-induced fluorescence of acetone,” AIAA J. 32, 218–221 (1993).
[CrossRef]

Tait, N. P.

N. P. Tait, D. A. Greenhalgh, “2D laser induced fluorescence imaging of parent fuel fraction in nonpremixed combustion,” in Proceedings of the Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1621–1628.
[CrossRef]

Thurber, M. C.

F. Grisch, M. C. Thurber, R. K. Hanson, “Acetone fluorescence for temperature measurement,” Paper 95F-192, presented at the 1995 Fall Meeting of the Western States Section of the Combustion Institute, Stanford, California, 30–31 October 1995.

VanLerberghe, W. M.

W. M. VanLerberghe, J. C. Dutton, R. P. Lucht, L. S. Yuen, “Penetration and mixing studies of a sonic transverse jet injected into a Mach 1.6 crossflow,” Paper AIAA-94-2246, presented at the Twenty-Fifth AIAA Fluid Dynamics Conference, Colorado Springs, Colorado, 20–23 June 1994.

Wells, A. W.

P. J. Rubas, M. A. Paul, S. M. Green, R. E. Coverdill, R. P. Lucht, J. E. Peters, M. L. Willi, A. W. Wells, “Experimental program on fuel/air mixing and combustion in a direct-injection natural gas engine,” Paper 3, presented at 1996 Meeting of the Central States Section of the Combustion Institute, St. Louis, Missouri, 5–7 May 1996.

Willi, M. L.

P. J. Rubas, M. A. Paul, S. M. Green, R. E. Coverdill, R. P. Lucht, J. E. Peters, M. L. Willi, A. W. Wells, “Experimental program on fuel/air mixing and combustion in a direct-injection natural gas engine,” Paper 3, presented at 1996 Meeting of the Central States Section of the Combustion Institute, St. Louis, Missouri, 5–7 May 1996.

Wolff, D.

D. Wolff, H. Schluter, V. Beushausen, P. Andresen, “Quantitative determination of fuel air mixture distributions in an internal combustion engine using PLIF of acetone,” Ber. Bunsenges. Phys. Chem. 97, 1738–1741 (1993).
[CrossRef]

Yip, B.

B. Yip, M. F. Miller, A. Lozano, R. K. Hanson, “A combined OH/acetone planar laser-induced fluorescence imaging technique for visualizing combusting flows,” Exp. Fluids 17, 330–336 (1994).
[CrossRef]

A. Lozano, B. Yip, R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
[CrossRef]

Yuen, L. S.

W. M. VanLerberghe, J. C. Dutton, R. P. Lucht, L. S. Yuen, “Penetration and mixing studies of a sonic transverse jet injected into a Mach 1.6 crossflow,” Paper AIAA-94-2246, presented at the Twenty-Fifth AIAA Fluid Dynamics Conference, Colorado Springs, Colorado, 20–23 June 1994.

AIAA J. (1)

A. Lozano, S. H. Smith, M. G. Mungal, R. K. Hanson, “Concentration measurements in a transverse jet by planar laser-induced fluorescence of acetone,” AIAA J. 32, 218–221 (1993).
[CrossRef]

Appl. Phys. B. (1)

F. Ossler, M. Aldén, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone and acetone: implications to combustion diagnostics,” Appl. Phys. B. (1997).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (1)

D. Wolff, H. Schluter, V. Beushausen, P. Andresen, “Quantitative determination of fuel air mixture distributions in an internal combustion engine using PLIF of acetone,” Ber. Bunsenges. Phys. Chem. 97, 1738–1741 (1993).
[CrossRef]

Chem. Phys. Lett. (1)

G. D. Greenblatt, S. Ruhman, Y. Haas, “Fluorescence decay kinetics of acetone vapour at low pressures,” Chem. Phys. Lett. 112, 200–206 (1984).
[CrossRef]

Combust. Flame (1)

N. T. Clemens, P. H. Paul, “Effects of heat release on the near field flow structure of hydrogen jet diffusion flames,” Combust. Flame 102, 271–284 (1995).
[CrossRef]

Exp. Fluids (2)

B. Yip, M. F. Miller, A. Lozano, R. K. Hanson, “A combined OH/acetone planar laser-induced fluorescence imaging technique for visualizing combusting flows,” Exp. Fluids 17, 330–336 (1994).
[CrossRef]

A. Lozano, B. Yip, R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
[CrossRef]

J. Phys. Chem. (1)

G. M. Breuer, E. K. C. Lee, “Fluorescence decay times of cyclic ketones, acetone, and butanol in the gas phase,” J. Phys. Chem. 75, 989–990 (1971).
[CrossRef]

Other (7)

P. J. Rubas, M. A. Paul, S. M. Green, R. E. Coverdill, R. P. Lucht, J. E. Peters, M. L. Willi, A. W. Wells, “Experimental program on fuel/air mixing and combustion in a direct-injection natural gas engine,” Paper 3, presented at 1996 Meeting of the Central States Section of the Combustion Institute, St. Louis, Missouri, 5–7 May 1996.

F. Grisch, M. C. Thurber, R. K. Hanson, “Acetone fluorescence for temperature measurement,” Paper 95F-192, presented at the 1995 Fall Meeting of the Western States Section of the Combustion Institute, Stanford, California, 30–31 October 1995.

A. Lozano, “Laser-excited luminescent tracers for planar concentration measurements in gaseous jets,” Ph.D. dissertation (High Temperature Gasdynamics Laboratory, Department of Mechanical Engineering, Stanford University, Stanford, California, 1992), HTGL report T-284.

N. P. Tait, D. A. Greenhalgh, “2D laser induced fluorescence imaging of parent fuel fraction in nonpremixed combustion,” in Proceedings of the Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1621–1628.
[CrossRef]

A. Bunyajitradulya, D. Papamoschou, “Acetone PLIF imaging of turbulent shear layer structure at high convective Mach number,” Paper AIAA-94-0617, presented at the Thirty-Second Aerospace Sciences Meeting, Reno, Nevada, 10–13 January 1994.

W. M. VanLerberghe, J. C. Dutton, R. P. Lucht, L. S. Yuen, “Penetration and mixing studies of a sonic transverse jet injected into a Mach 1.6 crossflow,” Paper AIAA-94-2246, presented at the Twenty-Fifth AIAA Fluid Dynamics Conference, Colorado Springs, Colorado, 20–23 June 1994.

P. H. Paul, N. T. Clemens, “Planar laser-induced fluorescence imaging of lifted H2–air flames,” Paper AIAA-93-0800, presented at the Thirty-First Aerospace Sciences Meeting, Reno, Nevada, 11–14 January 1993.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the gas flow control and acetone-seeding systems and the gas cell.

Fig. 2
Fig. 2

Schematic illustration of the excitation and collection of the acetone LIF signal from the gas cell.

Fig. 3
Fig. 3

Normalized acetone LIF signal as a function of acetone number density at various gas cell pressures. The buffer gas is air.

Fig. 4
Fig. 4

Normalized acetone LIF signal as a function of acetone number density at various gas cell pressures. The buffer gas is nitrogen.

Fig. 5
Fig. 5

Dependence of the acetone LIF signal on the buffer-gas flow rate in line 1. The buffer-gas flow rate in line 1 was varied from 0.1 to 0.4 SLM in steps of 0.05 SLM. The acetone number densities were calculated assuming that the line 1 buffer gas was saturated with acetone at the seeder exit.

Fig. 6
Fig. 6

Acetone laser-induced fluorescence quantum efficiency versus buffer-gas pressure for four different buffer gases.

Fig. 7
Fig. 7

Four-level model for acetone LIF.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Nace=n˙aceV˙Nav,
V˙=n˙1+n˙2+n˙aceRuTcellPcell,
PacePseed=n˙acen˙ace+n˙1,
n˙ace=PacePseed-Pacen˙1.
Nace=PcellNavRuTcellPacePseed-Pace1+n˙2n˙1+PacePseed-Pace-1.
log10Paceatm=4.244453-1214.208230.002+Tseed°C,
SFN2+N3A21=N10W13A21Q32+k34+T311+Q32T21+k24,
SFN10W13A21k34.
SFN10W13A21k24,

Metrics