Abstract

Laser-induced fluorescence in the CH (BX) and CH (AX) electronic transitions is used to measure absolute number density versus position for CH radicals in the plume of a 25-Torr hydrogen/argon/methane (0.8:1:0.005) dc arcjet during the chemical vapor deposition of diamond film. The laser-induced-fluorescence signal is calibrated with argon Rayleigh scattering, and the resultant concentration of the CH radical in the center of the arcjet plume is found to be (3.5 ± 0.8) × 1012 molecules/cm3. The characterization of the plasma plume shows three different regions in the reacting gas: nozzle, plume, and boundary layer. We observe substantial differences in spatial distribution of gas temperature, collisional quenching, and CH number density among these regions.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Smith, J. B. Jeffries, “Gas phase chromatography in a diamond depositing dc-arcjet,” in Diamond Material, A. J. Purdes, J. C. Angus, R. F. Davies, B. M. Meyerson, K. E. Spear, M. Yoder, eds. (Electrochemical Society, Pennington, N.J., 1991), pp. 194–201.
  2. D. G. Goodwin, “Simulations of high rate diamond synthesis: methyl as the growth species,” Appl. Phys. Lett. 59, 277–279 (1991).
    [CrossRef]
  3. M. E. Coltrin, D. S. Dandy, “Analysis of diamond growth in subatmospheric dc plasma-gun reactors,” J. Appl. Phys. 74, 5803–5820 (1993).
    [CrossRef]
  4. M. Frencklach, H. Wang, “Detailed surface and gas-phase chemical kinetics of diamond deposition,” Phys. Rev. B 43, 1520–1545 (1991).
    [CrossRef]
  5. F. Hummernbrum, H. Kempkens, A. Ruzicka, H.-D. Sauren, C. Schiffer, J. Uhlenbusch, J. Winter, “Laser-induced fluorescence measurements on the C–X transition of the CH radical produced by a microwave excited process plasma,” Plasma Sources Sci. Technol. 1, 221–231 (1992).
    [CrossRef]
  6. W. Jacob, M. Engelhard, W. Moller, A. Koch, “Absolute density determination of CH radicals in a methane plasma,” Appl. Phys. Lett. 64, 971–973 (1994).
    [CrossRef]
  7. M. Engelhard, W. Jacob, W. Möler, A. Koch, “New calibration method for the determination of the absolute density of CH radicals through laser-induced fluorescence,” Appl. Opt. 34, 4542–4551 (1995).
    [CrossRef] [PubMed]
  8. D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, C. H. Kruger, “Boundary layer profiles in plasma chemical vapor deposition,” Science 259, 1726–1729 (1993).
    [CrossRef] [PubMed]
  9. C. Kaminski, P. Ewart, “Absolute concentration measurements of C2 in a diamond CVD reactor by laser-induced fluorescence,” Appl. Phys. B 61, 585–592 (1995).
    [CrossRef]
  10. P. Zalicki, Y. Ma, R. N. Zare, J. R. Dadani, E. H. Wahl, T. G. Owano, C. H. Kruger, “Methyl readical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
    [CrossRef]
  11. K. L. Menningen, M. A. Childs, H. Toyoda, Y. Ueda, L. W. Anderson, J. E. Lawler, “CH3 and CH densities in a diamond growth dc discharge,” Contrib. Plasma Phys. 35, 359–373 (1995).
    [CrossRef]
  12. M. A. Childs, K. L. Menningen, H. Toyoda, L. W. Anderson, J. E. Lawler, “Measurements of CH3 and CH densities in a diamond growth dc discharge,” Europhys. Lett. 25, 729–734 (1994).
    [CrossRef]
  13. J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Laser-induced fluorescence diagnostic for temperature and velocity measurements in a hydrogen arcjet plume,” Appl. Opt. 32, 6117–6127 (1993).
    [CrossRef] [PubMed]
  14. J. A. Pobst, I. J. Wysong, “Laser induced fluorescence of ground state hydrogen atoms at nozzle exit of an arcjet thruster,” in Proceedings of the Twenty-Sixth AIAA Plasmadynaics and Lasers Conference (American Institute of Aeronautics and Astronautics, New York, 1995), AIAA 95-1973, pp. 1–9.
  15. M. Crofton, R. P. Welle, S. W. Janson, R. B. Cohern, “Temperature, velocity and density studies in 1 kW ammonia arcjet plume by LIF,” in Proceedings of the Twenty-Eighth AIAA Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, New York, 1992), AIAA 92-3241.
  16. J. T. Salmon, N. M. Laurendeau, “Calibration of laser-saturated fluorescence measurements using Rayleigh scattering,” Appl. Opt. 24, 65–73 (1985).
    [CrossRef] [PubMed]
  17. J. Luque, D. R. Crosley, “Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
    [CrossRef]
  18. W. P. Partridge, N. M. Laurendeau, “Formulation of a dimensionless overlap fraction to account for spectrally distributed interactions in fluorescence studies,” Appl. Opt. 34, 2645–2647 (1995).
    [CrossRef] [PubMed]
  19. J. Brzozowski, P. Bunker, N. Elander, P. Erman, “Predissociation effects in the A, B and C states of CH and the interstellar formation rate of CH via inverse predissociation,” Astrophys. J. 207, 414–424 (1976).
    [CrossRef]
  20. W. Ubachs, G. Meyer, J. J. ter Meulen, A. Dymanus, “Hyperfine structure and lifetime of the C v′ = 0 state of CH,” J. Chem. Phys. 84, 3032–3041 (1986).
    [CrossRef]
  21. J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. I. A–X system,” J. Chem. Phys. 104, 2146–2155 (1996).
    [CrossRef]
  22. J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. II. B–X system,” J. Chem. Phys. 104, 3907–3913 (1996).
    [CrossRef]
  23. G. A. Raiche, J. B. Jeffries, “Observation and spatial distribution of C3 in a dc-arcjet plama during diamond deposition using laser-induced fluorescence,” Appl. Phys. B (1997), in press.
  24. D. R. Crosley, Molecular Physics Laboratory, SRI International, Menlo Park, Calif. 94025 (personal communication, 1996).
  25. E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc-arcjet reactor used for diamond deposition,” Appl. Phys. B (1997), in press.
    [CrossRef]
  26. P. H. Paul, “Vibrational energy transfer and quenching of OH A2Σ+ (v′ = 1) measured at high temperatures in a shock tube,” J. Phys. Chem. 99, 8472–8476 (1995).
    [CrossRef]
  27. N. Garland, D. R. Crosley, “Energy transfer processes in CH A and B in an atmospheric pressure flame,” Appl. Opt. 24, 4229–4237 (1985).
    [CrossRef]
  28. K. J. Rensberger, M. J. Dyer, R. A. Copeland, “Time resolved CH A and B laser-induced fluorescence in low pressure hydrocarbon flames,” Appl. Opt. 27, 3679–3689 (1988).
    [CrossRef] [PubMed]
  29. N. L. Garland, D. R. Crosley, “Collisional quenching of CH A, v′ = 0 at 1300 K,” Chem. Phys. Lett. 134, 189–194 (1987).
    [CrossRef]
  30. P. Heinrich, F. Stuhl, “Temperature dependent quenching of CH A, NH A, NH c, and PH A by H2,” Chem. Phys. 199, 297–304 (1995).
    [CrossRef]
  31. W. Bauer, B. Engelhardt, P. Wiesen, K. H. Becker, “Lifetime measurements of GeH and CH in the Av′ = 0 state by laser-induced fluorescence,” Chem. Phys. Lett. 158, 321–324 (1989).
    [CrossRef]

1996

J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. I. A–X system,” J. Chem. Phys. 104, 2146–2155 (1996).
[CrossRef]

J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. II. B–X system,” J. Chem. Phys. 104, 3907–3913 (1996).
[CrossRef]

J. Luque, D. R. Crosley, “Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
[CrossRef]

1995

W. P. Partridge, N. M. Laurendeau, “Formulation of a dimensionless overlap fraction to account for spectrally distributed interactions in fluorescence studies,” Appl. Opt. 34, 2645–2647 (1995).
[CrossRef] [PubMed]

M. Engelhard, W. Jacob, W. Möler, A. Koch, “New calibration method for the determination of the absolute density of CH radicals through laser-induced fluorescence,” Appl. Opt. 34, 4542–4551 (1995).
[CrossRef] [PubMed]

P. H. Paul, “Vibrational energy transfer and quenching of OH A2Σ+ (v′ = 1) measured at high temperatures in a shock tube,” J. Phys. Chem. 99, 8472–8476 (1995).
[CrossRef]

P. Heinrich, F. Stuhl, “Temperature dependent quenching of CH A, NH A, NH c, and PH A by H2,” Chem. Phys. 199, 297–304 (1995).
[CrossRef]

C. Kaminski, P. Ewart, “Absolute concentration measurements of C2 in a diamond CVD reactor by laser-induced fluorescence,” Appl. Phys. B 61, 585–592 (1995).
[CrossRef]

P. Zalicki, Y. Ma, R. N. Zare, J. R. Dadani, E. H. Wahl, T. G. Owano, C. H. Kruger, “Methyl readical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

K. L. Menningen, M. A. Childs, H. Toyoda, Y. Ueda, L. W. Anderson, J. E. Lawler, “CH3 and CH densities in a diamond growth dc discharge,” Contrib. Plasma Phys. 35, 359–373 (1995).
[CrossRef]

1994

M. A. Childs, K. L. Menningen, H. Toyoda, L. W. Anderson, J. E. Lawler, “Measurements of CH3 and CH densities in a diamond growth dc discharge,” Europhys. Lett. 25, 729–734 (1994).
[CrossRef]

W. Jacob, M. Engelhard, W. Moller, A. Koch, “Absolute density determination of CH radicals in a methane plasma,” Appl. Phys. Lett. 64, 971–973 (1994).
[CrossRef]

1993

D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, C. H. Kruger, “Boundary layer profiles in plasma chemical vapor deposition,” Science 259, 1726–1729 (1993).
[CrossRef] [PubMed]

M. E. Coltrin, D. S. Dandy, “Analysis of diamond growth in subatmospheric dc plasma-gun reactors,” J. Appl. Phys. 74, 5803–5820 (1993).
[CrossRef]

J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Laser-induced fluorescence diagnostic for temperature and velocity measurements in a hydrogen arcjet plume,” Appl. Opt. 32, 6117–6127 (1993).
[CrossRef] [PubMed]

1992

F. Hummernbrum, H. Kempkens, A. Ruzicka, H.-D. Sauren, C. Schiffer, J. Uhlenbusch, J. Winter, “Laser-induced fluorescence measurements on the C–X transition of the CH radical produced by a microwave excited process plasma,” Plasma Sources Sci. Technol. 1, 221–231 (1992).
[CrossRef]

1991

D. G. Goodwin, “Simulations of high rate diamond synthesis: methyl as the growth species,” Appl. Phys. Lett. 59, 277–279 (1991).
[CrossRef]

M. Frencklach, H. Wang, “Detailed surface and gas-phase chemical kinetics of diamond deposition,” Phys. Rev. B 43, 1520–1545 (1991).
[CrossRef]

1989

W. Bauer, B. Engelhardt, P. Wiesen, K. H. Becker, “Lifetime measurements of GeH and CH in the Av′ = 0 state by laser-induced fluorescence,” Chem. Phys. Lett. 158, 321–324 (1989).
[CrossRef]

1988

1987

N. L. Garland, D. R. Crosley, “Collisional quenching of CH A, v′ = 0 at 1300 K,” Chem. Phys. Lett. 134, 189–194 (1987).
[CrossRef]

1986

W. Ubachs, G. Meyer, J. J. ter Meulen, A. Dymanus, “Hyperfine structure and lifetime of the C v′ = 0 state of CH,” J. Chem. Phys. 84, 3032–3041 (1986).
[CrossRef]

1985

1976

J. Brzozowski, P. Bunker, N. Elander, P. Erman, “Predissociation effects in the A, B and C states of CH and the interstellar formation rate of CH via inverse predissociation,” Astrophys. J. 207, 414–424 (1976).
[CrossRef]

Anderson, L. W.

K. L. Menningen, M. A. Childs, H. Toyoda, Y. Ueda, L. W. Anderson, J. E. Lawler, “CH3 and CH densities in a diamond growth dc discharge,” Contrib. Plasma Phys. 35, 359–373 (1995).
[CrossRef]

M. A. Childs, K. L. Menningen, H. Toyoda, L. W. Anderson, J. E. Lawler, “Measurements of CH3 and CH densities in a diamond growth dc discharge,” Europhys. Lett. 25, 729–734 (1994).
[CrossRef]

Bauer, W.

W. Bauer, B. Engelhardt, P. Wiesen, K. H. Becker, “Lifetime measurements of GeH and CH in the Av′ = 0 state by laser-induced fluorescence,” Chem. Phys. Lett. 158, 321–324 (1989).
[CrossRef]

Becker, K. H.

W. Bauer, B. Engelhardt, P. Wiesen, K. H. Becker, “Lifetime measurements of GeH and CH in the Av′ = 0 state by laser-induced fluorescence,” Chem. Phys. Lett. 158, 321–324 (1989).
[CrossRef]

Brinkman, E. A.

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc-arcjet reactor used for diamond deposition,” Appl. Phys. B (1997), in press.
[CrossRef]

Brown, M. S.

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc-arcjet reactor used for diamond deposition,” Appl. Phys. B (1997), in press.
[CrossRef]

Brzozowski, J.

J. Brzozowski, P. Bunker, N. Elander, P. Erman, “Predissociation effects in the A, B and C states of CH and the interstellar formation rate of CH via inverse predissociation,” Astrophys. J. 207, 414–424 (1976).
[CrossRef]

Bunker, P.

J. Brzozowski, P. Bunker, N. Elander, P. Erman, “Predissociation effects in the A, B and C states of CH and the interstellar formation rate of CH via inverse predissociation,” Astrophys. J. 207, 414–424 (1976).
[CrossRef]

Cappelli, M. A.

Childs, M. A.

K. L. Menningen, M. A. Childs, H. Toyoda, Y. Ueda, L. W. Anderson, J. E. Lawler, “CH3 and CH densities in a diamond growth dc discharge,” Contrib. Plasma Phys. 35, 359–373 (1995).
[CrossRef]

M. A. Childs, K. L. Menningen, H. Toyoda, L. W. Anderson, J. E. Lawler, “Measurements of CH3 and CH densities in a diamond growth dc discharge,” Europhys. Lett. 25, 729–734 (1994).
[CrossRef]

Cohern, R. B.

M. Crofton, R. P. Welle, S. W. Janson, R. B. Cohern, “Temperature, velocity and density studies in 1 kW ammonia arcjet plume by LIF,” in Proceedings of the Twenty-Eighth AIAA Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, New York, 1992), AIAA 92-3241.

Coltrin, M. E.

M. E. Coltrin, D. S. Dandy, “Analysis of diamond growth in subatmospheric dc plasma-gun reactors,” J. Appl. Phys. 74, 5803–5820 (1993).
[CrossRef]

Copeland, R. A.

Crofton, M.

M. Crofton, R. P. Welle, S. W. Janson, R. B. Cohern, “Temperature, velocity and density studies in 1 kW ammonia arcjet plume by LIF,” in Proceedings of the Twenty-Eighth AIAA Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, New York, 1992), AIAA 92-3241.

Crosley, D. R.

J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. II. B–X system,” J. Chem. Phys. 104, 3907–3913 (1996).
[CrossRef]

J. Luque, D. R. Crosley, “Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
[CrossRef]

J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. I. A–X system,” J. Chem. Phys. 104, 2146–2155 (1996).
[CrossRef]

N. L. Garland, D. R. Crosley, “Collisional quenching of CH A, v′ = 0 at 1300 K,” Chem. Phys. Lett. 134, 189–194 (1987).
[CrossRef]

N. Garland, D. R. Crosley, “Energy transfer processes in CH A and B in an atmospheric pressure flame,” Appl. Opt. 24, 4229–4237 (1985).
[CrossRef]

D. R. Crosley, Molecular Physics Laboratory, SRI International, Menlo Park, Calif. 94025 (personal communication, 1996).

Dadani, J. R.

P. Zalicki, Y. Ma, R. N. Zare, J. R. Dadani, E. H. Wahl, T. G. Owano, C. H. Kruger, “Methyl readical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

Dandy, D. S.

M. E. Coltrin, D. S. Dandy, “Analysis of diamond growth in subatmospheric dc plasma-gun reactors,” J. Appl. Phys. 74, 5803–5820 (1993).
[CrossRef]

Dyer, M. J.

Dymanus, A.

W. Ubachs, G. Meyer, J. J. ter Meulen, A. Dymanus, “Hyperfine structure and lifetime of the C v′ = 0 state of CH,” J. Chem. Phys. 84, 3032–3041 (1986).
[CrossRef]

Elander, N.

J. Brzozowski, P. Bunker, N. Elander, P. Erman, “Predissociation effects in the A, B and C states of CH and the interstellar formation rate of CH via inverse predissociation,” Astrophys. J. 207, 414–424 (1976).
[CrossRef]

Engelhard, M.

M. Engelhard, W. Jacob, W. Möler, A. Koch, “New calibration method for the determination of the absolute density of CH radicals through laser-induced fluorescence,” Appl. Opt. 34, 4542–4551 (1995).
[CrossRef] [PubMed]

W. Jacob, M. Engelhard, W. Moller, A. Koch, “Absolute density determination of CH radicals in a methane plasma,” Appl. Phys. Lett. 64, 971–973 (1994).
[CrossRef]

Engelhardt, B.

W. Bauer, B. Engelhardt, P. Wiesen, K. H. Becker, “Lifetime measurements of GeH and CH in the Av′ = 0 state by laser-induced fluorescence,” Chem. Phys. Lett. 158, 321–324 (1989).
[CrossRef]

Erman, P.

J. Brzozowski, P. Bunker, N. Elander, P. Erman, “Predissociation effects in the A, B and C states of CH and the interstellar formation rate of CH via inverse predissociation,” Astrophys. J. 207, 414–424 (1976).
[CrossRef]

Ewart, P.

C. Kaminski, P. Ewart, “Absolute concentration measurements of C2 in a diamond CVD reactor by laser-induced fluorescence,” Appl. Phys. B 61, 585–592 (1995).
[CrossRef]

Frencklach, M.

M. Frencklach, H. Wang, “Detailed surface and gas-phase chemical kinetics of diamond deposition,” Phys. Rev. B 43, 1520–1545 (1991).
[CrossRef]

Garland, N.

Garland, N. L.

N. L. Garland, D. R. Crosley, “Collisional quenching of CH A, v′ = 0 at 1300 K,” Chem. Phys. Lett. 134, 189–194 (1987).
[CrossRef]

Goodwin, D. G.

D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, C. H. Kruger, “Boundary layer profiles in plasma chemical vapor deposition,” Science 259, 1726–1729 (1993).
[CrossRef] [PubMed]

D. G. Goodwin, “Simulations of high rate diamond synthesis: methyl as the growth species,” Appl. Phys. Lett. 59, 277–279 (1991).
[CrossRef]

Green, D. S.

D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, C. H. Kruger, “Boundary layer profiles in plasma chemical vapor deposition,” Science 259, 1726–1729 (1993).
[CrossRef] [PubMed]

Hanson, R. K.

Heinrich, P.

P. Heinrich, F. Stuhl, “Temperature dependent quenching of CH A, NH A, NH c, and PH A by H2,” Chem. Phys. 199, 297–304 (1995).
[CrossRef]

Hummernbrum, F.

F. Hummernbrum, H. Kempkens, A. Ruzicka, H.-D. Sauren, C. Schiffer, J. Uhlenbusch, J. Winter, “Laser-induced fluorescence measurements on the C–X transition of the CH radical produced by a microwave excited process plasma,” Plasma Sources Sci. Technol. 1, 221–231 (1992).
[CrossRef]

Jacob, W.

M. Engelhard, W. Jacob, W. Möler, A. Koch, “New calibration method for the determination of the absolute density of CH radicals through laser-induced fluorescence,” Appl. Opt. 34, 4542–4551 (1995).
[CrossRef] [PubMed]

W. Jacob, M. Engelhard, W. Moller, A. Koch, “Absolute density determination of CH radicals in a methane plasma,” Appl. Phys. Lett. 64, 971–973 (1994).
[CrossRef]

Janson, S. W.

M. Crofton, R. P. Welle, S. W. Janson, R. B. Cohern, “Temperature, velocity and density studies in 1 kW ammonia arcjet plume by LIF,” in Proceedings of the Twenty-Eighth AIAA Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, New York, 1992), AIAA 92-3241.

Jeffries, J. B.

G. A. Raiche, J. B. Jeffries, “Observation and spatial distribution of C3 in a dc-arcjet plama during diamond deposition using laser-induced fluorescence,” Appl. Phys. B (1997), in press.

G. P. Smith, J. B. Jeffries, “Gas phase chromatography in a diamond depositing dc-arcjet,” in Diamond Material, A. J. Purdes, J. C. Angus, R. F. Davies, B. M. Meyerson, K. E. Spear, M. Yoder, eds. (Electrochemical Society, Pennington, N.J., 1991), pp. 194–201.

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc-arcjet reactor used for diamond deposition,” Appl. Phys. B (1997), in press.
[CrossRef]

Kaminski, C.

C. Kaminski, P. Ewart, “Absolute concentration measurements of C2 in a diamond CVD reactor by laser-induced fluorescence,” Appl. Phys. B 61, 585–592 (1995).
[CrossRef]

Kempkens, H.

F. Hummernbrum, H. Kempkens, A. Ruzicka, H.-D. Sauren, C. Schiffer, J. Uhlenbusch, J. Winter, “Laser-induced fluorescence measurements on the C–X transition of the CH radical produced by a microwave excited process plasma,” Plasma Sources Sci. Technol. 1, 221–231 (1992).
[CrossRef]

Koch, A.

M. Engelhard, W. Jacob, W. Möler, A. Koch, “New calibration method for the determination of the absolute density of CH radicals through laser-induced fluorescence,” Appl. Opt. 34, 4542–4551 (1995).
[CrossRef] [PubMed]

W. Jacob, M. Engelhard, W. Moller, A. Koch, “Absolute density determination of CH radicals in a methane plasma,” Appl. Phys. Lett. 64, 971–973 (1994).
[CrossRef]

Kruger, C. H.

P. Zalicki, Y. Ma, R. N. Zare, J. R. Dadani, E. H. Wahl, T. G. Owano, C. H. Kruger, “Methyl readical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, C. H. Kruger, “Boundary layer profiles in plasma chemical vapor deposition,” Science 259, 1726–1729 (1993).
[CrossRef] [PubMed]

Laurendeau, N. M.

Lawler, J. E.

K. L. Menningen, M. A. Childs, H. Toyoda, Y. Ueda, L. W. Anderson, J. E. Lawler, “CH3 and CH densities in a diamond growth dc discharge,” Contrib. Plasma Phys. 35, 359–373 (1995).
[CrossRef]

M. A. Childs, K. L. Menningen, H. Toyoda, L. W. Anderson, J. E. Lawler, “Measurements of CH3 and CH densities in a diamond growth dc discharge,” Europhys. Lett. 25, 729–734 (1994).
[CrossRef]

Liebeskind, J. G.

Luque, J.

J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. II. B–X system,” J. Chem. Phys. 104, 3907–3913 (1996).
[CrossRef]

J. Luque, D. R. Crosley, “Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
[CrossRef]

J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. I. A–X system,” J. Chem. Phys. 104, 2146–2155 (1996).
[CrossRef]

Ma, Y.

P. Zalicki, Y. Ma, R. N. Zare, J. R. Dadani, E. H. Wahl, T. G. Owano, C. H. Kruger, “Methyl readical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

Menningen, K. L.

K. L. Menningen, M. A. Childs, H. Toyoda, Y. Ueda, L. W. Anderson, J. E. Lawler, “CH3 and CH densities in a diamond growth dc discharge,” Contrib. Plasma Phys. 35, 359–373 (1995).
[CrossRef]

M. A. Childs, K. L. Menningen, H. Toyoda, L. W. Anderson, J. E. Lawler, “Measurements of CH3 and CH densities in a diamond growth dc discharge,” Europhys. Lett. 25, 729–734 (1994).
[CrossRef]

Meyer, G.

W. Ubachs, G. Meyer, J. J. ter Meulen, A. Dymanus, “Hyperfine structure and lifetime of the C v′ = 0 state of CH,” J. Chem. Phys. 84, 3032–3041 (1986).
[CrossRef]

Möler, W.

Moller, W.

W. Jacob, M. Engelhard, W. Moller, A. Koch, “Absolute density determination of CH radicals in a methane plasma,” Appl. Phys. Lett. 64, 971–973 (1994).
[CrossRef]

Owano, T. G.

P. Zalicki, Y. Ma, R. N. Zare, J. R. Dadani, E. H. Wahl, T. G. Owano, C. H. Kruger, “Methyl readical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, C. H. Kruger, “Boundary layer profiles in plasma chemical vapor deposition,” Science 259, 1726–1729 (1993).
[CrossRef] [PubMed]

Partridge, W. P.

Paul, P. H.

P. H. Paul, “Vibrational energy transfer and quenching of OH A2Σ+ (v′ = 1) measured at high temperatures in a shock tube,” J. Phys. Chem. 99, 8472–8476 (1995).
[CrossRef]

Pobst, J. A.

J. A. Pobst, I. J. Wysong, “Laser induced fluorescence of ground state hydrogen atoms at nozzle exit of an arcjet thruster,” in Proceedings of the Twenty-Sixth AIAA Plasmadynaics and Lasers Conference (American Institute of Aeronautics and Astronautics, New York, 1995), AIAA 95-1973, pp. 1–9.

Raiche, G. A.

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc-arcjet reactor used for diamond deposition,” Appl. Phys. B (1997), in press.
[CrossRef]

G. A. Raiche, J. B. Jeffries, “Observation and spatial distribution of C3 in a dc-arcjet plama during diamond deposition using laser-induced fluorescence,” Appl. Phys. B (1997), in press.

Rensberger, K. J.

Ruzicka, A.

F. Hummernbrum, H. Kempkens, A. Ruzicka, H.-D. Sauren, C. Schiffer, J. Uhlenbusch, J. Winter, “Laser-induced fluorescence measurements on the C–X transition of the CH radical produced by a microwave excited process plasma,” Plasma Sources Sci. Technol. 1, 221–231 (1992).
[CrossRef]

Salmon, J. T.

Sauren, H.-D.

F. Hummernbrum, H. Kempkens, A. Ruzicka, H.-D. Sauren, C. Schiffer, J. Uhlenbusch, J. Winter, “Laser-induced fluorescence measurements on the C–X transition of the CH radical produced by a microwave excited process plasma,” Plasma Sources Sci. Technol. 1, 221–231 (1992).
[CrossRef]

Schiffer, C.

F. Hummernbrum, H. Kempkens, A. Ruzicka, H.-D. Sauren, C. Schiffer, J. Uhlenbusch, J. Winter, “Laser-induced fluorescence measurements on the C–X transition of the CH radical produced by a microwave excited process plasma,” Plasma Sources Sci. Technol. 1, 221–231 (1992).
[CrossRef]

Smith, G. P.

G. P. Smith, J. B. Jeffries, “Gas phase chromatography in a diamond depositing dc-arcjet,” in Diamond Material, A. J. Purdes, J. C. Angus, R. F. Davies, B. M. Meyerson, K. E. Spear, M. Yoder, eds. (Electrochemical Society, Pennington, N.J., 1991), pp. 194–201.

Stuhl, F.

P. Heinrich, F. Stuhl, “Temperature dependent quenching of CH A, NH A, NH c, and PH A by H2,” Chem. Phys. 199, 297–304 (1995).
[CrossRef]

ter Meulen, J. J.

W. Ubachs, G. Meyer, J. J. ter Meulen, A. Dymanus, “Hyperfine structure and lifetime of the C v′ = 0 state of CH,” J. Chem. Phys. 84, 3032–3041 (1986).
[CrossRef]

Toyoda, H.

K. L. Menningen, M. A. Childs, H. Toyoda, Y. Ueda, L. W. Anderson, J. E. Lawler, “CH3 and CH densities in a diamond growth dc discharge,” Contrib. Plasma Phys. 35, 359–373 (1995).
[CrossRef]

M. A. Childs, K. L. Menningen, H. Toyoda, L. W. Anderson, J. E. Lawler, “Measurements of CH3 and CH densities in a diamond growth dc discharge,” Europhys. Lett. 25, 729–734 (1994).
[CrossRef]

Ubachs, W.

W. Ubachs, G. Meyer, J. J. ter Meulen, A. Dymanus, “Hyperfine structure and lifetime of the C v′ = 0 state of CH,” J. Chem. Phys. 84, 3032–3041 (1986).
[CrossRef]

Ueda, Y.

K. L. Menningen, M. A. Childs, H. Toyoda, Y. Ueda, L. W. Anderson, J. E. Lawler, “CH3 and CH densities in a diamond growth dc discharge,” Contrib. Plasma Phys. 35, 359–373 (1995).
[CrossRef]

Uhlenbusch, J.

F. Hummernbrum, H. Kempkens, A. Ruzicka, H.-D. Sauren, C. Schiffer, J. Uhlenbusch, J. Winter, “Laser-induced fluorescence measurements on the C–X transition of the CH radical produced by a microwave excited process plasma,” Plasma Sources Sci. Technol. 1, 221–231 (1992).
[CrossRef]

Wahl, E. H.

P. Zalicki, Y. Ma, R. N. Zare, J. R. Dadani, E. H. Wahl, T. G. Owano, C. H. Kruger, “Methyl readical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

Wang, H.

M. Frencklach, H. Wang, “Detailed surface and gas-phase chemical kinetics of diamond deposition,” Phys. Rev. B 43, 1520–1545 (1991).
[CrossRef]

Welle, R. P.

M. Crofton, R. P. Welle, S. W. Janson, R. B. Cohern, “Temperature, velocity and density studies in 1 kW ammonia arcjet plume by LIF,” in Proceedings of the Twenty-Eighth AIAA Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, New York, 1992), AIAA 92-3241.

Wiesen, P.

W. Bauer, B. Engelhardt, P. Wiesen, K. H. Becker, “Lifetime measurements of GeH and CH in the Av′ = 0 state by laser-induced fluorescence,” Chem. Phys. Lett. 158, 321–324 (1989).
[CrossRef]

Williams, S.

D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, C. H. Kruger, “Boundary layer profiles in plasma chemical vapor deposition,” Science 259, 1726–1729 (1993).
[CrossRef] [PubMed]

Winter, J.

F. Hummernbrum, H. Kempkens, A. Ruzicka, H.-D. Sauren, C. Schiffer, J. Uhlenbusch, J. Winter, “Laser-induced fluorescence measurements on the C–X transition of the CH radical produced by a microwave excited process plasma,” Plasma Sources Sci. Technol. 1, 221–231 (1992).
[CrossRef]

Wysong, I. J.

J. A. Pobst, I. J. Wysong, “Laser induced fluorescence of ground state hydrogen atoms at nozzle exit of an arcjet thruster,” in Proceedings of the Twenty-Sixth AIAA Plasmadynaics and Lasers Conference (American Institute of Aeronautics and Astronautics, New York, 1995), AIAA 95-1973, pp. 1–9.

Zalicki, P.

P. Zalicki, Y. Ma, R. N. Zare, J. R. Dadani, E. H. Wahl, T. G. Owano, C. H. Kruger, “Methyl readical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

Zare, R. N.

P. Zalicki, Y. Ma, R. N. Zare, J. R. Dadani, E. H. Wahl, T. G. Owano, C. H. Kruger, “Methyl readical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, C. H. Kruger, “Boundary layer profiles in plasma chemical vapor deposition,” Science 259, 1726–1729 (1993).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

J. Luque, D. R. Crosley, “Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
[CrossRef]

C. Kaminski, P. Ewart, “Absolute concentration measurements of C2 in a diamond CVD reactor by laser-induced fluorescence,” Appl. Phys. B 61, 585–592 (1995).
[CrossRef]

Appl. Phys. Lett.

D. G. Goodwin, “Simulations of high rate diamond synthesis: methyl as the growth species,” Appl. Phys. Lett. 59, 277–279 (1991).
[CrossRef]

W. Jacob, M. Engelhard, W. Moller, A. Koch, “Absolute density determination of CH radicals in a methane plasma,” Appl. Phys. Lett. 64, 971–973 (1994).
[CrossRef]

Astrophys. J.

J. Brzozowski, P. Bunker, N. Elander, P. Erman, “Predissociation effects in the A, B and C states of CH and the interstellar formation rate of CH via inverse predissociation,” Astrophys. J. 207, 414–424 (1976).
[CrossRef]

Chem. Phys.

P. Heinrich, F. Stuhl, “Temperature dependent quenching of CH A, NH A, NH c, and PH A by H2,” Chem. Phys. 199, 297–304 (1995).
[CrossRef]

Chem. Phys. Lett.

W. Bauer, B. Engelhardt, P. Wiesen, K. H. Becker, “Lifetime measurements of GeH and CH in the Av′ = 0 state by laser-induced fluorescence,” Chem. Phys. Lett. 158, 321–324 (1989).
[CrossRef]

N. L. Garland, D. R. Crosley, “Collisional quenching of CH A, v′ = 0 at 1300 K,” Chem. Phys. Lett. 134, 189–194 (1987).
[CrossRef]

P. Zalicki, Y. Ma, R. N. Zare, J. R. Dadani, E. H. Wahl, T. G. Owano, C. H. Kruger, “Methyl readical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

Contrib. Plasma Phys.

K. L. Menningen, M. A. Childs, H. Toyoda, Y. Ueda, L. W. Anderson, J. E. Lawler, “CH3 and CH densities in a diamond growth dc discharge,” Contrib. Plasma Phys. 35, 359–373 (1995).
[CrossRef]

Europhys. Lett.

M. A. Childs, K. L. Menningen, H. Toyoda, L. W. Anderson, J. E. Lawler, “Measurements of CH3 and CH densities in a diamond growth dc discharge,” Europhys. Lett. 25, 729–734 (1994).
[CrossRef]

J. Appl. Phys.

M. E. Coltrin, D. S. Dandy, “Analysis of diamond growth in subatmospheric dc plasma-gun reactors,” J. Appl. Phys. 74, 5803–5820 (1993).
[CrossRef]

J. Chem. Phys.

W. Ubachs, G. Meyer, J. J. ter Meulen, A. Dymanus, “Hyperfine structure and lifetime of the C v′ = 0 state of CH,” J. Chem. Phys. 84, 3032–3041 (1986).
[CrossRef]

J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. I. A–X system,” J. Chem. Phys. 104, 2146–2155 (1996).
[CrossRef]

J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. II. B–X system,” J. Chem. Phys. 104, 3907–3913 (1996).
[CrossRef]

J. Phys. Chem.

P. H. Paul, “Vibrational energy transfer and quenching of OH A2Σ+ (v′ = 1) measured at high temperatures in a shock tube,” J. Phys. Chem. 99, 8472–8476 (1995).
[CrossRef]

Phys. Rev. B

M. Frencklach, H. Wang, “Detailed surface and gas-phase chemical kinetics of diamond deposition,” Phys. Rev. B 43, 1520–1545 (1991).
[CrossRef]

Plasma Sources Sci. Technol.

F. Hummernbrum, H. Kempkens, A. Ruzicka, H.-D. Sauren, C. Schiffer, J. Uhlenbusch, J. Winter, “Laser-induced fluorescence measurements on the C–X transition of the CH radical produced by a microwave excited process plasma,” Plasma Sources Sci. Technol. 1, 221–231 (1992).
[CrossRef]

Science

D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, C. H. Kruger, “Boundary layer profiles in plasma chemical vapor deposition,” Science 259, 1726–1729 (1993).
[CrossRef] [PubMed]

Other

J. A. Pobst, I. J. Wysong, “Laser induced fluorescence of ground state hydrogen atoms at nozzle exit of an arcjet thruster,” in Proceedings of the Twenty-Sixth AIAA Plasmadynaics and Lasers Conference (American Institute of Aeronautics and Astronautics, New York, 1995), AIAA 95-1973, pp. 1–9.

M. Crofton, R. P. Welle, S. W. Janson, R. B. Cohern, “Temperature, velocity and density studies in 1 kW ammonia arcjet plume by LIF,” in Proceedings of the Twenty-Eighth AIAA Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, New York, 1992), AIAA 92-3241.

G. A. Raiche, J. B. Jeffries, “Observation and spatial distribution of C3 in a dc-arcjet plama during diamond deposition using laser-induced fluorescence,” Appl. Phys. B (1997), in press.

D. R. Crosley, Molecular Physics Laboratory, SRI International, Menlo Park, Calif. 94025 (personal communication, 1996).

E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc-arcjet reactor used for diamond deposition,” Appl. Phys. B (1997), in press.
[CrossRef]

G. P. Smith, J. B. Jeffries, “Gas phase chromatography in a diamond depositing dc-arcjet,” in Diamond Material, A. J. Purdes, J. C. Angus, R. F. Davies, B. M. Meyerson, K. E. Spear, M. Yoder, eds. (Electrochemical Society, Pennington, N.J., 1991), pp. 194–201.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

LIF experimental setup for diagnostics in the diamond-depositing dc arcjet. PMT, photomultiplier tube.

Fig. 2
Fig. 2

Upper panel, section of excitation LIF scan in the R branch of CH BX (0, 0) in the arcjet plume at 25 Torr (z = 20 mm, x = 0 mm); inset, two-line LIF scans. Lower panel, Boltzmann plot of the above spectra and from another scan taken at z = 20 mm, x = -7 mm.

Fig. 3
Fig. 3

Upper panel, comparison among vibrational and rotational temperatures in the arcjet obtained by LIF in the CH AX and BX transitions. Variation is along the center line of the gas jet. Lower panel, detail of the plot above in the region close to the substrate.

Fig. 4
Fig. 4

Comparison among vibrational (●) and rotational (○) temperatures in the arcjet obtained by LIF in the CH AX and BX transitions. Upper panel, radial profile at the nozzle (z = 0 mm); center panel, radial profile in the arcjet plume (z = 20 mm); lower panel, radial profile in the boundary layer (z = 37 mm).

Fig. 5
Fig. 5

Excitation scan in the P branch of CH AX taken with a 150-ns gate at the center of the arcjet plume (z = 20 mm, x = 0 mm).

Fig. 6
Fig. 6

Upper panel, LIF temporal decay after R 1(10) CH BX (0, 0) is pumped in the arcjet plume (z = 20 mm, x = -4 mm); lower panel, exponential fits of the on-resonance and off-resonance decays.

Fig. 7
Fig. 7

Radial variation of effective lifetimes at different distances from the nozzle. The R 1(10) BX (0, 0) is pumped in all the measurements in the plot.

Fig. 8
Fig. 8

CH number-density profiles at different distances from the nozzle in the arcjet at 25-Torr total chamber pressure.

Fig. 9
Fig. 9

Upper panel, LIF signal after pumping R 1(10) CH BX (0, 0) versus laser energy; lower panel, calibration of the detection system with Rayleigh scattering.

Fig. 10
Fig. 10

Upper panel, variation of the CH number density with the chamber pressure at the center of the arcjet plume (z = 20 mm, x = 0, spatial resolution 1 mm); lower panel, variation of the CH B v′ = 0 effective lifetime with the chamber pressure.

Fig. 11
Fig. 11

Variation of the CH number density versus the CH4/H2 flow ratio in the arcjet plume and in the boundary layer.

Fig. 12
Fig. 12

Upper panel, variation of the CH number density with the H2 mixture fraction at 0.25% CH4 of the total flow and 25 Torr in the chamber; lower panel, variation of the inverse lifetime of CH B v′ = 0 with the partial pressure of H2.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

SF=NfBBcELΓΔντeffτ0Ω4πηl,
SR=NELhcνσΩΩηl,
fB=exp-EvkTvib2J+1exp-EJkTrotQvibQrotQelec,
lnI2J+1B12ϕ=-EJkTrot+C,
Trot=-ΔEk lnB1g1ϕ1I2B2g2ϕ2I1,
ΔT=kTΔEΔI2/I1I2/I1+Δϕ1/ϕ2ϕ1/ϕ2.
It=I0exp-tτeff.
1τeff=1τ0+kQP.

Metrics