Abstract

The accuracy and precision of time-resolved one-dimensional temperature measurements using single-pulse one-dimensional N2 vibrational coherent anti-Stokes Raman scattering along a line have been investigated in air in the temperature range from 300 to 1500 K. For this, the experimental spectra were taken in a high-temperature oven at atmospheric pressure. A planar BOXCARS phase-matching geometry was employed to generate the signal along a 6.16-mm line directed perpendicular to the beam propagation. With the used imaging optics, in this direction a spatial resolution of 86 µm was achieved. Depending on the set temperature, the agreement between the thermocouple readings and the mean values of the evalutated coherent anti-Stokes Raman-scattering temperatures is better than 40 K. The applicability of this new technique for the time-resolved measurement of temperature gradients is demonstrated along a line that crosses the flame front in a premixed laminar CH4–air flame.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Abacus, Cambridge, Mass., 1996).
  2. M. Lapp, C. M. Penney, eds., Laser Raman Gas Diagnostics (Plenum, New York, 1974).
    [CrossRef]
  3. S. Lederman, “The use of laser Raman diagnostics in flow fields and combustion,” Prog. Energy Combust. Sci. 3, 1–34 (1977).
    [CrossRef]
  4. A. Leipertz, “Raman processes and their application,” in Instrumentation for Combustion and Flow in Engine, D. F. G. Durao, J. H. Whitelaw, P. O. Witze, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 107–122.
    [CrossRef]
  5. R. Bailly, M. Pealat, J. P. E. Taran, “Raman investigation of a subsonic jet,” Opt. Commun. 17, 68–73 (1976).
    [CrossRef]
  6. M. C. Drake, G. M. Rosenblatt, “Rotational Raman scattering from premixed and diffusion flames,” Combust. Flame 33, 179–196 (1979).
    [CrossRef]
  7. M. C. Drake, M. Lapp, C. M. Penney, S. Warshaw, B. W. Gerhold, “Probability density functions and correlations of temperature and molecular concentrations in turbulent flames,” AIAA paper 81-0103 (American Institute of Aeronautics and Astronautics, New York, 1981).
  8. J. Haumann, A. Leipertz, “Giant-pulsed laser Raman oxygen measurements in a premixed laminar methane–air flame,” Appl. Opt. 24, 4509–4515 (1985).
    [CrossRef]
  9. J. A. Wehrmeyer, T.-S. Cheng, R. W. Pitz, “Raman scattering measurements in flames using a tunable KrF excimer laser,” Appl. Opt. 31, 1495–1504 (1992).
    [CrossRef] [PubMed]
  10. S. Prucker, W. Meier, I. Plath, W. Stricker, “The use of a flashlamp-pumped dye laser for single-pulse spontaneous Raman scattering in flames,” Ber. Bunsenges. Phys. Chem. 96, 1393–1401 (1992).
    [CrossRef]
  11. E. P. Hassel, “Ultraviolet Raman-scattering measurements in flames by use of a narrowband XeCl excimer laser,” Appl. Opt. 32, 4058–4065 (1993).
    [CrossRef] [PubMed]
  12. S. P. Nandula, T. M. Brown, R. W. Pitz, P. A. DeBarber, “Single-pulse, simultaneous multipoint multispecies Raman measurements in turbulent nonpremixed jet flames,” Opt. Lett. 19, 414–416 (1994).
    [PubMed]
  13. G. Grünefeld, V. Beushausen, P. Andresen, W. Hentschel, “Spatially resolved Raman scattering for multi-species and temperature analysis in technically applied combustion systems: spray flame and four-cylinder in-line engine,” Appl. Phys. B 58, 333–342 (1994).
    [CrossRef]
  14. J. A. Wehrmayer, S. Yeralan, K. S. Tecu, “Linewise Raman–Stokes/anti-Stokes temperature measurements in flames using an unintensified charge-coupled device,” Appl. Phys. B 62, 21–27 (1996).
    [CrossRef]
  15. M. B. Long, D. C. Fourguette, M. C. Escoda, C. B. Layne, “Instantaneous Ramanography of a turbulent diffusion flame,” Opt. Lett. 8, 244–246 (1983).
    [CrossRef] [PubMed]
  16. J. Jonuscheit, T. Seeger, A. Leipertz, “Nutzung von linearen und nichtlinearen Raman-Techniken in der Verbrennungs-diagnostik,” in Tenth Arbeitsberatung Ramanspektroskopie, Deutscher Arbeitskreis für Angewandte Spektroskopie: Fachgruppe Analytische Chemie der Gesellschaft deutscher Chemiker (Pädagogische Hochschule, Erfurt/Mühlhausen, Germany, 1995), pp. 5–8.
  17. A. C. Eckbreth, “Nonlinear Raman spectroscopy for combustion diagnostics,” J. Quant. Spectrosc. Radiat. Transfer 40, 369–383 (1988).
    [CrossRef]
  18. A. B. Harvey, ed., Chemical Applications of Nonlinear Raman Spectroscopy (Academic, New York, 1981).
  19. D. A. Greenhalgh, “Quantitative CARS spectroscopy,” in Advances in Nonlinear Spectroscopy, R. H. J. Clark, R. E. Hester, eds. (Wiley, Chichester, England, 1988), Vol. 15, pp. 193–251.
  20. B. Attal-Tretout, P. Bouchardy, P. Magre, M. Pealat, J. P. Taran, “CARS in combustion: prospects and problems,” Appl. Phys. B 51, 17–24 (1990).
    [CrossRef]
  21. A. C. Eckbreth, “BOXCARS: crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32, 421–423 (1978).
    [CrossRef]
  22. D. A. Murphy, M. B. Long, R. K. Chang, A. C. Eckbreth, “Spatially resolved coherent anti-Stokes Raman spectroscopy from a line across a CH4 jet,” Opt. Lett. 4, 167–169 (1979).
    [CrossRef] [PubMed]
  23. J. H. Stufflebeam, A. C. Eckbreth, “CARS temperature and species measurements in propellant flames,” in Non-Intrusive Combustion Diagnostics, K. K. Kuo, T. P. Parr, eds. (Begell, New York, 1994), pp. 115–131.
  24. J. B. Snow, J.-B. Zheng, R. K. Chang, “Spatially and spectrally resolved multipoint coherent anti-Stokes Raman scattering from N2 and O2 flows,” Opt. Lett. 8, 599–601 (1983).
    [CrossRef] [PubMed]
  25. A. Kurtz, “Multipoint CARS,” Appl. Opt. 28, 5207–5209 (1989).
    [CrossRef]
  26. J. Jonuscheit, A. Thumann, M. Schenk, T. Seeger, A. Leipertz, “One-dimensional vibrational coherent anti-Stokes–Raman-scattering thermometry,” Opt. Lett. 21, 1532–1534 (1996).
    [CrossRef] [PubMed]
  27. D. Bradley, M. Lawes, M. J. Scott, C. G. W. Sheppard, D. A. Greenhalgh, P. M. Porter, “Measurement of temperature PDF’S in turbulent flames by the CARS technique,” in Proceedings of the Twenty-Forth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 527–535.
    [CrossRef]
  28. A. Thumann, T. Seeger, A. Leipertz, “Evaluation of two different gas temperatures and their volumetric fraction from broadband N2 coherent anti-Stokes Raman spectroscopy spectra,” Appl. Opt. 34, 3313–3317 (1995).
    [CrossRef] [PubMed]
  29. T. Seeger, A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996).
    [CrossRef] [PubMed]
  30. D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, “Nonlinearity and image persistence of P-20 phosphor-based Intensified photodiode array detectors used in CARS spectroscopy,” Appl. Opt. 28, 3226–3232 (1989).
    [CrossRef] [PubMed]
  31. D. R. Snelling, G. J. Smallwood, T. Parameswaran, “Effect of detector nonlinearity and image persistence on CARS derived temperatures,” Appl. Opt. 28, 3233–3241 (1989).
    [CrossRef] [PubMed]
  32. E. Magens, Nutzung von Rotations-CARS zur Temperatur-und Konzentrationsbestimmung in Flammen, Berichte zur Energie- und Verfahrenstechnik -BEV-, Heft 93.2 (Energie und Systemtechnik GmbH, Erlangen, Germany, 1993).
  33. M. L. Koszykowski, R. I. Farrow, R. E. Palmer, “Calculation of collisionally narrowed coherent anti-Stokes Raman spectroscopy spectra,” Opt. Lett. 10, 478–480 (1985).
    [CrossRef] [PubMed]
  34. R. E. Teets, “Accurate convolutions of coherent anti-Stokes Raman spectra,” Opt. Lett. 9, 226–228 (1984).
    [CrossRef] [PubMed]
  35. H. Kataoka, S. Maeda, C. Hirose, “Effects of laser line-width on the coherent anti-Stokes Raman spectroscopy spectral profile,” Appl. Spectrosc. 36, 565–569 (1985).
    [CrossRef]
  36. L. A. Rahn, R. E. Palmer, M. L. Koszykowski, D. A. Greenhalgh, “Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2,” Chem. Phys. Lett. 133, 513–516 (1987).
    [CrossRef]
  37. T. R. Gilson, I. R. Beattie, J. D. Black, D. A. Greenhalgh, S. N. Jenny, “Redetermination of some of the spectroscopic constants of the electronic ground state of di-nitrogen 14N2, 14N15N and 15N2 using coherent anti-Stokes Raman spectroscopy,” J. Raman Spectrosc. 9, 361–368 (1980).
    [CrossRef]
  38. S. Kröll, M. Alden, P.-E. Bengtsson, C. Löfström, R. J. Hall, “Statistics of multimode YAG laser radiation with implications for quantitative CARS in combustion diagnostics,” J. Opt. Soc. Am. B 8, 930–939 (1991).
    [CrossRef]
  39. D. A. Greenhalgh, S. T. Whittley, “Mode noise in broadband CARS spectroscopy,” Appl. Opt. 24, 907–913 (1985).
    [CrossRef] [PubMed]
  40. D. R. Snelling, T. Parameswaran, G. J. Smallwood, “Noise characteristics of single-shot broadband CARS signals,” Appl. Opt. 26, 4298–4302 (1987).
    [CrossRef] [PubMed]
  41. M. Alden, P.-E. Bengtsson, H. Edner, S. Kröll, D. Nilsson, “Rotational CARS: a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206–3219 (1989).
    [CrossRef] [PubMed]
  42. A. Buschmann, F. Dinkelacker, T. Schäfer, M. Schäfer, J. Wolfrum, “Measurement of the instantaneous detailed flame structure in turbulent premixed combustion,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996).
    [CrossRef]
  43. J. Göttgens, F. Mauss, “Flamet libraries—Description of the Data Format and Catalogue of Existing Libraries,” in Reduced Kinetic Mechanisms for Applications in Combustion Systems, N. Peters, B. Rogg, eds. (Springer-Verlag, Berlin, 1993), pp. 331–344.

1996 (3)

1995 (1)

1994 (2)

S. P. Nandula, T. M. Brown, R. W. Pitz, P. A. DeBarber, “Single-pulse, simultaneous multipoint multispecies Raman measurements in turbulent nonpremixed jet flames,” Opt. Lett. 19, 414–416 (1994).
[PubMed]

G. Grünefeld, V. Beushausen, P. Andresen, W. Hentschel, “Spatially resolved Raman scattering for multi-species and temperature analysis in technically applied combustion systems: spray flame and four-cylinder in-line engine,” Appl. Phys. B 58, 333–342 (1994).
[CrossRef]

1993 (1)

1992 (2)

J. A. Wehrmeyer, T.-S. Cheng, R. W. Pitz, “Raman scattering measurements in flames using a tunable KrF excimer laser,” Appl. Opt. 31, 1495–1504 (1992).
[CrossRef] [PubMed]

S. Prucker, W. Meier, I. Plath, W. Stricker, “The use of a flashlamp-pumped dye laser for single-pulse spontaneous Raman scattering in flames,” Ber. Bunsenges. Phys. Chem. 96, 1393–1401 (1992).
[CrossRef]

1991 (1)

1990 (1)

B. Attal-Tretout, P. Bouchardy, P. Magre, M. Pealat, J. P. Taran, “CARS in combustion: prospects and problems,” Appl. Phys. B 51, 17–24 (1990).
[CrossRef]

1989 (4)

1988 (1)

A. C. Eckbreth, “Nonlinear Raman spectroscopy for combustion diagnostics,” J. Quant. Spectrosc. Radiat. Transfer 40, 369–383 (1988).
[CrossRef]

1987 (2)

L. A. Rahn, R. E. Palmer, M. L. Koszykowski, D. A. Greenhalgh, “Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2,” Chem. Phys. Lett. 133, 513–516 (1987).
[CrossRef]

D. R. Snelling, T. Parameswaran, G. J. Smallwood, “Noise characteristics of single-shot broadband CARS signals,” Appl. Opt. 26, 4298–4302 (1987).
[CrossRef] [PubMed]

1985 (4)

1984 (1)

1983 (2)

1980 (1)

T. R. Gilson, I. R. Beattie, J. D. Black, D. A. Greenhalgh, S. N. Jenny, “Redetermination of some of the spectroscopic constants of the electronic ground state of di-nitrogen 14N2, 14N15N and 15N2 using coherent anti-Stokes Raman spectroscopy,” J. Raman Spectrosc. 9, 361–368 (1980).
[CrossRef]

1979 (2)

1978 (1)

A. C. Eckbreth, “BOXCARS: crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32, 421–423 (1978).
[CrossRef]

1977 (1)

S. Lederman, “The use of laser Raman diagnostics in flow fields and combustion,” Prog. Energy Combust. Sci. 3, 1–34 (1977).
[CrossRef]

1976 (1)

R. Bailly, M. Pealat, J. P. E. Taran, “Raman investigation of a subsonic jet,” Opt. Commun. 17, 68–73 (1976).
[CrossRef]

Alden, M.

Andresen, P.

G. Grünefeld, V. Beushausen, P. Andresen, W. Hentschel, “Spatially resolved Raman scattering for multi-species and temperature analysis in technically applied combustion systems: spray flame and four-cylinder in-line engine,” Appl. Phys. B 58, 333–342 (1994).
[CrossRef]

Attal-Tretout, B.

B. Attal-Tretout, P. Bouchardy, P. Magre, M. Pealat, J. P. Taran, “CARS in combustion: prospects and problems,” Appl. Phys. B 51, 17–24 (1990).
[CrossRef]

Bailly, R.

R. Bailly, M. Pealat, J. P. E. Taran, “Raman investigation of a subsonic jet,” Opt. Commun. 17, 68–73 (1976).
[CrossRef]

Beattie, I. R.

T. R. Gilson, I. R. Beattie, J. D. Black, D. A. Greenhalgh, S. N. Jenny, “Redetermination of some of the spectroscopic constants of the electronic ground state of di-nitrogen 14N2, 14N15N and 15N2 using coherent anti-Stokes Raman spectroscopy,” J. Raman Spectrosc. 9, 361–368 (1980).
[CrossRef]

Bengtsson, P.-E.

Beushausen, V.

G. Grünefeld, V. Beushausen, P. Andresen, W. Hentschel, “Spatially resolved Raman scattering for multi-species and temperature analysis in technically applied combustion systems: spray flame and four-cylinder in-line engine,” Appl. Phys. B 58, 333–342 (1994).
[CrossRef]

Black, J. D.

T. R. Gilson, I. R. Beattie, J. D. Black, D. A. Greenhalgh, S. N. Jenny, “Redetermination of some of the spectroscopic constants of the electronic ground state of di-nitrogen 14N2, 14N15N and 15N2 using coherent anti-Stokes Raman spectroscopy,” J. Raman Spectrosc. 9, 361–368 (1980).
[CrossRef]

Bouchardy, P.

B. Attal-Tretout, P. Bouchardy, P. Magre, M. Pealat, J. P. Taran, “CARS in combustion: prospects and problems,” Appl. Phys. B 51, 17–24 (1990).
[CrossRef]

Bradley, D.

D. Bradley, M. Lawes, M. J. Scott, C. G. W. Sheppard, D. A. Greenhalgh, P. M. Porter, “Measurement of temperature PDF’S in turbulent flames by the CARS technique,” in Proceedings of the Twenty-Forth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 527–535.
[CrossRef]

Brown, T. M.

Buschmann, A.

A. Buschmann, F. Dinkelacker, T. Schäfer, M. Schäfer, J. Wolfrum, “Measurement of the instantaneous detailed flame structure in turbulent premixed combustion,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996).
[CrossRef]

Chang, R. K.

Cheng, T.-S.

DeBarber, P. A.

Dinkelacker, F.

A. Buschmann, F. Dinkelacker, T. Schäfer, M. Schäfer, J. Wolfrum, “Measurement of the instantaneous detailed flame structure in turbulent premixed combustion,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996).
[CrossRef]

Drake, M. C.

M. C. Drake, G. M. Rosenblatt, “Rotational Raman scattering from premixed and diffusion flames,” Combust. Flame 33, 179–196 (1979).
[CrossRef]

M. C. Drake, M. Lapp, C. M. Penney, S. Warshaw, B. W. Gerhold, “Probability density functions and correlations of temperature and molecular concentrations in turbulent flames,” AIAA paper 81-0103 (American Institute of Aeronautics and Astronautics, New York, 1981).

Eckbreth, A. C.

A. C. Eckbreth, “Nonlinear Raman spectroscopy for combustion diagnostics,” J. Quant. Spectrosc. Radiat. Transfer 40, 369–383 (1988).
[CrossRef]

D. A. Murphy, M. B. Long, R. K. Chang, A. C. Eckbreth, “Spatially resolved coherent anti-Stokes Raman spectroscopy from a line across a CH4 jet,” Opt. Lett. 4, 167–169 (1979).
[CrossRef] [PubMed]

A. C. Eckbreth, “BOXCARS: crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32, 421–423 (1978).
[CrossRef]

J. H. Stufflebeam, A. C. Eckbreth, “CARS temperature and species measurements in propellant flames,” in Non-Intrusive Combustion Diagnostics, K. K. Kuo, T. P. Parr, eds. (Begell, New York, 1994), pp. 115–131.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Abacus, Cambridge, Mass., 1996).

Edner, H.

Escoda, M. C.

Farrow, R. I.

Fourguette, D. C.

Gerhold, B. W.

M. C. Drake, M. Lapp, C. M. Penney, S. Warshaw, B. W. Gerhold, “Probability density functions and correlations of temperature and molecular concentrations in turbulent flames,” AIAA paper 81-0103 (American Institute of Aeronautics and Astronautics, New York, 1981).

Gilson, T. R.

T. R. Gilson, I. R. Beattie, J. D. Black, D. A. Greenhalgh, S. N. Jenny, “Redetermination of some of the spectroscopic constants of the electronic ground state of di-nitrogen 14N2, 14N15N and 15N2 using coherent anti-Stokes Raman spectroscopy,” J. Raman Spectrosc. 9, 361–368 (1980).
[CrossRef]

Göttgens, J.

J. Göttgens, F. Mauss, “Flamet libraries—Description of the Data Format and Catalogue of Existing Libraries,” in Reduced Kinetic Mechanisms for Applications in Combustion Systems, N. Peters, B. Rogg, eds. (Springer-Verlag, Berlin, 1993), pp. 331–344.

Greenhalgh, D. A.

L. A. Rahn, R. E. Palmer, M. L. Koszykowski, D. A. Greenhalgh, “Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2,” Chem. Phys. Lett. 133, 513–516 (1987).
[CrossRef]

D. A. Greenhalgh, S. T. Whittley, “Mode noise in broadband CARS spectroscopy,” Appl. Opt. 24, 907–913 (1985).
[CrossRef] [PubMed]

T. R. Gilson, I. R. Beattie, J. D. Black, D. A. Greenhalgh, S. N. Jenny, “Redetermination of some of the spectroscopic constants of the electronic ground state of di-nitrogen 14N2, 14N15N and 15N2 using coherent anti-Stokes Raman spectroscopy,” J. Raman Spectrosc. 9, 361–368 (1980).
[CrossRef]

D. A. Greenhalgh, “Quantitative CARS spectroscopy,” in Advances in Nonlinear Spectroscopy, R. H. J. Clark, R. E. Hester, eds. (Wiley, Chichester, England, 1988), Vol. 15, pp. 193–251.

D. Bradley, M. Lawes, M. J. Scott, C. G. W. Sheppard, D. A. Greenhalgh, P. M. Porter, “Measurement of temperature PDF’S in turbulent flames by the CARS technique,” in Proceedings of the Twenty-Forth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 527–535.
[CrossRef]

Grünefeld, G.

G. Grünefeld, V. Beushausen, P. Andresen, W. Hentschel, “Spatially resolved Raman scattering for multi-species and temperature analysis in technically applied combustion systems: spray flame and four-cylinder in-line engine,” Appl. Phys. B 58, 333–342 (1994).
[CrossRef]

Hall, R. J.

Hassel, E. P.

Haumann, J.

Hentschel, W.

G. Grünefeld, V. Beushausen, P. Andresen, W. Hentschel, “Spatially resolved Raman scattering for multi-species and temperature analysis in technically applied combustion systems: spray flame and four-cylinder in-line engine,” Appl. Phys. B 58, 333–342 (1994).
[CrossRef]

Hirose, C.

Jenny, S. N.

T. R. Gilson, I. R. Beattie, J. D. Black, D. A. Greenhalgh, S. N. Jenny, “Redetermination of some of the spectroscopic constants of the electronic ground state of di-nitrogen 14N2, 14N15N and 15N2 using coherent anti-Stokes Raman spectroscopy,” J. Raman Spectrosc. 9, 361–368 (1980).
[CrossRef]

Jonuscheit, J.

J. Jonuscheit, A. Thumann, M. Schenk, T. Seeger, A. Leipertz, “One-dimensional vibrational coherent anti-Stokes–Raman-scattering thermometry,” Opt. Lett. 21, 1532–1534 (1996).
[CrossRef] [PubMed]

J. Jonuscheit, T. Seeger, A. Leipertz, “Nutzung von linearen und nichtlinearen Raman-Techniken in der Verbrennungs-diagnostik,” in Tenth Arbeitsberatung Ramanspektroskopie, Deutscher Arbeitskreis für Angewandte Spektroskopie: Fachgruppe Analytische Chemie der Gesellschaft deutscher Chemiker (Pädagogische Hochschule, Erfurt/Mühlhausen, Germany, 1995), pp. 5–8.

Kataoka, H.

Koszykowski, M. L.

L. A. Rahn, R. E. Palmer, M. L. Koszykowski, D. A. Greenhalgh, “Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2,” Chem. Phys. Lett. 133, 513–516 (1987).
[CrossRef]

M. L. Koszykowski, R. I. Farrow, R. E. Palmer, “Calculation of collisionally narrowed coherent anti-Stokes Raman spectroscopy spectra,” Opt. Lett. 10, 478–480 (1985).
[CrossRef] [PubMed]

Kröll, S.

Kurtz, A.

A. Kurtz, “Multipoint CARS,” Appl. Opt. 28, 5207–5209 (1989).
[CrossRef]

Lapp, M.

M. C. Drake, M. Lapp, C. M. Penney, S. Warshaw, B. W. Gerhold, “Probability density functions and correlations of temperature and molecular concentrations in turbulent flames,” AIAA paper 81-0103 (American Institute of Aeronautics and Astronautics, New York, 1981).

Lawes, M.

D. Bradley, M. Lawes, M. J. Scott, C. G. W. Sheppard, D. A. Greenhalgh, P. M. Porter, “Measurement of temperature PDF’S in turbulent flames by the CARS technique,” in Proceedings of the Twenty-Forth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 527–535.
[CrossRef]

Layne, C. B.

Lederman, S.

S. Lederman, “The use of laser Raman diagnostics in flow fields and combustion,” Prog. Energy Combust. Sci. 3, 1–34 (1977).
[CrossRef]

Leipertz, A.

T. Seeger, A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996).
[CrossRef] [PubMed]

J. Jonuscheit, A. Thumann, M. Schenk, T. Seeger, A. Leipertz, “One-dimensional vibrational coherent anti-Stokes–Raman-scattering thermometry,” Opt. Lett. 21, 1532–1534 (1996).
[CrossRef] [PubMed]

A. Thumann, T. Seeger, A. Leipertz, “Evaluation of two different gas temperatures and their volumetric fraction from broadband N2 coherent anti-Stokes Raman spectroscopy spectra,” Appl. Opt. 34, 3313–3317 (1995).
[CrossRef] [PubMed]

J. Haumann, A. Leipertz, “Giant-pulsed laser Raman oxygen measurements in a premixed laminar methane–air flame,” Appl. Opt. 24, 4509–4515 (1985).
[CrossRef]

A. Leipertz, “Raman processes and their application,” in Instrumentation for Combustion and Flow in Engine, D. F. G. Durao, J. H. Whitelaw, P. O. Witze, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 107–122.
[CrossRef]

J. Jonuscheit, T. Seeger, A. Leipertz, “Nutzung von linearen und nichtlinearen Raman-Techniken in der Verbrennungs-diagnostik,” in Tenth Arbeitsberatung Ramanspektroskopie, Deutscher Arbeitskreis für Angewandte Spektroskopie: Fachgruppe Analytische Chemie der Gesellschaft deutscher Chemiker (Pädagogische Hochschule, Erfurt/Mühlhausen, Germany, 1995), pp. 5–8.

Löfström, C.

Long, M. B.

Maeda, S.

Magens, E.

E. Magens, Nutzung von Rotations-CARS zur Temperatur-und Konzentrationsbestimmung in Flammen, Berichte zur Energie- und Verfahrenstechnik -BEV-, Heft 93.2 (Energie und Systemtechnik GmbH, Erlangen, Germany, 1993).

Magre, P.

B. Attal-Tretout, P. Bouchardy, P. Magre, M. Pealat, J. P. Taran, “CARS in combustion: prospects and problems,” Appl. Phys. B 51, 17–24 (1990).
[CrossRef]

Mauss, F.

J. Göttgens, F. Mauss, “Flamet libraries—Description of the Data Format and Catalogue of Existing Libraries,” in Reduced Kinetic Mechanisms for Applications in Combustion Systems, N. Peters, B. Rogg, eds. (Springer-Verlag, Berlin, 1993), pp. 331–344.

Meier, W.

S. Prucker, W. Meier, I. Plath, W. Stricker, “The use of a flashlamp-pumped dye laser for single-pulse spontaneous Raman scattering in flames,” Ber. Bunsenges. Phys. Chem. 96, 1393–1401 (1992).
[CrossRef]

Murphy, D. A.

Nandula, S. P.

Nilsson, D.

Palmer, R. E.

L. A. Rahn, R. E. Palmer, M. L. Koszykowski, D. A. Greenhalgh, “Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2,” Chem. Phys. Lett. 133, 513–516 (1987).
[CrossRef]

M. L. Koszykowski, R. I. Farrow, R. E. Palmer, “Calculation of collisionally narrowed coherent anti-Stokes Raman spectroscopy spectra,” Opt. Lett. 10, 478–480 (1985).
[CrossRef] [PubMed]

Parameswaran, T.

Pealat, M.

B. Attal-Tretout, P. Bouchardy, P. Magre, M. Pealat, J. P. Taran, “CARS in combustion: prospects and problems,” Appl. Phys. B 51, 17–24 (1990).
[CrossRef]

R. Bailly, M. Pealat, J. P. E. Taran, “Raman investigation of a subsonic jet,” Opt. Commun. 17, 68–73 (1976).
[CrossRef]

Penney, C. M.

M. C. Drake, M. Lapp, C. M. Penney, S. Warshaw, B. W. Gerhold, “Probability density functions and correlations of temperature and molecular concentrations in turbulent flames,” AIAA paper 81-0103 (American Institute of Aeronautics and Astronautics, New York, 1981).

Pitz, R. W.

Plath, I.

S. Prucker, W. Meier, I. Plath, W. Stricker, “The use of a flashlamp-pumped dye laser for single-pulse spontaneous Raman scattering in flames,” Ber. Bunsenges. Phys. Chem. 96, 1393–1401 (1992).
[CrossRef]

Porter, P. M.

D. Bradley, M. Lawes, M. J. Scott, C. G. W. Sheppard, D. A. Greenhalgh, P. M. Porter, “Measurement of temperature PDF’S in turbulent flames by the CARS technique,” in Proceedings of the Twenty-Forth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 527–535.
[CrossRef]

Prucker, S.

S. Prucker, W. Meier, I. Plath, W. Stricker, “The use of a flashlamp-pumped dye laser for single-pulse spontaneous Raman scattering in flames,” Ber. Bunsenges. Phys. Chem. 96, 1393–1401 (1992).
[CrossRef]

Rahn, L. A.

L. A. Rahn, R. E. Palmer, M. L. Koszykowski, D. A. Greenhalgh, “Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2,” Chem. Phys. Lett. 133, 513–516 (1987).
[CrossRef]

Rosenblatt, G. M.

M. C. Drake, G. M. Rosenblatt, “Rotational Raman scattering from premixed and diffusion flames,” Combust. Flame 33, 179–196 (1979).
[CrossRef]

Sawchuk, R. A.

Schäfer, M.

A. Buschmann, F. Dinkelacker, T. Schäfer, M. Schäfer, J. Wolfrum, “Measurement of the instantaneous detailed flame structure in turbulent premixed combustion,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996).
[CrossRef]

Schäfer, T.

A. Buschmann, F. Dinkelacker, T. Schäfer, M. Schäfer, J. Wolfrum, “Measurement of the instantaneous detailed flame structure in turbulent premixed combustion,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996).
[CrossRef]

Schenk, M.

Scott, M. J.

D. Bradley, M. Lawes, M. J. Scott, C. G. W. Sheppard, D. A. Greenhalgh, P. M. Porter, “Measurement of temperature PDF’S in turbulent flames by the CARS technique,” in Proceedings of the Twenty-Forth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 527–535.
[CrossRef]

Seeger, T.

Sheppard, C. G. W.

D. Bradley, M. Lawes, M. J. Scott, C. G. W. Sheppard, D. A. Greenhalgh, P. M. Porter, “Measurement of temperature PDF’S in turbulent flames by the CARS technique,” in Proceedings of the Twenty-Forth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 527–535.
[CrossRef]

Smallwood, G. J.

Snelling, D. R.

Snow, J. B.

Stricker, W.

S. Prucker, W. Meier, I. Plath, W. Stricker, “The use of a flashlamp-pumped dye laser for single-pulse spontaneous Raman scattering in flames,” Ber. Bunsenges. Phys. Chem. 96, 1393–1401 (1992).
[CrossRef]

Stufflebeam, J. H.

J. H. Stufflebeam, A. C. Eckbreth, “CARS temperature and species measurements in propellant flames,” in Non-Intrusive Combustion Diagnostics, K. K. Kuo, T. P. Parr, eds. (Begell, New York, 1994), pp. 115–131.

Taran, J. P.

B. Attal-Tretout, P. Bouchardy, P. Magre, M. Pealat, J. P. Taran, “CARS in combustion: prospects and problems,” Appl. Phys. B 51, 17–24 (1990).
[CrossRef]

Taran, J. P. E.

R. Bailly, M. Pealat, J. P. E. Taran, “Raman investigation of a subsonic jet,” Opt. Commun. 17, 68–73 (1976).
[CrossRef]

Tecu, K. S.

J. A. Wehrmayer, S. Yeralan, K. S. Tecu, “Linewise Raman–Stokes/anti-Stokes temperature measurements in flames using an unintensified charge-coupled device,” Appl. Phys. B 62, 21–27 (1996).
[CrossRef]

Teets, R. E.

Thumann, A.

Warshaw, S.

M. C. Drake, M. Lapp, C. M. Penney, S. Warshaw, B. W. Gerhold, “Probability density functions and correlations of temperature and molecular concentrations in turbulent flames,” AIAA paper 81-0103 (American Institute of Aeronautics and Astronautics, New York, 1981).

Wehrmayer, J. A.

J. A. Wehrmayer, S. Yeralan, K. S. Tecu, “Linewise Raman–Stokes/anti-Stokes temperature measurements in flames using an unintensified charge-coupled device,” Appl. Phys. B 62, 21–27 (1996).
[CrossRef]

Wehrmeyer, J. A.

Whittley, S. T.

Wolfrum, J.

A. Buschmann, F. Dinkelacker, T. Schäfer, M. Schäfer, J. Wolfrum, “Measurement of the instantaneous detailed flame structure in turbulent premixed combustion,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996).
[CrossRef]

Yeralan, S.

J. A. Wehrmayer, S. Yeralan, K. S. Tecu, “Linewise Raman–Stokes/anti-Stokes temperature measurements in flames using an unintensified charge-coupled device,” Appl. Phys. B 62, 21–27 (1996).
[CrossRef]

Zheng, J.-B.

Appl. Opt. (11)

A. Kurtz, “Multipoint CARS,” Appl. Opt. 28, 5207–5209 (1989).
[CrossRef]

D. A. Greenhalgh, S. T. Whittley, “Mode noise in broadband CARS spectroscopy,” Appl. Opt. 24, 907–913 (1985).
[CrossRef] [PubMed]

J. Haumann, A. Leipertz, “Giant-pulsed laser Raman oxygen measurements in a premixed laminar methane–air flame,” Appl. Opt. 24, 4509–4515 (1985).
[CrossRef]

D. R. Snelling, T. Parameswaran, G. J. Smallwood, “Noise characteristics of single-shot broadband CARS signals,” Appl. Opt. 26, 4298–4302 (1987).
[CrossRef] [PubMed]

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, “Nonlinearity and image persistence of P-20 phosphor-based Intensified photodiode array detectors used in CARS spectroscopy,” Appl. Opt. 28, 3226–3232 (1989).
[CrossRef] [PubMed]

D. R. Snelling, G. J. Smallwood, T. Parameswaran, “Effect of detector nonlinearity and image persistence on CARS derived temperatures,” Appl. Opt. 28, 3233–3241 (1989).
[CrossRef] [PubMed]

J. A. Wehrmeyer, T.-S. Cheng, R. W. Pitz, “Raman scattering measurements in flames using a tunable KrF excimer laser,” Appl. Opt. 31, 1495–1504 (1992).
[CrossRef] [PubMed]

E. P. Hassel, “Ultraviolet Raman-scattering measurements in flames by use of a narrowband XeCl excimer laser,” Appl. Opt. 32, 4058–4065 (1993).
[CrossRef] [PubMed]

A. Thumann, T. Seeger, A. Leipertz, “Evaluation of two different gas temperatures and their volumetric fraction from broadband N2 coherent anti-Stokes Raman spectroscopy spectra,” Appl. Opt. 34, 3313–3317 (1995).
[CrossRef] [PubMed]

T. Seeger, A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996).
[CrossRef] [PubMed]

M. Alden, P.-E. Bengtsson, H. Edner, S. Kröll, D. Nilsson, “Rotational CARS: a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206–3219 (1989).
[CrossRef] [PubMed]

Appl. Phys. B (3)

B. Attal-Tretout, P. Bouchardy, P. Magre, M. Pealat, J. P. Taran, “CARS in combustion: prospects and problems,” Appl. Phys. B 51, 17–24 (1990).
[CrossRef]

G. Grünefeld, V. Beushausen, P. Andresen, W. Hentschel, “Spatially resolved Raman scattering for multi-species and temperature analysis in technically applied combustion systems: spray flame and four-cylinder in-line engine,” Appl. Phys. B 58, 333–342 (1994).
[CrossRef]

J. A. Wehrmayer, S. Yeralan, K. S. Tecu, “Linewise Raman–Stokes/anti-Stokes temperature measurements in flames using an unintensified charge-coupled device,” Appl. Phys. B 62, 21–27 (1996).
[CrossRef]

Appl. Phys. Lett. (1)

A. C. Eckbreth, “BOXCARS: crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32, 421–423 (1978).
[CrossRef]

Appl. Spectrosc. (1)

Ber. Bunsenges. Phys. Chem. (1)

S. Prucker, W. Meier, I. Plath, W. Stricker, “The use of a flashlamp-pumped dye laser for single-pulse spontaneous Raman scattering in flames,” Ber. Bunsenges. Phys. Chem. 96, 1393–1401 (1992).
[CrossRef]

Chem. Phys. Lett. (1)

L. A. Rahn, R. E. Palmer, M. L. Koszykowski, D. A. Greenhalgh, “Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2,” Chem. Phys. Lett. 133, 513–516 (1987).
[CrossRef]

Combust. Flame (1)

M. C. Drake, G. M. Rosenblatt, “Rotational Raman scattering from premixed and diffusion flames,” Combust. Flame 33, 179–196 (1979).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

A. C. Eckbreth, “Nonlinear Raman spectroscopy for combustion diagnostics,” J. Quant. Spectrosc. Radiat. Transfer 40, 369–383 (1988).
[CrossRef]

J. Raman Spectrosc. (1)

T. R. Gilson, I. R. Beattie, J. D. Black, D. A. Greenhalgh, S. N. Jenny, “Redetermination of some of the spectroscopic constants of the electronic ground state of di-nitrogen 14N2, 14N15N and 15N2 using coherent anti-Stokes Raman spectroscopy,” J. Raman Spectrosc. 9, 361–368 (1980).
[CrossRef]

Opt. Commun. (1)

R. Bailly, M. Pealat, J. P. E. Taran, “Raman investigation of a subsonic jet,” Opt. Commun. 17, 68–73 (1976).
[CrossRef]

Opt. Lett. (7)

Prog. Energy Combust. Sci. (1)

S. Lederman, “The use of laser Raman diagnostics in flow fields and combustion,” Prog. Energy Combust. Sci. 3, 1–34 (1977).
[CrossRef]

Other (12)

A. Leipertz, “Raman processes and their application,” in Instrumentation for Combustion and Flow in Engine, D. F. G. Durao, J. H. Whitelaw, P. O. Witze, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 107–122.
[CrossRef]

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Abacus, Cambridge, Mass., 1996).

M. Lapp, C. M. Penney, eds., Laser Raman Gas Diagnostics (Plenum, New York, 1974).
[CrossRef]

M. C. Drake, M. Lapp, C. M. Penney, S. Warshaw, B. W. Gerhold, “Probability density functions and correlations of temperature and molecular concentrations in turbulent flames,” AIAA paper 81-0103 (American Institute of Aeronautics and Astronautics, New York, 1981).

A. B. Harvey, ed., Chemical Applications of Nonlinear Raman Spectroscopy (Academic, New York, 1981).

D. A. Greenhalgh, “Quantitative CARS spectroscopy,” in Advances in Nonlinear Spectroscopy, R. H. J. Clark, R. E. Hester, eds. (Wiley, Chichester, England, 1988), Vol. 15, pp. 193–251.

J. Jonuscheit, T. Seeger, A. Leipertz, “Nutzung von linearen und nichtlinearen Raman-Techniken in der Verbrennungs-diagnostik,” in Tenth Arbeitsberatung Ramanspektroskopie, Deutscher Arbeitskreis für Angewandte Spektroskopie: Fachgruppe Analytische Chemie der Gesellschaft deutscher Chemiker (Pädagogische Hochschule, Erfurt/Mühlhausen, Germany, 1995), pp. 5–8.

J. H. Stufflebeam, A. C. Eckbreth, “CARS temperature and species measurements in propellant flames,” in Non-Intrusive Combustion Diagnostics, K. K. Kuo, T. P. Parr, eds. (Begell, New York, 1994), pp. 115–131.

D. Bradley, M. Lawes, M. J. Scott, C. G. W. Sheppard, D. A. Greenhalgh, P. M. Porter, “Measurement of temperature PDF’S in turbulent flames by the CARS technique,” in Proceedings of the Twenty-Forth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 527–535.
[CrossRef]

E. Magens, Nutzung von Rotations-CARS zur Temperatur-und Konzentrationsbestimmung in Flammen, Berichte zur Energie- und Verfahrenstechnik -BEV-, Heft 93.2 (Energie und Systemtechnik GmbH, Erlangen, Germany, 1993).

A. Buschmann, F. Dinkelacker, T. Schäfer, M. Schäfer, J. Wolfrum, “Measurement of the instantaneous detailed flame structure in turbulent premixed combustion,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996).
[CrossRef]

J. Göttgens, F. Mauss, “Flamet libraries—Description of the Data Format and Catalogue of Existing Libraries,” in Reduced Kinetic Mechanisms for Applications in Combustion Systems, N. Peters, B. Rogg, eds. (Springer-Verlag, Berlin, 1993), pp. 331–344.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Planar BOXCARS phase-matching geometry of vibrational 1D CARS.

Fig. 2
Fig. 2

Comparison of the temporally averaged mean values of pointwise CARS and 1D CARS at one selected spatial position (pixel number 35).

Fig. 3
Fig. 3

Temperature histograms of 1D CARS for four different set oven temperatures at the select spatial position (pixel number 35).

Fig. 4
Fig. 4

Temporally averaged mean values and standard deviations of 1D CARS measurements inside a temperature-stabilized oven (horizontal lines, set oven temperatures; solid curves, mean values; dashed curves, margins of the standard deviation).

Fig. 5
Fig. 5

Spatially averaged mean values and standard deviations of 1D CARS measurements inside a temperature-stabilized oven (horizontal lines, set oven temperatures; solid curves, mean values; dashed curves, margins of the standard deviation).

Fig. 6
Fig. 6

Intensity distribution of a single-pulse 1D CARS image taken in (a) a laminar premixed CH4–air flame at atmospheric pressure, (b) room air.

Fig. 7
Fig. 7

Radial temperature distribution crossing the flame front of a laminar premixed CH4–air flame at atmospheric pressure evalutated from the single-pulse 1D CARS measurement shown in Fig. 6(a).

Fig. 8
Fig. 8

Radial temperature distribution (mean values and standard deviations) evaluated from 20 single-pulse 1D CARS measurements along the same line indicated in Fig. 7.

Metrics