Abstract

An experimental technique is presented that both minimizes and accounts for the interference background when laser-induced-fluorescence (LIF) measurements are made of NO in lean, high-pressure, premixed, CH4/O2/N2 flames. Measurement interferences such as fluorescence and Raman scattering from secondary species become increasingly important for high-pressure LIF studies. O2 fluorescence interferences are particularly troublesome in lean premixed flames. An excitation–detection scheme that minimizes the effects of these interferences is identified. A procedure that corrects the resulting LIF signal so as to account for any remaining interference signal is then developed. This correction is found to vary from less than 10% of the overall NO signal at atmospheric pressure to over 40% of the overall signal at 14.6 atm for LIF measurements of NO in a series of worst-case flames (ϕ = 0.6, dilution ratio 2.2). The correction technique is further demonstrated to be portable over a useful range of flame conditions at each pressure.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. Battles, J. M. Seitzman, R. K. Hanson, “Quantitative planar laser-induced fluorescence imaging of radical species in high pressure flames,” presented at the 23rd AIAA Aerospace Sciences Meeting, Reno, Nev., 10–13 January 1994, paper AIAA-94-0229.
  2. J. R. Reisel, C. D. Carter, N. M. Laurendeau, M. C. Drake, “Laser-saturated fluorescence measurements of nitric oxide in laminar, flat, C2H6/O 2/N2 flames at atmospheric pressure,” Combust. Sci. Technol. 91, 271–295 (1993).
    [CrossRef]
  3. J. R. Reisel, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide formation in high-pressure flames,” Combust. Sci. Technol. 98, 137–160 (1994).
    [CrossRef]
  4. W. P. Partridge, M. S. Klassen, D. D. Thomsen, N. M. Laurendeau, “Experimental assessment of O2 interferences on laser-induced fluorescence measurements of NO in high-pressure, lean premixed flames by use of narrow-band and broadband detection,” Appl. Opt. 34, 4890–4904 (1996).
    [CrossRef]
  5. P. H. Krupenie, “The spectrum of molecular oxygen,” J. Phys. Chem. Ref. Data 1, 423–534 (1972).
    [CrossRef]
  6. C. D. Carter, R. S. Barlow, “Simultaneous measurements of NO, OH, and the major species in turbulent flames,” Opt. Lett. 19, 299–301 (1994).
    [CrossRef] [PubMed]
  7. D. M. Creek, R. W. Nicholls, “A comprehensive re-analysis of the O2 (B3 Σu-–X3 Σg-) Schumann-Runge band system,” Proc. R. Soc. London Ser. A 341, 517–536 (1975).
    [CrossRef]
  8. J. E. M. Goldsmith, R. J. M. Anderson, “Laser-induced fluorescence spectroscopy and imaging of molecular oxygen in flames,” Opt. Lett. 11, 67–69 (1986).
    [CrossRef] [PubMed]
  9. I. J. Wysong, J. B. Jeffries, D. R. Crosley, “Laser-induced fluorescence of O(3p3P), O2, and NO near 226 nm: photolytic interferences and simultaneous excitation in flames,” Opt. Lett. 14, 767–769 (1989).
    [CrossRef]
  10. M. P. Lee, R. K. Hanson, “Calculations of O2 absorption and fluorescence at elevated temperatures for a broadband argon-fluoride laser source at 193 nm,” J. Quant. Spectrosc. Radiat. Transfer 36, 425–440 (1986).
    [CrossRef]
  11. C. D. Carter, G. B. King, N. M. Laurendeau, “A combustion facility for high-pressure flame studies by spectroscopic methods,” Rev. Sci. Instrum. 60, 2606–2609 (1989).
    [CrossRef]
  12. J. M. Harris, F. E. Lytle, T. C. McCain, “Squirrel-cage photomultiplier base design for measurements of nanosecond fluorescence decays,” Anal. Chem. 48, 2095–2098 (1976).
    [CrossRef]
  13. J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurements and modeling of nitric oxide in high-pressure C2H4/O 2/N2 flames,” Combust. Flame 101, 141–152 (1995).
    [CrossRef]
  14. J. R. Reisel, W. P. Partridge, N. M. Laurendeau, “Transportability of a laser-induced fluorescence calibration for NO at high pressure,” J. Quant. Spectrosc. Radiat. Transfer 53, 165–178 (1995).
    [CrossRef]
  15. V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the O2B3Σu- state,” Chem. Phys. Lett. 249, 335–340 (1996).
    [CrossRef]

1996

W. P. Partridge, M. S. Klassen, D. D. Thomsen, N. M. Laurendeau, “Experimental assessment of O2 interferences on laser-induced fluorescence measurements of NO in high-pressure, lean premixed flames by use of narrow-band and broadband detection,” Appl. Opt. 34, 4890–4904 (1996).
[CrossRef]

V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the O2B3Σu- state,” Chem. Phys. Lett. 249, 335–340 (1996).
[CrossRef]

1995

J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurements and modeling of nitric oxide in high-pressure C2H4/O 2/N2 flames,” Combust. Flame 101, 141–152 (1995).
[CrossRef]

J. R. Reisel, W. P. Partridge, N. M. Laurendeau, “Transportability of a laser-induced fluorescence calibration for NO at high pressure,” J. Quant. Spectrosc. Radiat. Transfer 53, 165–178 (1995).
[CrossRef]

1994

J. R. Reisel, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide formation in high-pressure flames,” Combust. Sci. Technol. 98, 137–160 (1994).
[CrossRef]

C. D. Carter, R. S. Barlow, “Simultaneous measurements of NO, OH, and the major species in turbulent flames,” Opt. Lett. 19, 299–301 (1994).
[CrossRef] [PubMed]

1993

J. R. Reisel, C. D. Carter, N. M. Laurendeau, M. C. Drake, “Laser-saturated fluorescence measurements of nitric oxide in laminar, flat, C2H6/O 2/N2 flames at atmospheric pressure,” Combust. Sci. Technol. 91, 271–295 (1993).
[CrossRef]

1989

I. J. Wysong, J. B. Jeffries, D. R. Crosley, “Laser-induced fluorescence of O(3p3P), O2, and NO near 226 nm: photolytic interferences and simultaneous excitation in flames,” Opt. Lett. 14, 767–769 (1989).
[CrossRef]

C. D. Carter, G. B. King, N. M. Laurendeau, “A combustion facility for high-pressure flame studies by spectroscopic methods,” Rev. Sci. Instrum. 60, 2606–2609 (1989).
[CrossRef]

1986

J. E. M. Goldsmith, R. J. M. Anderson, “Laser-induced fluorescence spectroscopy and imaging of molecular oxygen in flames,” Opt. Lett. 11, 67–69 (1986).
[CrossRef] [PubMed]

M. P. Lee, R. K. Hanson, “Calculations of O2 absorption and fluorescence at elevated temperatures for a broadband argon-fluoride laser source at 193 nm,” J. Quant. Spectrosc. Radiat. Transfer 36, 425–440 (1986).
[CrossRef]

1976

J. M. Harris, F. E. Lytle, T. C. McCain, “Squirrel-cage photomultiplier base design for measurements of nanosecond fluorescence decays,” Anal. Chem. 48, 2095–2098 (1976).
[CrossRef]

1975

D. M. Creek, R. W. Nicholls, “A comprehensive re-analysis of the O2 (B3 Σu-–X3 Σg-) Schumann-Runge band system,” Proc. R. Soc. London Ser. A 341, 517–536 (1975).
[CrossRef]

1972

P. H. Krupenie, “The spectrum of molecular oxygen,” J. Phys. Chem. Ref. Data 1, 423–534 (1972).
[CrossRef]

Anderson, R. J. M.

Barlow, R. S.

Battles, B. E.

B. E. Battles, J. M. Seitzman, R. K. Hanson, “Quantitative planar laser-induced fluorescence imaging of radical species in high pressure flames,” presented at the 23rd AIAA Aerospace Sciences Meeting, Reno, Nev., 10–13 January 1994, paper AIAA-94-0229.

Carter, C. D.

C. D. Carter, R. S. Barlow, “Simultaneous measurements of NO, OH, and the major species in turbulent flames,” Opt. Lett. 19, 299–301 (1994).
[CrossRef] [PubMed]

J. R. Reisel, C. D. Carter, N. M. Laurendeau, M. C. Drake, “Laser-saturated fluorescence measurements of nitric oxide in laminar, flat, C2H6/O 2/N2 flames at atmospheric pressure,” Combust. Sci. Technol. 91, 271–295 (1993).
[CrossRef]

C. D. Carter, G. B. King, N. M. Laurendeau, “A combustion facility for high-pressure flame studies by spectroscopic methods,” Rev. Sci. Instrum. 60, 2606–2609 (1989).
[CrossRef]

Creek, D. M.

D. M. Creek, R. W. Nicholls, “A comprehensive re-analysis of the O2 (B3 Σu-–X3 Σg-) Schumann-Runge band system,” Proc. R. Soc. London Ser. A 341, 517–536 (1975).
[CrossRef]

Crosley, D. R.

Decker, M.

V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the O2B3Σu- state,” Chem. Phys. Lett. 249, 335–340 (1996).
[CrossRef]

Drake, M. C.

J. R. Reisel, C. D. Carter, N. M. Laurendeau, M. C. Drake, “Laser-saturated fluorescence measurements of nitric oxide in laminar, flat, C2H6/O 2/N2 flames at atmospheric pressure,” Combust. Sci. Technol. 91, 271–295 (1993).
[CrossRef]

Goldsmith, J. E. M.

Hanson, R. K.

M. P. Lee, R. K. Hanson, “Calculations of O2 absorption and fluorescence at elevated temperatures for a broadband argon-fluoride laser source at 193 nm,” J. Quant. Spectrosc. Radiat. Transfer 36, 425–440 (1986).
[CrossRef]

B. E. Battles, J. M. Seitzman, R. K. Hanson, “Quantitative planar laser-induced fluorescence imaging of radical species in high pressure flames,” presented at the 23rd AIAA Aerospace Sciences Meeting, Reno, Nev., 10–13 January 1994, paper AIAA-94-0229.

Harris, J. M.

J. M. Harris, F. E. Lytle, T. C. McCain, “Squirrel-cage photomultiplier base design for measurements of nanosecond fluorescence decays,” Anal. Chem. 48, 2095–2098 (1976).
[CrossRef]

Heinze, J.

V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the O2B3Σu- state,” Chem. Phys. Lett. 249, 335–340 (1996).
[CrossRef]

Jeffries, J. B.

King, G. B.

C. D. Carter, G. B. King, N. M. Laurendeau, “A combustion facility for high-pressure flame studies by spectroscopic methods,” Rev. Sci. Instrum. 60, 2606–2609 (1989).
[CrossRef]

Klassen, M. S.

W. P. Partridge, M. S. Klassen, D. D. Thomsen, N. M. Laurendeau, “Experimental assessment of O2 interferences on laser-induced fluorescence measurements of NO in high-pressure, lean premixed flames by use of narrow-band and broadband detection,” Appl. Opt. 34, 4890–4904 (1996).
[CrossRef]

Krupenie, P. H.

P. H. Krupenie, “The spectrum of molecular oxygen,” J. Phys. Chem. Ref. Data 1, 423–534 (1972).
[CrossRef]

Laurendeau, N. M.

W. P. Partridge, M. S. Klassen, D. D. Thomsen, N. M. Laurendeau, “Experimental assessment of O2 interferences on laser-induced fluorescence measurements of NO in high-pressure, lean premixed flames by use of narrow-band and broadband detection,” Appl. Opt. 34, 4890–4904 (1996).
[CrossRef]

J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurements and modeling of nitric oxide in high-pressure C2H4/O 2/N2 flames,” Combust. Flame 101, 141–152 (1995).
[CrossRef]

J. R. Reisel, W. P. Partridge, N. M. Laurendeau, “Transportability of a laser-induced fluorescence calibration for NO at high pressure,” J. Quant. Spectrosc. Radiat. Transfer 53, 165–178 (1995).
[CrossRef]

J. R. Reisel, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide formation in high-pressure flames,” Combust. Sci. Technol. 98, 137–160 (1994).
[CrossRef]

J. R. Reisel, C. D. Carter, N. M. Laurendeau, M. C. Drake, “Laser-saturated fluorescence measurements of nitric oxide in laminar, flat, C2H6/O 2/N2 flames at atmospheric pressure,” Combust. Sci. Technol. 91, 271–295 (1993).
[CrossRef]

C. D. Carter, G. B. King, N. M. Laurendeau, “A combustion facility for high-pressure flame studies by spectroscopic methods,” Rev. Sci. Instrum. 60, 2606–2609 (1989).
[CrossRef]

Lee, M. P.

M. P. Lee, R. K. Hanson, “Calculations of O2 absorption and fluorescence at elevated temperatures for a broadband argon-fluoride laser source at 193 nm,” J. Quant. Spectrosc. Radiat. Transfer 36, 425–440 (1986).
[CrossRef]

Lytle, F. E.

J. M. Harris, F. E. Lytle, T. C. McCain, “Squirrel-cage photomultiplier base design for measurements of nanosecond fluorescence decays,” Anal. Chem. 48, 2095–2098 (1976).
[CrossRef]

McCain, T. C.

J. M. Harris, F. E. Lytle, T. C. McCain, “Squirrel-cage photomultiplier base design for measurements of nanosecond fluorescence decays,” Anal. Chem. 48, 2095–2098 (1976).
[CrossRef]

Nicholls, R. W.

D. M. Creek, R. W. Nicholls, “A comprehensive re-analysis of the O2 (B3 Σu-–X3 Σg-) Schumann-Runge band system,” Proc. R. Soc. London Ser. A 341, 517–536 (1975).
[CrossRef]

Partridge, W. P.

W. P. Partridge, M. S. Klassen, D. D. Thomsen, N. M. Laurendeau, “Experimental assessment of O2 interferences on laser-induced fluorescence measurements of NO in high-pressure, lean premixed flames by use of narrow-band and broadband detection,” Appl. Opt. 34, 4890–4904 (1996).
[CrossRef]

J. R. Reisel, W. P. Partridge, N. M. Laurendeau, “Transportability of a laser-induced fluorescence calibration for NO at high pressure,” J. Quant. Spectrosc. Radiat. Transfer 53, 165–178 (1995).
[CrossRef]

Reisel, J. R.

J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurements and modeling of nitric oxide in high-pressure C2H4/O 2/N2 flames,” Combust. Flame 101, 141–152 (1995).
[CrossRef]

J. R. Reisel, W. P. Partridge, N. M. Laurendeau, “Transportability of a laser-induced fluorescence calibration for NO at high pressure,” J. Quant. Spectrosc. Radiat. Transfer 53, 165–178 (1995).
[CrossRef]

J. R. Reisel, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide formation in high-pressure flames,” Combust. Sci. Technol. 98, 137–160 (1994).
[CrossRef]

J. R. Reisel, C. D. Carter, N. M. Laurendeau, M. C. Drake, “Laser-saturated fluorescence measurements of nitric oxide in laminar, flat, C2H6/O 2/N2 flames at atmospheric pressure,” Combust. Sci. Technol. 91, 271–295 (1993).
[CrossRef]

Seitzman, J. M.

B. E. Battles, J. M. Seitzman, R. K. Hanson, “Quantitative planar laser-induced fluorescence imaging of radical species in high pressure flames,” presented at the 23rd AIAA Aerospace Sciences Meeting, Reno, Nev., 10–13 January 1994, paper AIAA-94-0229.

Sick, V.

V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the O2B3Σu- state,” Chem. Phys. Lett. 249, 335–340 (1996).
[CrossRef]

Stricker, W.

V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the O2B3Σu- state,” Chem. Phys. Lett. 249, 335–340 (1996).
[CrossRef]

Thomsen, D. D.

W. P. Partridge, M. S. Klassen, D. D. Thomsen, N. M. Laurendeau, “Experimental assessment of O2 interferences on laser-induced fluorescence measurements of NO in high-pressure, lean premixed flames by use of narrow-band and broadband detection,” Appl. Opt. 34, 4890–4904 (1996).
[CrossRef]

Wysong, I. J.

Anal. Chem.

J. M. Harris, F. E. Lytle, T. C. McCain, “Squirrel-cage photomultiplier base design for measurements of nanosecond fluorescence decays,” Anal. Chem. 48, 2095–2098 (1976).
[CrossRef]

Appl. Opt.

W. P. Partridge, M. S. Klassen, D. D. Thomsen, N. M. Laurendeau, “Experimental assessment of O2 interferences on laser-induced fluorescence measurements of NO in high-pressure, lean premixed flames by use of narrow-band and broadband detection,” Appl. Opt. 34, 4890–4904 (1996).
[CrossRef]

Chem. Phys. Lett.

V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the O2B3Σu- state,” Chem. Phys. Lett. 249, 335–340 (1996).
[CrossRef]

Combust. Flame

J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurements and modeling of nitric oxide in high-pressure C2H4/O 2/N2 flames,” Combust. Flame 101, 141–152 (1995).
[CrossRef]

Combust. Sci. Technol.

J. R. Reisel, C. D. Carter, N. M. Laurendeau, M. C. Drake, “Laser-saturated fluorescence measurements of nitric oxide in laminar, flat, C2H6/O 2/N2 flames at atmospheric pressure,” Combust. Sci. Technol. 91, 271–295 (1993).
[CrossRef]

J. R. Reisel, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide formation in high-pressure flames,” Combust. Sci. Technol. 98, 137–160 (1994).
[CrossRef]

J. Phys. Chem. Ref. Data

P. H. Krupenie, “The spectrum of molecular oxygen,” J. Phys. Chem. Ref. Data 1, 423–534 (1972).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

J. R. Reisel, W. P. Partridge, N. M. Laurendeau, “Transportability of a laser-induced fluorescence calibration for NO at high pressure,” J. Quant. Spectrosc. Radiat. Transfer 53, 165–178 (1995).
[CrossRef]

M. P. Lee, R. K. Hanson, “Calculations of O2 absorption and fluorescence at elevated temperatures for a broadband argon-fluoride laser source at 193 nm,” J. Quant. Spectrosc. Radiat. Transfer 36, 425–440 (1986).
[CrossRef]

Opt. Lett.

Proc. R. Soc. London Ser. A

D. M. Creek, R. W. Nicholls, “A comprehensive re-analysis of the O2 (B3 Σu-–X3 Σg-) Schumann-Runge band system,” Proc. R. Soc. London Ser. A 341, 517–536 (1975).
[CrossRef]

Rev. Sci. Instrum.

C. D. Carter, G. B. King, N. M. Laurendeau, “A combustion facility for high-pressure flame studies by spectroscopic methods,” Rev. Sci. Instrum. 60, 2606–2609 (1989).
[CrossRef]

Other

B. E. Battles, J. M. Seitzman, R. K. Hanson, “Quantitative planar laser-induced fluorescence imaging of radical species in high pressure flames,” presented at the 23rd AIAA Aerospace Sciences Meeting, Reno, Nev., 10–13 January 1994, paper AIAA-94-0229.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of experimental apparatus: A, trigger photodiode; B,D, beam splitters; C, 1000-mm focal-length lens; E, power-monitoring photodiode; F,K, beam-steering assemblies; G, aperture; H, pressure vessel; I, beam dump; J, 200-mm focal-length lens; L, 300-mm focal-length lens; M, 1/2-m monochromator; N, photomultiplier tube.

Fig. 2
Fig. 2

Excitation scans in atmospheric, 0.6 equivalence ratio, 2.2 dilution ratio, premixed CH4 flames with (a) Ar diluent, (b) N2 diluent. The Q 2(26.5) transition of NO is labeled in both spectra as well as two possible locations for background off-line excitation (B 1 and B 2). Regions of broadband interference background (A 0, A 1, and A 2) are also identified in (a).

Fig. 3
Fig. 3

Excitation scans in 14.6-atm, 0.6 equivalence ratio, 2.2 dilution ratio, premixed CH4 flames with (a) Ar diluent, (b) N2 diluent, (c) N2 diluent with additional doped NO. The Q 2(26.5) transition is labeled as well as two possible locations for background off-line excitation (B 1 and B 2). Regions of broadband interference background (A 0, A 1, and A 2) are also identified in (a).

Fig. 4
Fig. 4

Detection scans in (a) NO-doped, (b) undoped 0.6 equivalence ratio, 2.2 dilution ratio, premixed CH4/O2/N2 flames at pressures from 1 to 14.6 atm. Excitation is by means of the Q 2(26.5) transition of NO (∼225.57 nm). A proposed detection window for use in LIF measurements is also identified.

Fig. 5
Fig. 5

Sample calibration curve for high-pressure LIF measurements of NO.

Fig. 6
Fig. 6

Comparison between on- and off-line fluorescence signals in 0.6 equivalence ratio, 2.2 dilution ratio, CH4/O2/Ar flames for pressures ranging from 1 to 14.6 atm.

Fig. 7
Fig. 7

Background signal B 1 versus equivalence ratio in 2.2 dilution ratio, CH4/O2/Ar flames for pressures ranging from 1 to 14.6 atm.

Fig. 8
Fig. 8

Background signal B 1 versus dilution ratio in 0.6 equivalence ratio, CH4/O2/Ar flames for pressures ranging from 1 to 14.6 atm.

Fig. 9
Fig. 9

Calibration plots for LIF measurements of NO in 0.6 equivalence ratio, 2.2 dilution ratio, premixed CH4/O2/N2 flames at (a) 1.00 atm, (b) 6.10 atm, (c) 9.15 atm, (d) 14.6 atm. ppm, parts in 106.

Fig. 10
Fig. 10

Corrected, uncorrected, and background NO concentration measurements in 0.6 equivalence ratio, 2.2 dilution ratio, premixed CH4/O2/N2 flames at pressures from 1 to 14.6 atm. Error bars are provided for the corrected NO concentration measurements (95% confidence level). ppm, parts in 106.

Tables (1)

Tables Icon

Table 1 Cold-Gas Flow Rates and Temperatures of Premixed 0.6 Equivalence Ratio, 2.2 Dilution Ratio, CH4/O2/N2 Calibration Flames Stabilized on a H2O-cooled McKenna Burnera

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S=Cb+SNO,
S=Cb+SNO.
SNO=mNO,
SNO=mNO,
f=SNOSNO=mm.
SNOu=Su-Su+SNOu.
SNOu=Su-Su+fSNOu.
SNOu=Su-Su1-f,
Cb=Su-fSu1-f.

Metrics