Abstract

The temperature dependence of laser-induced NO A 2Σ+X 2Π fluorescence in the hot gases of natural gas–air flames, seeded with known quantities of NO, has been determined experimentally by means of a difference method. The flame temperature at three fixed equivalence ratios was changed when the mixture velocity was varied through a water-cooled, flat-flame burner and was measured by coherent anti-Stokes Raman spectroscopy. When the possible reburning of part of the seeded NO is allowed for, the results in the range 1700–2150 K are best described by the temperature dependence obtained from a model in which quenching corrections are neglected, as in the case of a saturated two-level system, when millijoule pulse energies are used. Measurements of the fluorescence intensity at constant seed concentration as a function of equivalence ratio between 0.75 and 1.3 also indicate that quenching corrections are unnecessary under these excitation conditions. Using the measured intensities of the seeded flame as a calibration factor, we determined the absolute NO concentrations as functions of the equivalence ratio at 1 cm above the burner. The results indicate that, with the calibration method presented here, a relative accuracy of 5% should be obtainable.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Fristrom, A. A. Westenberg, Flame Structure (McGraw-Hill, New York, 1965).
  2. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, 1988).
  3. P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional quenching corrections for laser-induced fluorescence measurements of NO A2Σ+,” AIAA J. 32, 1670–1675 (1994).
    [CrossRef]
  4. B. E. Battles, R. K. Hanson, “Laser-induced fluorescence measurements of NO and OH mole fraction in fuel-lean, high pressure (1–10 atm) methane flames: fluorescence modeling and experimental validation,” J. Quant. Spectrosc. Radiat. Transfer 54, 521–537 (1995).
    [CrossRef]
  5. C. Morley, “The mechanism of NO formation from nitrogen compounds in hydrogen flames studied by laser fluorescence,” in Proceedings of the Eighteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1981), pp. 23–32.
    [CrossRef]
  6. R. J. Cattolica, J. A. Cavolowsky, T. G. Mataga, “Laser-fluorescence measurements of nitric oxide in low pressure H2/O2/NO flames,” in Proceedings of the Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1988), pp. 1165–1173.
  7. D. E. Heard, J. B. Jeffries, G. P. Smith, D. R. Crosley, “LIF measurement in methane/air flames of radicals important in prompt-NO formation,” Combust. Flame 88, 137–148 (1992).
    [CrossRef]
  8. J. H. Reisel, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide formation in high-pressure flames,” Combust. Sci. Technol. 98, 137–160 (1994).
    [CrossRef]
  9. J. R. Reisel, C. D. Carter, N. M. Laurendeau, M. C. Drake, “Laser-saturated fluorescence measurements of nitric oxide in laminar, flat, C2H6/O 2/N2 flames at atmospheric pressure,” Combust. Sci. Technol. 91, 271–295 (1993).
    [CrossRef]
  10. J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2Σ+–X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
    [CrossRef]
  11. A. S. Sudbo, M. M. T. Loy, “Measurement of absolute state-to-state rate constants for collision-induced transitions between spin-orbit and rotational states of NO (X2Π, v = 2),” J. Chem. Phys. 76, 3646–3654 (1982).
    [CrossRef]
  12. T. Ebata, Y. Anezaki, M. Fujii, N. Mikami, M. Ito, “Rotational energy transfer in NO (A2Σ+, v = 0 and 1),” J. Chem. Phys. 84, 151–157 (1984).
  13. H. Zacharias, R. Schniedl, K. H. Welge, “State selective step-wise photoionization of NO with mass spectroscopic ion detection,” Appl. Phys. 21, 127–133 (1980).
    [CrossRef]
  14. R. Engleman, P. E. Rouse, H. M. Peek, V. D. Baiamonte, “Beta and gamma systems of nitric oxide,” (Los Alamos Laboratory, Los Alamos, New Mexico, 1970).
  15. A. Y. Chang, M. D. Di Rosa, R. K. Hanson, “Temperature dependence of collisional broadening and shift in the NO A ← X (0, 0) and in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
    [CrossRef]
  16. M. D. Di Rosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0, 0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
    [CrossRef]
  17. J. Humlicek, “An efficient method for evaluation of the complex probability function: the Voigt function and derivatives,” J. Quant. Spectrosc. Radiat. Transfer 21, 309–313 (1979).
    [CrossRef]
  18. J. P. Botha, D. B. Spalding, “The laminar flame speed of propane/air mixtures with heat extraction from the flame,” Proc. R. Soc. (London) A225, 71–96 (1954).
    [CrossRef]
  19. J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurements of nitric oxide in laminar high-temperature flames,” Energy Fuels 8, 1115–1122 (1994).
    [CrossRef]
  20. J. Warnatz, “Hydrocarbon oxidation at high temperatures,” Ber. Bunsenges. Phys. Chem. 87, 1008–1022 (1983).
    [CrossRef]
  21. H. Bockhorn, C. Chevalier, J. Warnatz, V. Weyrauch, “Experimental investigation and modeling of prompt-NO in hydrocarbon flames,” in Heat Transfer in Fire and Combustion Systems (American Society of Mechanical Engineers, New York, 1991), Vol. 166, pp. 11–16.
  22. J. A. Miller, C. T. Bowman, “Mechanism and modeling of nitrogen chemistry in combustion,” Prog. Energy Combust. Sci. 15, 287–338 (1989).
    [CrossRef]
  23. C. P. Fenimore, “Formation of nitric oxide in premixed hydrocarbon flames,” in Proceedings of the Thirteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1971), pp. 373–380.
    [CrossRef]
  24. J. A. Miller, M. C. Branch, W. J. McLean, D. W. Chandler, M. D. Smooke, R. Kee, “The conversion of HCN to NO and N2 in H2–O2–HCN–Ar flames at low pressure,” in Proceedings of the Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 673–684.
  25. C. E. van der Meij, A. V. Mokhov, R. A. A. M. Jacobs, H. B. Levinsky, “On the effects of fuel leakage on CO production from household burners as revealed by LIF and CARS,” in Proceedings of the Twenty-Fifth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1994), pp. 243–250.
    [CrossRef]
  26. S. Kroll, M. Alden, P.-E. Bengtsson, C. Lofstrom, “An evaluation of precision and systematic errors in vibrational CARS thermometry,” Appl. Phys. B 49, 445–453 (1989).
    [CrossRef]
  27. R. M. Siewert, “Hydrogen interference in chemiluminescent NOx analysis,” Combust. Flame 25, 273–276 (1975).
    [CrossRef]
  28. I. J. Wysong, J. B. Jeffries, D. R. Crosley, “Laser-induced fluorescence of O(3p3P), O2 and NO near 226 nm: photolytic interferences and simultaneous excitation in flames,” Opt. Lett. 14, 767–769 (1989).
    [CrossRef] [PubMed]

1995 (1)

B. E. Battles, R. K. Hanson, “Laser-induced fluorescence measurements of NO and OH mole fraction in fuel-lean, high pressure (1–10 atm) methane flames: fluorescence modeling and experimental validation,” J. Quant. Spectrosc. Radiat. Transfer 54, 521–537 (1995).
[CrossRef]

1994 (4)

J. H. Reisel, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide formation in high-pressure flames,” Combust. Sci. Technol. 98, 137–160 (1994).
[CrossRef]

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional quenching corrections for laser-induced fluorescence measurements of NO A2Σ+,” AIAA J. 32, 1670–1675 (1994).
[CrossRef]

M. D. Di Rosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0, 0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurements of nitric oxide in laminar high-temperature flames,” Energy Fuels 8, 1115–1122 (1994).
[CrossRef]

1993 (1)

J. R. Reisel, C. D. Carter, N. M. Laurendeau, M. C. Drake, “Laser-saturated fluorescence measurements of nitric oxide in laminar, flat, C2H6/O 2/N2 flames at atmospheric pressure,” Combust. Sci. Technol. 91, 271–295 (1993).
[CrossRef]

1992 (3)

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2Σ+–X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
[CrossRef]

D. E. Heard, J. B. Jeffries, G. P. Smith, D. R. Crosley, “LIF measurement in methane/air flames of radicals important in prompt-NO formation,” Combust. Flame 88, 137–148 (1992).
[CrossRef]

A. Y. Chang, M. D. Di Rosa, R. K. Hanson, “Temperature dependence of collisional broadening and shift in the NO A ← X (0, 0) and in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

1989 (3)

J. A. Miller, C. T. Bowman, “Mechanism and modeling of nitrogen chemistry in combustion,” Prog. Energy Combust. Sci. 15, 287–338 (1989).
[CrossRef]

S. Kroll, M. Alden, P.-E. Bengtsson, C. Lofstrom, “An evaluation of precision and systematic errors in vibrational CARS thermometry,” Appl. Phys. B 49, 445–453 (1989).
[CrossRef]

I. J. Wysong, J. B. Jeffries, D. R. Crosley, “Laser-induced fluorescence of O(3p3P), O2 and NO near 226 nm: photolytic interferences and simultaneous excitation in flames,” Opt. Lett. 14, 767–769 (1989).
[CrossRef] [PubMed]

1984 (1)

T. Ebata, Y. Anezaki, M. Fujii, N. Mikami, M. Ito, “Rotational energy transfer in NO (A2Σ+, v = 0 and 1),” J. Chem. Phys. 84, 151–157 (1984).

1983 (1)

J. Warnatz, “Hydrocarbon oxidation at high temperatures,” Ber. Bunsenges. Phys. Chem. 87, 1008–1022 (1983).
[CrossRef]

1982 (1)

A. S. Sudbo, M. M. T. Loy, “Measurement of absolute state-to-state rate constants for collision-induced transitions between spin-orbit and rotational states of NO (X2Π, v = 2),” J. Chem. Phys. 76, 3646–3654 (1982).
[CrossRef]

1980 (1)

H. Zacharias, R. Schniedl, K. H. Welge, “State selective step-wise photoionization of NO with mass spectroscopic ion detection,” Appl. Phys. 21, 127–133 (1980).
[CrossRef]

1979 (1)

J. Humlicek, “An efficient method for evaluation of the complex probability function: the Voigt function and derivatives,” J. Quant. Spectrosc. Radiat. Transfer 21, 309–313 (1979).
[CrossRef]

1975 (1)

R. M. Siewert, “Hydrogen interference in chemiluminescent NOx analysis,” Combust. Flame 25, 273–276 (1975).
[CrossRef]

1954 (1)

J. P. Botha, D. B. Spalding, “The laminar flame speed of propane/air mixtures with heat extraction from the flame,” Proc. R. Soc. (London) A225, 71–96 (1954).
[CrossRef]

Alden, M.

S. Kroll, M. Alden, P.-E. Bengtsson, C. Lofstrom, “An evaluation of precision and systematic errors in vibrational CARS thermometry,” Appl. Phys. B 49, 445–453 (1989).
[CrossRef]

Anezaki, Y.

T. Ebata, Y. Anezaki, M. Fujii, N. Mikami, M. Ito, “Rotational energy transfer in NO (A2Σ+, v = 0 and 1),” J. Chem. Phys. 84, 151–157 (1984).

Baiamonte, V. D.

R. Engleman, P. E. Rouse, H. M. Peek, V. D. Baiamonte, “Beta and gamma systems of nitric oxide,” (Los Alamos Laboratory, Los Alamos, New Mexico, 1970).

Battles, B. E.

B. E. Battles, R. K. Hanson, “Laser-induced fluorescence measurements of NO and OH mole fraction in fuel-lean, high pressure (1–10 atm) methane flames: fluorescence modeling and experimental validation,” J. Quant. Spectrosc. Radiat. Transfer 54, 521–537 (1995).
[CrossRef]

Bengtsson, P.-E.

S. Kroll, M. Alden, P.-E. Bengtsson, C. Lofstrom, “An evaluation of precision and systematic errors in vibrational CARS thermometry,” Appl. Phys. B 49, 445–453 (1989).
[CrossRef]

Bockhorn, H.

H. Bockhorn, C. Chevalier, J. Warnatz, V. Weyrauch, “Experimental investigation and modeling of prompt-NO in hydrocarbon flames,” in Heat Transfer in Fire and Combustion Systems (American Society of Mechanical Engineers, New York, 1991), Vol. 166, pp. 11–16.

Botha, J. P.

J. P. Botha, D. B. Spalding, “The laminar flame speed of propane/air mixtures with heat extraction from the flame,” Proc. R. Soc. (London) A225, 71–96 (1954).
[CrossRef]

Bowman, C. T.

J. A. Miller, C. T. Bowman, “Mechanism and modeling of nitrogen chemistry in combustion,” Prog. Energy Combust. Sci. 15, 287–338 (1989).
[CrossRef]

Branch, M. C.

J. A. Miller, M. C. Branch, W. J. McLean, D. W. Chandler, M. D. Smooke, R. Kee, “The conversion of HCN to NO and N2 in H2–O2–HCN–Ar flames at low pressure,” in Proceedings of the Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 673–684.

Carter, C. D.

J. R. Reisel, C. D. Carter, N. M. Laurendeau, M. C. Drake, “Laser-saturated fluorescence measurements of nitric oxide in laminar, flat, C2H6/O 2/N2 flames at atmospheric pressure,” Combust. Sci. Technol. 91, 271–295 (1993).
[CrossRef]

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2Σ+–X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
[CrossRef]

Cattolica, R. J.

R. J. Cattolica, J. A. Cavolowsky, T. G. Mataga, “Laser-fluorescence measurements of nitric oxide in low pressure H2/O2/NO flames,” in Proceedings of the Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1988), pp. 1165–1173.

Cavolowsky, J. A.

R. J. Cattolica, J. A. Cavolowsky, T. G. Mataga, “Laser-fluorescence measurements of nitric oxide in low pressure H2/O2/NO flames,” in Proceedings of the Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1988), pp. 1165–1173.

Chandler, D. W.

J. A. Miller, M. C. Branch, W. J. McLean, D. W. Chandler, M. D. Smooke, R. Kee, “The conversion of HCN to NO and N2 in H2–O2–HCN–Ar flames at low pressure,” in Proceedings of the Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 673–684.

Chang, A. Y.

A. Y. Chang, M. D. Di Rosa, R. K. Hanson, “Temperature dependence of collisional broadening and shift in the NO A ← X (0, 0) and in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

Chevalier, C.

H. Bockhorn, C. Chevalier, J. Warnatz, V. Weyrauch, “Experimental investigation and modeling of prompt-NO in hydrocarbon flames,” in Heat Transfer in Fire and Combustion Systems (American Society of Mechanical Engineers, New York, 1991), Vol. 166, pp. 11–16.

Crosley, D. R.

D. E. Heard, J. B. Jeffries, G. P. Smith, D. R. Crosley, “LIF measurement in methane/air flames of radicals important in prompt-NO formation,” Combust. Flame 88, 137–148 (1992).
[CrossRef]

I. J. Wysong, J. B. Jeffries, D. R. Crosley, “Laser-induced fluorescence of O(3p3P), O2 and NO near 226 nm: photolytic interferences and simultaneous excitation in flames,” Opt. Lett. 14, 767–769 (1989).
[CrossRef] [PubMed]

Di Rosa, M. D.

M. D. Di Rosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0, 0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

A. Y. Chang, M. D. Di Rosa, R. K. Hanson, “Temperature dependence of collisional broadening and shift in the NO A ← X (0, 0) and in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

Drake, M. C.

J. R. Reisel, C. D. Carter, N. M. Laurendeau, M. C. Drake, “Laser-saturated fluorescence measurements of nitric oxide in laminar, flat, C2H6/O 2/N2 flames at atmospheric pressure,” Combust. Sci. Technol. 91, 271–295 (1993).
[CrossRef]

Durant, J. L.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional quenching corrections for laser-induced fluorescence measurements of NO A2Σ+,” AIAA J. 32, 1670–1675 (1994).
[CrossRef]

Ebata, T.

T. Ebata, Y. Anezaki, M. Fujii, N. Mikami, M. Ito, “Rotational energy transfer in NO (A2Σ+, v = 0 and 1),” J. Chem. Phys. 84, 151–157 (1984).

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, 1988).

Engleman, R.

R. Engleman, P. E. Rouse, H. M. Peek, V. D. Baiamonte, “Beta and gamma systems of nitric oxide,” (Los Alamos Laboratory, Los Alamos, New Mexico, 1970).

Fenimore, C. P.

C. P. Fenimore, “Formation of nitric oxide in premixed hydrocarbon flames,” in Proceedings of the Thirteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1971), pp. 373–380.
[CrossRef]

Fristrom, R. F.

R. F. Fristrom, A. A. Westenberg, Flame Structure (McGraw-Hill, New York, 1965).

Fujii, M.

T. Ebata, Y. Anezaki, M. Fujii, N. Mikami, M. Ito, “Rotational energy transfer in NO (A2Σ+, v = 0 and 1),” J. Chem. Phys. 84, 151–157 (1984).

Gray, J. A.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional quenching corrections for laser-induced fluorescence measurements of NO A2Σ+,” AIAA J. 32, 1670–1675 (1994).
[CrossRef]

Hanson, R. K.

B. E. Battles, R. K. Hanson, “Laser-induced fluorescence measurements of NO and OH mole fraction in fuel-lean, high pressure (1–10 atm) methane flames: fluorescence modeling and experimental validation,” J. Quant. Spectrosc. Radiat. Transfer 54, 521–537 (1995).
[CrossRef]

M. D. Di Rosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0, 0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

A. Y. Chang, M. D. Di Rosa, R. K. Hanson, “Temperature dependence of collisional broadening and shift in the NO A ← X (0, 0) and in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

Heard, D. E.

D. E. Heard, J. B. Jeffries, G. P. Smith, D. R. Crosley, “LIF measurement in methane/air flames of radicals important in prompt-NO formation,” Combust. Flame 88, 137–148 (1992).
[CrossRef]

Humlicek, J.

J. Humlicek, “An efficient method for evaluation of the complex probability function: the Voigt function and derivatives,” J. Quant. Spectrosc. Radiat. Transfer 21, 309–313 (1979).
[CrossRef]

Ito, M.

T. Ebata, Y. Anezaki, M. Fujii, N. Mikami, M. Ito, “Rotational energy transfer in NO (A2Σ+, v = 0 and 1),” J. Chem. Phys. 84, 151–157 (1984).

Jacobs, R. A. A. M.

C. E. van der Meij, A. V. Mokhov, R. A. A. M. Jacobs, H. B. Levinsky, “On the effects of fuel leakage on CO production from household burners as revealed by LIF and CARS,” in Proceedings of the Twenty-Fifth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1994), pp. 243–250.
[CrossRef]

Jeffries, J. B.

D. E. Heard, J. B. Jeffries, G. P. Smith, D. R. Crosley, “LIF measurement in methane/air flames of radicals important in prompt-NO formation,” Combust. Flame 88, 137–148 (1992).
[CrossRef]

I. J. Wysong, J. B. Jeffries, D. R. Crosley, “Laser-induced fluorescence of O(3p3P), O2 and NO near 226 nm: photolytic interferences and simultaneous excitation in flames,” Opt. Lett. 14, 767–769 (1989).
[CrossRef] [PubMed]

Kee, R.

J. A. Miller, M. C. Branch, W. J. McLean, D. W. Chandler, M. D. Smooke, R. Kee, “The conversion of HCN to NO and N2 in H2–O2–HCN–Ar flames at low pressure,” in Proceedings of the Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 673–684.

Kroll, S.

S. Kroll, M. Alden, P.-E. Bengtsson, C. Lofstrom, “An evaluation of precision and systematic errors in vibrational CARS thermometry,” Appl. Phys. B 49, 445–453 (1989).
[CrossRef]

Laurendeau, N. M.

J. H. Reisel, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide formation in high-pressure flames,” Combust. Sci. Technol. 98, 137–160 (1994).
[CrossRef]

J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurements of nitric oxide in laminar high-temperature flames,” Energy Fuels 8, 1115–1122 (1994).
[CrossRef]

J. R. Reisel, C. D. Carter, N. M. Laurendeau, M. C. Drake, “Laser-saturated fluorescence measurements of nitric oxide in laminar, flat, C2H6/O 2/N2 flames at atmospheric pressure,” Combust. Sci. Technol. 91, 271–295 (1993).
[CrossRef]

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2Σ+–X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
[CrossRef]

Levinsky, H. B.

C. E. van der Meij, A. V. Mokhov, R. A. A. M. Jacobs, H. B. Levinsky, “On the effects of fuel leakage on CO production from household burners as revealed by LIF and CARS,” in Proceedings of the Twenty-Fifth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1994), pp. 243–250.
[CrossRef]

Lofstrom, C.

S. Kroll, M. Alden, P.-E. Bengtsson, C. Lofstrom, “An evaluation of precision and systematic errors in vibrational CARS thermometry,” Appl. Phys. B 49, 445–453 (1989).
[CrossRef]

Loy, M. M. T.

A. S. Sudbo, M. M. T. Loy, “Measurement of absolute state-to-state rate constants for collision-induced transitions between spin-orbit and rotational states of NO (X2Π, v = 2),” J. Chem. Phys. 76, 3646–3654 (1982).
[CrossRef]

Mataga, T. G.

R. J. Cattolica, J. A. Cavolowsky, T. G. Mataga, “Laser-fluorescence measurements of nitric oxide in low pressure H2/O2/NO flames,” in Proceedings of the Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1988), pp. 1165–1173.

McLean, W. J.

J. A. Miller, M. C. Branch, W. J. McLean, D. W. Chandler, M. D. Smooke, R. Kee, “The conversion of HCN to NO and N2 in H2–O2–HCN–Ar flames at low pressure,” in Proceedings of the Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 673–684.

Mikami, N.

T. Ebata, Y. Anezaki, M. Fujii, N. Mikami, M. Ito, “Rotational energy transfer in NO (A2Σ+, v = 0 and 1),” J. Chem. Phys. 84, 151–157 (1984).

Miller, J. A.

J. A. Miller, C. T. Bowman, “Mechanism and modeling of nitrogen chemistry in combustion,” Prog. Energy Combust. Sci. 15, 287–338 (1989).
[CrossRef]

J. A. Miller, M. C. Branch, W. J. McLean, D. W. Chandler, M. D. Smooke, R. Kee, “The conversion of HCN to NO and N2 in H2–O2–HCN–Ar flames at low pressure,” in Proceedings of the Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 673–684.

Mokhov, A. V.

C. E. van der Meij, A. V. Mokhov, R. A. A. M. Jacobs, H. B. Levinsky, “On the effects of fuel leakage on CO production from household burners as revealed by LIF and CARS,” in Proceedings of the Twenty-Fifth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1994), pp. 243–250.
[CrossRef]

Morley, C.

C. Morley, “The mechanism of NO formation from nitrogen compounds in hydrogen flames studied by laser fluorescence,” in Proceedings of the Eighteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1981), pp. 23–32.
[CrossRef]

Paul, P. H.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional quenching corrections for laser-induced fluorescence measurements of NO A2Σ+,” AIAA J. 32, 1670–1675 (1994).
[CrossRef]

Peek, H. M.

R. Engleman, P. E. Rouse, H. M. Peek, V. D. Baiamonte, “Beta and gamma systems of nitric oxide,” (Los Alamos Laboratory, Los Alamos, New Mexico, 1970).

Reisel, J. H.

J. H. Reisel, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide formation in high-pressure flames,” Combust. Sci. Technol. 98, 137–160 (1994).
[CrossRef]

Reisel, J. R.

J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurements of nitric oxide in laminar high-temperature flames,” Energy Fuels 8, 1115–1122 (1994).
[CrossRef]

J. R. Reisel, C. D. Carter, N. M. Laurendeau, M. C. Drake, “Laser-saturated fluorescence measurements of nitric oxide in laminar, flat, C2H6/O 2/N2 flames at atmospheric pressure,” Combust. Sci. Technol. 91, 271–295 (1993).
[CrossRef]

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2Σ+–X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
[CrossRef]

Rouse, P. E.

R. Engleman, P. E. Rouse, H. M. Peek, V. D. Baiamonte, “Beta and gamma systems of nitric oxide,” (Los Alamos Laboratory, Los Alamos, New Mexico, 1970).

Schniedl, R.

H. Zacharias, R. Schniedl, K. H. Welge, “State selective step-wise photoionization of NO with mass spectroscopic ion detection,” Appl. Phys. 21, 127–133 (1980).
[CrossRef]

Siewert, R. M.

R. M. Siewert, “Hydrogen interference in chemiluminescent NOx analysis,” Combust. Flame 25, 273–276 (1975).
[CrossRef]

Smith, G. P.

D. E. Heard, J. B. Jeffries, G. P. Smith, D. R. Crosley, “LIF measurement in methane/air flames of radicals important in prompt-NO formation,” Combust. Flame 88, 137–148 (1992).
[CrossRef]

Smooke, M. D.

J. A. Miller, M. C. Branch, W. J. McLean, D. W. Chandler, M. D. Smooke, R. Kee, “The conversion of HCN to NO and N2 in H2–O2–HCN–Ar flames at low pressure,” in Proceedings of the Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 673–684.

Spalding, D. B.

J. P. Botha, D. B. Spalding, “The laminar flame speed of propane/air mixtures with heat extraction from the flame,” Proc. R. Soc. (London) A225, 71–96 (1954).
[CrossRef]

Sudbo, A. S.

A. S. Sudbo, M. M. T. Loy, “Measurement of absolute state-to-state rate constants for collision-induced transitions between spin-orbit and rotational states of NO (X2Π, v = 2),” J. Chem. Phys. 76, 3646–3654 (1982).
[CrossRef]

Thoman, J. W.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional quenching corrections for laser-induced fluorescence measurements of NO A2Σ+,” AIAA J. 32, 1670–1675 (1994).
[CrossRef]

van der Meij, C. E.

C. E. van der Meij, A. V. Mokhov, R. A. A. M. Jacobs, H. B. Levinsky, “On the effects of fuel leakage on CO production from household burners as revealed by LIF and CARS,” in Proceedings of the Twenty-Fifth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1994), pp. 243–250.
[CrossRef]

Warnatz, J.

J. Warnatz, “Hydrocarbon oxidation at high temperatures,” Ber. Bunsenges. Phys. Chem. 87, 1008–1022 (1983).
[CrossRef]

H. Bockhorn, C. Chevalier, J. Warnatz, V. Weyrauch, “Experimental investigation and modeling of prompt-NO in hydrocarbon flames,” in Heat Transfer in Fire and Combustion Systems (American Society of Mechanical Engineers, New York, 1991), Vol. 166, pp. 11–16.

Welge, K. H.

H. Zacharias, R. Schniedl, K. H. Welge, “State selective step-wise photoionization of NO with mass spectroscopic ion detection,” Appl. Phys. 21, 127–133 (1980).
[CrossRef]

Westenberg, A. A.

R. F. Fristrom, A. A. Westenberg, Flame Structure (McGraw-Hill, New York, 1965).

Weyrauch, V.

H. Bockhorn, C. Chevalier, J. Warnatz, V. Weyrauch, “Experimental investigation and modeling of prompt-NO in hydrocarbon flames,” in Heat Transfer in Fire and Combustion Systems (American Society of Mechanical Engineers, New York, 1991), Vol. 166, pp. 11–16.

Wysong, I. J.

Zacharias, H.

H. Zacharias, R. Schniedl, K. H. Welge, “State selective step-wise photoionization of NO with mass spectroscopic ion detection,” Appl. Phys. 21, 127–133 (1980).
[CrossRef]

AIAA J. (1)

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional quenching corrections for laser-induced fluorescence measurements of NO A2Σ+,” AIAA J. 32, 1670–1675 (1994).
[CrossRef]

Appl. Phys. (2)

H. Zacharias, R. Schniedl, K. H. Welge, “State selective step-wise photoionization of NO with mass spectroscopic ion detection,” Appl. Phys. 21, 127–133 (1980).
[CrossRef]

S. Kroll, M. Alden, P.-E. Bengtsson, C. Lofstrom, “An evaluation of precision and systematic errors in vibrational CARS thermometry,” Appl. Phys. B 49, 445–453 (1989).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (1)

J. Warnatz, “Hydrocarbon oxidation at high temperatures,” Ber. Bunsenges. Phys. Chem. 87, 1008–1022 (1983).
[CrossRef]

Combust. Flame (2)

R. M. Siewert, “Hydrogen interference in chemiluminescent NOx analysis,” Combust. Flame 25, 273–276 (1975).
[CrossRef]

D. E. Heard, J. B. Jeffries, G. P. Smith, D. R. Crosley, “LIF measurement in methane/air flames of radicals important in prompt-NO formation,” Combust. Flame 88, 137–148 (1992).
[CrossRef]

Combust. Sci. Technol. (2)

J. H. Reisel, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide formation in high-pressure flames,” Combust. Sci. Technol. 98, 137–160 (1994).
[CrossRef]

J. R. Reisel, C. D. Carter, N. M. Laurendeau, M. C. Drake, “Laser-saturated fluorescence measurements of nitric oxide in laminar, flat, C2H6/O 2/N2 flames at atmospheric pressure,” Combust. Sci. Technol. 91, 271–295 (1993).
[CrossRef]

Energy Fuels (1)

J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurements of nitric oxide in laminar high-temperature flames,” Energy Fuels 8, 1115–1122 (1994).
[CrossRef]

J. Chem. Phys. (2)

A. S. Sudbo, M. M. T. Loy, “Measurement of absolute state-to-state rate constants for collision-induced transitions between spin-orbit and rotational states of NO (X2Π, v = 2),” J. Chem. Phys. 76, 3646–3654 (1982).
[CrossRef]

T. Ebata, Y. Anezaki, M. Fujii, N. Mikami, M. Ito, “Rotational energy transfer in NO (A2Σ+, v = 0 and 1),” J. Chem. Phys. 84, 151–157 (1984).

J. Quant. Spectrosc. Radiat. Transfer (5)

A. Y. Chang, M. D. Di Rosa, R. K. Hanson, “Temperature dependence of collisional broadening and shift in the NO A ← X (0, 0) and in the presence of argon and nitrogen,” J. Quant. Spectrosc. Radiat. Transfer 47, 375–390 (1992).
[CrossRef]

M. D. Di Rosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0, 0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

J. Humlicek, “An efficient method for evaluation of the complex probability function: the Voigt function and derivatives,” J. Quant. Spectrosc. Radiat. Transfer 21, 309–313 (1979).
[CrossRef]

J. R. Reisel, C. D. Carter, N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0, 0) band of the NO A2Σ+–X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
[CrossRef]

B. E. Battles, R. K. Hanson, “Laser-induced fluorescence measurements of NO and OH mole fraction in fuel-lean, high pressure (1–10 atm) methane flames: fluorescence modeling and experimental validation,” J. Quant. Spectrosc. Radiat. Transfer 54, 521–537 (1995).
[CrossRef]

Opt. Lett. (1)

Proc. R. Soc. (London) (1)

J. P. Botha, D. B. Spalding, “The laminar flame speed of propane/air mixtures with heat extraction from the flame,” Proc. R. Soc. (London) A225, 71–96 (1954).
[CrossRef]

Prog. Energy Combust. Sci. (1)

J. A. Miller, C. T. Bowman, “Mechanism and modeling of nitrogen chemistry in combustion,” Prog. Energy Combust. Sci. 15, 287–338 (1989).
[CrossRef]

Other (9)

C. P. Fenimore, “Formation of nitric oxide in premixed hydrocarbon flames,” in Proceedings of the Thirteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1971), pp. 373–380.
[CrossRef]

J. A. Miller, M. C. Branch, W. J. McLean, D. W. Chandler, M. D. Smooke, R. Kee, “The conversion of HCN to NO and N2 in H2–O2–HCN–Ar flames at low pressure,” in Proceedings of the Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 673–684.

C. E. van der Meij, A. V. Mokhov, R. A. A. M. Jacobs, H. B. Levinsky, “On the effects of fuel leakage on CO production from household burners as revealed by LIF and CARS,” in Proceedings of the Twenty-Fifth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1994), pp. 243–250.
[CrossRef]

H. Bockhorn, C. Chevalier, J. Warnatz, V. Weyrauch, “Experimental investigation and modeling of prompt-NO in hydrocarbon flames,” in Heat Transfer in Fire and Combustion Systems (American Society of Mechanical Engineers, New York, 1991), Vol. 166, pp. 11–16.

R. Engleman, P. E. Rouse, H. M. Peek, V. D. Baiamonte, “Beta and gamma systems of nitric oxide,” (Los Alamos Laboratory, Los Alamos, New Mexico, 1970).

R. F. Fristrom, A. A. Westenberg, Flame Structure (McGraw-Hill, New York, 1965).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, 1988).

C. Morley, “The mechanism of NO formation from nitrogen compounds in hydrogen flames studied by laser fluorescence,” in Proceedings of the Eighteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1981), pp. 23–32.
[CrossRef]

R. J. Cattolica, J. A. Cavolowsky, T. G. Mataga, “Laser-fluorescence measurements of nitric oxide in low pressure H2/O2/NO flames,” in Proceedings of the Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1988), pp. 1165–1173.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Temperature dependence of the NO fluorescence intensity of a combination of the P 11(23.5) + Q 11(14.5) + QP 21(14.5) + Q 22(20.5) + QR 12(20.5) rotational lines at the 225.965-nm wavelength, calculated in an approximation of low laser power (crosses) and saturation of the two-level system (squares).

Fig. 2
Fig. 2

Flame temperature as a function of flow rate of a combustible mixture with a composition of gas:air:N2 = 1.0:8.42:0.5.

Fig. 3
Fig. 3

Schematic of the LIF measurements: WE, wavelength extender; M’s, mirrors; L1, L2, lenses; B, burner; A, attenuator; BD, beam dump; DA, diode array; JM, joulemeter; MCA, multichannel analyzer; CA, chemiluminescence NO x analyzer; PC, personal computer.

Fig. 4
Fig. 4

Excitation spectra in the 1.0 gas/8.42 air/0.5 N2 flames: (a) N2 without NO, (b) N2 with 4500 ppm NO, (c) calculated; the arrow indicates a combination of the P 11(23.5) + Q 11(14.5) + Q P 21(14.5) + Q 22(20.5) + Q R 12(20.5) rotational lines at the 225.965-nm wavelength.

Fig. 5
Fig. 5

Saturation curve for excitation of the combination of the P11(23.5) + Q11(14.5) + Q P 21(14.5) + Q22(20.5) + Q R 12(20.5) rotational lines at 225.965 nm. The maximum laser energy was 2.4 mJ per pulse.

Fig. 6
Fig. 6

NO concentration measured by probe (crosses) and NO fluorescence intensity (squares) in 1.0 gas/8.42 air/1.0 N2 flame as a function of the NO concentration in a combustible mixture.

Fig. 7
Fig. 7

Temperature dependence of the NO fluorescence for laser-pulse energies of 2.4 mJ (squares) and 0.12 mJ (crosses) in stoichiometric, fuel-lean, and fuel-rich flames: (a) ϕ = 1.0, (b) ϕ = 0.83, (c) ϕ = 1.17. Dotted and dashed curves are calculated behavior in the approximations of low laser power (dotted) and saturation in the case of slow rotational relaxation (dashed). Fluorescence intensity at low laser power is multiplied by a factor of 7.0.

Fig. 8
Fig. 8

NO fluorescence intensity (crosses) and temperature (triangles) in the 1.0 gas/8.42 air/0.5 N2 flame as functions of the stoichiometric ratio, seeded with 4500 ppm NO in N2 (giving ∼200 ppm NO in the hot gases). The solid curve represents the adiabatic flame temperature. The dotted and the dashed curves are calculations in the approximations of low laser power (dotted) and saturation (dashed).

Fig. 9
Fig. 9

(a) NO fluorescence intensity (crosses) and temperature (solid curve) in the 1.0 gas/8.42 air/0.5 N2 flame as functions of the stoichiometric ratio, without NO seeding (native NO), (b) measured (diamonds) and calculated (dashed curve) NO concentrations at a distance 1.0 cm from the flame front as functions of the equivalence ratio.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Ifl=A00NtΔΩ/4πΔV,
dNtdt=W1uNl-WulNu-WiNt-QNt,
Nt=WluNl0/Q,
Ifl=A00WluQflXNOPkTΔΩ4πΔV,
Nl+Nu=Nl0.
Ifl=A00WluWlu+Wul+QflXNOPkTΔΩ4πΔV.
Ifl=A00gugu+glflXNOPkTΔΩ4πΔV,
Wlu=BluIlglν-νlgAν-ν0dν,
NOs=αNOad+NOns,
NO+CHHCN+O.
CH+N2HCN+N.
HCN+ONCONHNNO.
ϕgas+8.42air+βN2,
ImaxImins=Imax-IBImin-IBns,

Metrics