Abstract

Laser-induced fluorescence techniques have been used successfully for quantitative two-dimensional measurements of nitric oxide. The commonly applied D–X(0, 1) or A–X(0, 0) schemes are restricted to atmospheric-pressure flames and engines driven with gaseous fuels because of strong attenuation of the exciting laser beam by combustion intermediates. The properties of a detection scheme for which excitation in the nitric oxide A–X(0, 2) band was used were investigated. We discuss the advantages of the A–X(0, 2) system (excited at 247.95 nm) based on measurements in laminar premixed methane/air flames at 1–40 bars.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion, Temperature and Species (Abacus, Turnbridge Wells, England, 1988); K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy. Combust. Sci. 20, 203–247 (1994).
    [CrossRef]
  2. A. M. Wodtke, L. Huwel, H. Schlüter, G. Meijer, P. Andresen, H. Voges, “High sensitivity detection of NO in a flame using a tunable ArF laser,” Opt. Lett. 13, 910–912 (1988).
    [CrossRef] [PubMed]
  3. A. O. Vyrodow, J. Heinze, M. Dillmann, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A–X(0, 0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B 61, 409–414 (1995).
    [CrossRef]
  4. T. Dreier, A. Dreizler, J. Wolfrum, “The application of a Raman-shifted tunable KrF-excimer laser for laser induced fluorescence combustion diagnostics,” Appl. Phys. B 55, 381–387 (1992).
    [CrossRef]
  5. P. Andresen, G. Meijer, H. Schlüter, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. W. Rothe, “Fluorescence imaging inside an internal combustion engine using tunable excimer lasers,” Appl. Opt. 29, 2392–2404 (1990).
    [CrossRef] [PubMed]
  6. A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K. P. Schindler, “DI Diesel engine combustion visualized by combined laser techniques,” in Proceedings of the Twenty-Fourth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1605–1612.
  7. Th. M Brugman, R. Klein-Douwel, G. Huigen, E. van Walwijk, J. J. ter Meulen, “Laser induced fluorescence imaging of NO in an n-heptane and diesel fuel driven diesel engine,” Appl. Phys. B 57, 405–410 (1993).
    [CrossRef]
  8. A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent SI engine,” in 1995 SAE Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1995), paper 952462.
  9. C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging and mathematical modeling of NO concentrations and temperatures in a transparent SI engine,” in Proceedings of the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2597–2604.
  10. C. O. Laux, C. H. Kruger, “Arrays of radiative transition probabilities for the N2 first and second positive, NO beta and gamma, N2+ first negative, and O2 Schumann–Runge band systems,” J. Quant. Spectrosc. Radiat. Transfer 48, 9–24 (1992).
    [CrossRef]
  11. P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2 Σ+,” Appl. Phys. B 57, 249–259 (1993).
    [CrossRef]
  12. P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional quenching corrections for laser induced fluorescence measurements of NO A2Σ+,” AIAA J. 32, 1670–1675 (1994).
    [CrossRef]
  13. M. D. Di Rosa, R. K. Hanson, “Collision-broadening and -shift of NO γ(0, 0) absorption lines by H2O, O2 and NO at 295K,” J. Mol. Spectrosc. 164, 97–117 (1994).
    [CrossRef]
  14. M. D. Di Rosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0, 0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
    [CrossRef]
  15. V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the O2B3 Σu- state,” Chem. Phys. Lett. 249, 335–340 (1996).
    [CrossRef]
  16. C. Schulz, B. Yip, V. Sick, J. Wolfrum, “A laser-induced fluorescence scheme for measuring nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995).
    [CrossRef]
  17. H. Eberius, T. Just, T. Kick, G. Häfner, W. Lutz, “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” Proceedings of the Joint Meeting of the German/Italian Section of the Combustion Institute (The Combustion Institute, Pittsburgh, Pa., 1989), p. 3.3.
  18. J. B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, New York, 1988), pp. 578–586.
  19. P. Andresen, A. Bath, W. Gröger, H. W. Lülf, G. Meijer, J. J. ter Meulen, “Laser-induced fluorescence with tunable excimer lasers as a possible method for instantaneous temperature field measurements at high pressures: checks with an atmospheric flame,” Appl. Opt. 26, 365 (1988).
    [CrossRef]
  20. M. D. Di Rosa, K. G. Klavuhn, R. K. Hanson, “LIF spectroscopy of NO and O2 in high-pressure flames,” in Proceedings of the 1995 Fall Meeting of the Western States Section of the Combustion Institute (The Combustion Institute, Pittsburgh, Pa., 1995).
  21. A. Arnold, W. Ketterle, H. Becker, J. Wolfrum, “Simultaneous single-shot imaging of OH and O2 using a two-wavelength excimer laser,” Appl. Phys. B 51, 99–102 (1990).
    [CrossRef]

1996 (1)

V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the O2B3 Σu- state,” Chem. Phys. Lett. 249, 335–340 (1996).
[CrossRef]

1995 (2)

C. Schulz, B. Yip, V. Sick, J. Wolfrum, “A laser-induced fluorescence scheme for measuring nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995).
[CrossRef]

A. O. Vyrodow, J. Heinze, M. Dillmann, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A–X(0, 0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B 61, 409–414 (1995).
[CrossRef]

1994 (3)

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional quenching corrections for laser induced fluorescence measurements of NO A2Σ+,” AIAA J. 32, 1670–1675 (1994).
[CrossRef]

M. D. Di Rosa, R. K. Hanson, “Collision-broadening and -shift of NO γ(0, 0) absorption lines by H2O, O2 and NO at 295K,” J. Mol. Spectrosc. 164, 97–117 (1994).
[CrossRef]

M. D. Di Rosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0, 0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

1993 (2)

Th. M Brugman, R. Klein-Douwel, G. Huigen, E. van Walwijk, J. J. ter Meulen, “Laser induced fluorescence imaging of NO in an n-heptane and diesel fuel driven diesel engine,” Appl. Phys. B 57, 405–410 (1993).
[CrossRef]

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2 Σ+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

1992 (2)

C. O. Laux, C. H. Kruger, “Arrays of radiative transition probabilities for the N2 first and second positive, NO beta and gamma, N2+ first negative, and O2 Schumann–Runge band systems,” J. Quant. Spectrosc. Radiat. Transfer 48, 9–24 (1992).
[CrossRef]

T. Dreier, A. Dreizler, J. Wolfrum, “The application of a Raman-shifted tunable KrF-excimer laser for laser induced fluorescence combustion diagnostics,” Appl. Phys. B 55, 381–387 (1992).
[CrossRef]

1990 (2)

P. Andresen, G. Meijer, H. Schlüter, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. W. Rothe, “Fluorescence imaging inside an internal combustion engine using tunable excimer lasers,” Appl. Opt. 29, 2392–2404 (1990).
[CrossRef] [PubMed]

A. Arnold, W. Ketterle, H. Becker, J. Wolfrum, “Simultaneous single-shot imaging of OH and O2 using a two-wavelength excimer laser,” Appl. Phys. B 51, 99–102 (1990).
[CrossRef]

1988 (2)

P. Andresen, A. Bath, W. Gröger, H. W. Lülf, G. Meijer, J. J. ter Meulen, “Laser-induced fluorescence with tunable excimer lasers as a possible method for instantaneous temperature field measurements at high pressures: checks with an atmospheric flame,” Appl. Opt. 26, 365 (1988).
[CrossRef]

A. M. Wodtke, L. Huwel, H. Schlüter, G. Meijer, P. Andresen, H. Voges, “High sensitivity detection of NO in a flame using a tunable ArF laser,” Opt. Lett. 13, 910–912 (1988).
[CrossRef] [PubMed]

Andresen, P.

Arnold, A.

A. Arnold, W. Ketterle, H. Becker, J. Wolfrum, “Simultaneous single-shot imaging of OH and O2 using a two-wavelength excimer laser,” Appl. Phys. B 51, 99–102 (1990).
[CrossRef]

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K. P. Schindler, “DI Diesel engine combustion visualized by combined laser techniques,” in Proceedings of the Twenty-Fourth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1605–1612.

Bath, A.

P. Andresen, A. Bath, W. Gröger, H. W. Lülf, G. Meijer, J. J. ter Meulen, “Laser-induced fluorescence with tunable excimer lasers as a possible method for instantaneous temperature field measurements at high pressures: checks with an atmospheric flame,” Appl. Opt. 26, 365 (1988).
[CrossRef]

Becker, H.

A. Arnold, W. Ketterle, H. Becker, J. Wolfrum, “Simultaneous single-shot imaging of OH and O2 using a two-wavelength excimer laser,” Appl. Phys. B 51, 99–102 (1990).
[CrossRef]

Bräumer, A.

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent SI engine,” in 1995 SAE Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1995), paper 952462.

Brugman, Th. M

Th. M Brugman, R. Klein-Douwel, G. Huigen, E. van Walwijk, J. J. ter Meulen, “Laser induced fluorescence imaging of NO in an n-heptane and diesel fuel driven diesel engine,” Appl. Phys. B 57, 405–410 (1993).
[CrossRef]

Decker, M.

V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the O2B3 Σu- state,” Chem. Phys. Lett. 249, 335–340 (1996).
[CrossRef]

Di Rosa, M. D.

M. D. Di Rosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0, 0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

M. D. Di Rosa, R. K. Hanson, “Collision-broadening and -shift of NO γ(0, 0) absorption lines by H2O, O2 and NO at 295K,” J. Mol. Spectrosc. 164, 97–117 (1994).
[CrossRef]

M. D. Di Rosa, K. G. Klavuhn, R. K. Hanson, “LIF spectroscopy of NO and O2 in high-pressure flames,” in Proceedings of the 1995 Fall Meeting of the Western States Section of the Combustion Institute (The Combustion Institute, Pittsburgh, Pa., 1995).

Dillmann, M.

A. O. Vyrodow, J. Heinze, M. Dillmann, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A–X(0, 0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B 61, 409–414 (1995).
[CrossRef]

Dinkelacker, F.

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K. P. Schindler, “DI Diesel engine combustion visualized by combined laser techniques,” in Proceedings of the Twenty-Fourth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1605–1612.

Dreier, T.

T. Dreier, A. Dreizler, J. Wolfrum, “The application of a Raman-shifted tunable KrF-excimer laser for laser induced fluorescence combustion diagnostics,” Appl. Phys. B 55, 381–387 (1992).
[CrossRef]

Dreizler, A.

T. Dreier, A. Dreizler, J. Wolfrum, “The application of a Raman-shifted tunable KrF-excimer laser for laser induced fluorescence combustion diagnostics,” Appl. Phys. B 55, 381–387 (1992).
[CrossRef]

Drewes, V.

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging and mathematical modeling of NO concentrations and temperatures in a transparent SI engine,” in Proceedings of the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2597–2604.

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent SI engine,” in 1995 SAE Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1995), paper 952462.

Durant, J. L.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional quenching corrections for laser induced fluorescence measurements of NO A2Σ+,” AIAA J. 32, 1670–1675 (1994).
[CrossRef]

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2 Σ+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

Eberius, H.

H. Eberius, T. Just, T. Kick, G. Häfner, W. Lutz, “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” Proceedings of the Joint Meeting of the German/Italian Section of the Combustion Institute (The Combustion Institute, Pittsburgh, Pa., 1989), p. 3.3.

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion, Temperature and Species (Abacus, Turnbridge Wells, England, 1988); K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy. Combust. Sci. 20, 203–247 (1994).
[CrossRef]

Gray, J. A.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional quenching corrections for laser induced fluorescence measurements of NO A2Σ+,” AIAA J. 32, 1670–1675 (1994).
[CrossRef]

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2 Σ+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

Gröger, W.

P. Andresen, A. Bath, W. Gröger, H. W. Lülf, G. Meijer, J. J. ter Meulen, “Laser-induced fluorescence with tunable excimer lasers as a possible method for instantaneous temperature field measurements at high pressures: checks with an atmospheric flame,” Appl. Opt. 26, 365 (1988).
[CrossRef]

Häfner, G.

H. Eberius, T. Just, T. Kick, G. Häfner, W. Lutz, “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” Proceedings of the Joint Meeting of the German/Italian Section of the Combustion Institute (The Combustion Institute, Pittsburgh, Pa., 1989), p. 3.3.

Hanson, R. K.

M. D. Di Rosa, R. K. Hanson, “Collision-broadening and -shift of NO γ(0, 0) absorption lines by H2O, O2 and NO at 295K,” J. Mol. Spectrosc. 164, 97–117 (1994).
[CrossRef]

M. D. Di Rosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0, 0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

M. D. Di Rosa, K. G. Klavuhn, R. K. Hanson, “LIF spectroscopy of NO and O2 in high-pressure flames,” in Proceedings of the 1995 Fall Meeting of the Western States Section of the Combustion Institute (The Combustion Institute, Pittsburgh, Pa., 1995).

Heinze, J.

V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the O2B3 Σu- state,” Chem. Phys. Lett. 249, 335–340 (1996).
[CrossRef]

A. O. Vyrodow, J. Heinze, M. Dillmann, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A–X(0, 0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B 61, 409–414 (1995).
[CrossRef]

Heitzmann, T.

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K. P. Schindler, “DI Diesel engine combustion visualized by combined laser techniques,” in Proceedings of the Twenty-Fourth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1605–1612.

Hentschel, W.

P. Andresen, G. Meijer, H. Schlüter, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. W. Rothe, “Fluorescence imaging inside an internal combustion engine using tunable excimer lasers,” Appl. Opt. 29, 2392–2404 (1990).
[CrossRef] [PubMed]

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K. P. Schindler, “DI Diesel engine combustion visualized by combined laser techniques,” in Proceedings of the Twenty-Fourth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1605–1612.

Heywood, J. B.

J. B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, New York, 1988), pp. 578–586.

Huigen, G.

Th. M Brugman, R. Klein-Douwel, G. Huigen, E. van Walwijk, J. J. ter Meulen, “Laser induced fluorescence imaging of NO in an n-heptane and diesel fuel driven diesel engine,” Appl. Phys. B 57, 405–410 (1993).
[CrossRef]

Huwel, L.

Just, T.

H. Eberius, T. Just, T. Kick, G. Häfner, W. Lutz, “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” Proceedings of the Joint Meeting of the German/Italian Section of the Combustion Institute (The Combustion Institute, Pittsburgh, Pa., 1989), p. 3.3.

Ketterle, W.

A. Arnold, W. Ketterle, H. Becker, J. Wolfrum, “Simultaneous single-shot imaging of OH and O2 using a two-wavelength excimer laser,” Appl. Phys. B 51, 99–102 (1990).
[CrossRef]

Kick, T.

H. Eberius, T. Just, T. Kick, G. Häfner, W. Lutz, “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” Proceedings of the Joint Meeting of the German/Italian Section of the Combustion Institute (The Combustion Institute, Pittsburgh, Pa., 1989), p. 3.3.

Klavuhn, K. G.

M. D. Di Rosa, K. G. Klavuhn, R. K. Hanson, “LIF spectroscopy of NO and O2 in high-pressure flames,” in Proceedings of the 1995 Fall Meeting of the Western States Section of the Combustion Institute (The Combustion Institute, Pittsburgh, Pa., 1995).

Klein-Douwel, R.

Th. M Brugman, R. Klein-Douwel, G. Huigen, E. van Walwijk, J. J. ter Meulen, “Laser induced fluorescence imaging of NO in an n-heptane and diesel fuel driven diesel engine,” Appl. Phys. B 57, 405–410 (1993).
[CrossRef]

Koch, A.

Kruger, C. H.

C. O. Laux, C. H. Kruger, “Arrays of radiative transition probabilities for the N2 first and second positive, NO beta and gamma, N2+ first negative, and O2 Schumann–Runge band systems,” J. Quant. Spectrosc. Radiat. Transfer 48, 9–24 (1992).
[CrossRef]

Laux, C. O.

C. O. Laux, C. H. Kruger, “Arrays of radiative transition probabilities for the N2 first and second positive, NO beta and gamma, N2+ first negative, and O2 Schumann–Runge band systems,” J. Quant. Spectrosc. Radiat. Transfer 48, 9–24 (1992).
[CrossRef]

Lülf, H. W.

P. Andresen, A. Bath, W. Gröger, H. W. Lülf, G. Meijer, J. J. ter Meulen, “Laser-induced fluorescence with tunable excimer lasers as a possible method for instantaneous temperature field measurements at high pressures: checks with an atmospheric flame,” Appl. Opt. 26, 365 (1988).
[CrossRef]

Lutz, W.

H. Eberius, T. Just, T. Kick, G. Häfner, W. Lutz, “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” Proceedings of the Joint Meeting of the German/Italian Section of the Combustion Institute (The Combustion Institute, Pittsburgh, Pa., 1989), p. 3.3.

Maly, R.

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging and mathematical modeling of NO concentrations and temperatures in a transparent SI engine,” in Proceedings of the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2597–2604.

Maly, R. R.

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent SI engine,” in 1995 SAE Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1995), paper 952462.

Meier, U. E.

A. O. Vyrodow, J. Heinze, M. Dillmann, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A–X(0, 0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B 61, 409–414 (1995).
[CrossRef]

Meijer, G.

Monkhouse, P.

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K. P. Schindler, “DI Diesel engine combustion visualized by combined laser techniques,” in Proceedings of the Twenty-Fourth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1605–1612.

Oppermann, W.

Paul, P. H.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional quenching corrections for laser induced fluorescence measurements of NO A2Σ+,” AIAA J. 32, 1670–1675 (1994).
[CrossRef]

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2 Σ+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

Rothe, E. W.

Schäfer, M.

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K. P. Schindler, “DI Diesel engine combustion visualized by combined laser techniques,” in Proceedings of the Twenty-Fourth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1605–1612.

Schindler, K. P.

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K. P. Schindler, “DI Diesel engine combustion visualized by combined laser techniques,” in Proceedings of the Twenty-Fourth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1605–1612.

Schlüter, H.

Schulz, C.

C. Schulz, B. Yip, V. Sick, J. Wolfrum, “A laser-induced fluorescence scheme for measuring nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995).
[CrossRef]

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging and mathematical modeling of NO concentrations and temperatures in a transparent SI engine,” in Proceedings of the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2597–2604.

Sick, V.

V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the O2B3 Σu- state,” Chem. Phys. Lett. 249, 335–340 (1996).
[CrossRef]

C. Schulz, B. Yip, V. Sick, J. Wolfrum, “A laser-induced fluorescence scheme for measuring nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995).
[CrossRef]

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging and mathematical modeling of NO concentrations and temperatures in a transparent SI engine,” in Proceedings of the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2597–2604.

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent SI engine,” in 1995 SAE Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1995), paper 952462.

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K. P. Schindler, “DI Diesel engine combustion visualized by combined laser techniques,” in Proceedings of the Twenty-Fourth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1605–1612.

Stricker, W.

V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the O2B3 Σu- state,” Chem. Phys. Lett. 249, 335–340 (1996).
[CrossRef]

A. O. Vyrodow, J. Heinze, M. Dillmann, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A–X(0, 0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B 61, 409–414 (1995).
[CrossRef]

ter Meulen, J. J.

Th. M Brugman, R. Klein-Douwel, G. Huigen, E. van Walwijk, J. J. ter Meulen, “Laser induced fluorescence imaging of NO in an n-heptane and diesel fuel driven diesel engine,” Appl. Phys. B 57, 405–410 (1993).
[CrossRef]

P. Andresen, A. Bath, W. Gröger, H. W. Lülf, G. Meijer, J. J. ter Meulen, “Laser-induced fluorescence with tunable excimer lasers as a possible method for instantaneous temperature field measurements at high pressures: checks with an atmospheric flame,” Appl. Opt. 26, 365 (1988).
[CrossRef]

Thoman, J. W.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional quenching corrections for laser induced fluorescence measurements of NO A2Σ+,” AIAA J. 32, 1670–1675 (1994).
[CrossRef]

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2 Σ+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

van Walwijk, E.

Th. M Brugman, R. Klein-Douwel, G. Huigen, E. van Walwijk, J. J. ter Meulen, “Laser induced fluorescence imaging of NO in an n-heptane and diesel fuel driven diesel engine,” Appl. Phys. B 57, 405–410 (1993).
[CrossRef]

Voges, H.

Vyrodow, A. O.

A. O. Vyrodow, J. Heinze, M. Dillmann, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A–X(0, 0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B 61, 409–414 (1995).
[CrossRef]

Wodtke, A. M.

Wolfrum, J.

C. Schulz, B. Yip, V. Sick, J. Wolfrum, “A laser-induced fluorescence scheme for measuring nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995).
[CrossRef]

T. Dreier, A. Dreizler, J. Wolfrum, “The application of a Raman-shifted tunable KrF-excimer laser for laser induced fluorescence combustion diagnostics,” Appl. Phys. B 55, 381–387 (1992).
[CrossRef]

A. Arnold, W. Ketterle, H. Becker, J. Wolfrum, “Simultaneous single-shot imaging of OH and O2 using a two-wavelength excimer laser,” Appl. Phys. B 51, 99–102 (1990).
[CrossRef]

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K. P. Schindler, “DI Diesel engine combustion visualized by combined laser techniques,” in Proceedings of the Twenty-Fourth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1605–1612.

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging and mathematical modeling of NO concentrations and temperatures in a transparent SI engine,” in Proceedings of the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2597–2604.

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent SI engine,” in 1995 SAE Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1995), paper 952462.

Yip, B.

C. Schulz, B. Yip, V. Sick, J. Wolfrum, “A laser-induced fluorescence scheme for measuring nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995).
[CrossRef]

Zahn, M.

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging and mathematical modeling of NO concentrations and temperatures in a transparent SI engine,” in Proceedings of the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2597–2604.

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent SI engine,” in 1995 SAE Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1995), paper 952462.

AIAA J. (1)

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “Collisional quenching corrections for laser induced fluorescence measurements of NO A2Σ+,” AIAA J. 32, 1670–1675 (1994).
[CrossRef]

Appl. Opt. (2)

P. Andresen, A. Bath, W. Gröger, H. W. Lülf, G. Meijer, J. J. ter Meulen, “Laser-induced fluorescence with tunable excimer lasers as a possible method for instantaneous temperature field measurements at high pressures: checks with an atmospheric flame,” Appl. Opt. 26, 365 (1988).
[CrossRef]

P. Andresen, G. Meijer, H. Schlüter, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. W. Rothe, “Fluorescence imaging inside an internal combustion engine using tunable excimer lasers,” Appl. Opt. 29, 2392–2404 (1990).
[CrossRef] [PubMed]

Appl. Phys. B (5)

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2 Σ+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

A. Arnold, W. Ketterle, H. Becker, J. Wolfrum, “Simultaneous single-shot imaging of OH and O2 using a two-wavelength excimer laser,” Appl. Phys. B 51, 99–102 (1990).
[CrossRef]

A. O. Vyrodow, J. Heinze, M. Dillmann, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A–X(0, 0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B 61, 409–414 (1995).
[CrossRef]

T. Dreier, A. Dreizler, J. Wolfrum, “The application of a Raman-shifted tunable KrF-excimer laser for laser induced fluorescence combustion diagnostics,” Appl. Phys. B 55, 381–387 (1992).
[CrossRef]

Th. M Brugman, R. Klein-Douwel, G. Huigen, E. van Walwijk, J. J. ter Meulen, “Laser induced fluorescence imaging of NO in an n-heptane and diesel fuel driven diesel engine,” Appl. Phys. B 57, 405–410 (1993).
[CrossRef]

Chem. Phys. Lett. (2)

V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the O2B3 Σu- state,” Chem. Phys. Lett. 249, 335–340 (1996).
[CrossRef]

C. Schulz, B. Yip, V. Sick, J. Wolfrum, “A laser-induced fluorescence scheme for measuring nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995).
[CrossRef]

J. Mol. Spectrosc. (1)

M. D. Di Rosa, R. K. Hanson, “Collision-broadening and -shift of NO γ(0, 0) absorption lines by H2O, O2 and NO at 295K,” J. Mol. Spectrosc. 164, 97–117 (1994).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

M. D. Di Rosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0, 0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

C. O. Laux, C. H. Kruger, “Arrays of radiative transition probabilities for the N2 first and second positive, NO beta and gamma, N2+ first negative, and O2 Schumann–Runge band systems,” J. Quant. Spectrosc. Radiat. Transfer 48, 9–24 (1992).
[CrossRef]

Opt. Lett. (1)

Other (7)

A. C. Eckbreth, Laser Diagnostics for Combustion, Temperature and Species (Abacus, Turnbridge Wells, England, 1988); K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy. Combust. Sci. 20, 203–247 (1994).
[CrossRef]

M. D. Di Rosa, K. G. Klavuhn, R. K. Hanson, “LIF spectroscopy of NO and O2 in high-pressure flames,” in Proceedings of the 1995 Fall Meeting of the Western States Section of the Combustion Institute (The Combustion Institute, Pittsburgh, Pa., 1995).

A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K. P. Schindler, “DI Diesel engine combustion visualized by combined laser techniques,” in Proceedings of the Twenty-Fourth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1605–1612.

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent SI engine,” in 1995 SAE Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa., 1995), paper 952462.

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging and mathematical modeling of NO concentrations and temperatures in a transparent SI engine,” in Proceedings of the Twenty-Sixth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2597–2604.

H. Eberius, T. Just, T. Kick, G. Häfner, W. Lutz, “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” Proceedings of the Joint Meeting of the German/Italian Section of the Combustion Institute (The Combustion Institute, Pittsburgh, Pa., 1989), p. 3.3.

J. B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, New York, 1988), pp. 578–586.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for spectroscopic measurements on NO in a lean (ϕ = 0.9), premixed CH4/air flame operated at 1–40 bars. In the measurements presented here, 370 ppm of NO were doped to the burn gases (see text).

Fig. 2
Fig. 2

Excitation–emission spectra obtained in the lean CH4/air flame at 1, 5, and 40 bars. The spectra on the left show profiles along the NO A–X(0, 1) emission lines for excitation wavelengths between 247.65 and 248.0 nm at 1, 5, and 40 bars. The spectra are not corrected for wavelength dependence of the laser energy. The emission spectrum at the bottom was obtained at 1 bar after excitation at 247.95 nm. The NO A–X(0, υ″) progression is clearly resolved with the (0, 2) band overlapped with the Rayleigh peak (off scale). The small frames at the right show enlarged excitation–emission spectra of the laser output obtained by Rayleigh scattering. The intensity of the narrow-band part (diagonal line) drops significantly at wavelengths shorter than 247.8 nm. ASE, amplified spontaneous emission.

Fig. 3
Fig. 3

Comparison of calculated fluorescence excitation spectra of NO and O2 near the NO A–X(0, 2) O12 bandhead at 1 and 40 bars. Only the O2 signal that is emitted within the experimental bandpass suggested for NO detection is taken into account.

Fig. 4
Fig. 4

Excitation–emission spectra obtained in the lean methane/air flame at 1, 5, and 40 bars for excitation between 225.05 and 225.35 nm using the Raman-shifted KrF excimer laser.

Fig. 5
Fig. 5

Measured and calculated fluorescence excitation spectra near the NO A–X(0, 2) O12 bandhead for different pressures. The measured spectra are corrected for changes in laser intensity.

Fig. 6
Fig. 6

Pressure dependence of spectral overlap g λ(p, T) of the NO fluorescence excitation spectra and the laser line shape that is assumed to be Gaussian. The calculations are done for T = 2000 K.

Fig. 7
Fig. 7

Emission spectrum at 40 bars after excitation at 247.95 nm. The shaded area marks the detection bandpass.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

IILNp, TfBBkigλp, TAikAk+P+Qp.
IILNp, TfBBkigλp, TAikq

Metrics