Abstract

Dual-pump coherent anti-Stokes Raman scattering (CARS) has been demonstrated for the simultaneous measurement of gas-phase temperature and concentrations of molecular nitrogen and oxygen. A polarization technique was used to vary the relative intensities of the two CARS signals and expand the dynamic range of the relative concentration measurements. Detailed temperature and oxygen mole fraction measurements were performed in the stabilization region of a hydrogen–nitrogen jet diffusion flame. These results indicate that there is a region below the nozzle exit where significant amounts of oxygen are found on the fuel side of the peak flame temperature profile.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. R. Regnier, J. P. E. Taran, “On the possibility of measuring gas concentrations by stimulated anti-Stokes scattering,” Appl. Phys. Lett. 23, 240–242 (1973).
    [CrossRef]
  2. P. R. Regnier, F. Moya, J. P. E. Taran, “Gas concentration by coherent Raman anti-Stokes scattering,” AIAA J. 12, 826–831 (1974).
    [CrossRef]
  3. F. S. Moya, S. A. J. Druet, J. P. E. Taran, “Gas spectroscopy and temperature measurement by coherent Raman anti-Stokes scattering,” Opt. Commun. 13, 169–174 (1975).
    [CrossRef]
  4. F. S. Moya, S. A. J. Druet, J. P. E. Taran, “Flame investigation by coherent anti-Stokes Raman scattering,” in Experimental Diagnostics in Gas Phase Combustion Systems, Vol. 53 of Progress in Astronautics and Aeronautics Series, B. T. Zinn, ed. (American Institute of Aeronautics and Astronautics, New York, 1977), pp. 549–574.
  5. K. Aron, L. E. Harris, “CARS probe of RDX decomposition,” Chem. Phys. Lett. 103, 413–417 (1983).
    [CrossRef]
  6. K. Aron, L. E. Harris, J. Fendell, “N2 and CO vibrational CARS and H2 rotational CARS spectroscopy of CH4–N2O flames,” Appl. Opt. 22, 3604–3611 (1983).
    [CrossRef] [PubMed]
  7. A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Conditional sampling for fuel and soot in CARS thermometry,” in Proceedings of the Twenty-First Symposium (International) on Combustion, (The Combustion Institute, Pittsburgh, Pa., 1988), pp. 1747–1753.
    [CrossRef]
  8. F. Y. Yueh, E. J. Beiting, “Simultaneous N2, CO, and H2 multiplex CARS measurements in combustion environments using a single dye laser,” Appl. Opt. 27, 3233–3243 (1988).
    [CrossRef] [PubMed]
  9. J. H. Stufflebeam, A. C. Eckbreth, “CARS diagnostics of solid propellant combustion at elevated pressure,” Combust. Sci. Technol. 66, 167–179 (1989).
    [CrossRef]
  10. A. C. Eckbreth, T. J. Anderson, “Dual broadband CARS for simultaneous, multiple species measurements,” Appl. Opt. 24, 2731–2736 (1985).
    [CrossRef] [PubMed]
  11. A. C. Eckbreth, T. J. Anderson, “Dual broadband USED CARS,” Appl. Opt. 25, 1534–1536 (1986).
    [CrossRef] [PubMed]
  12. A. C. Eckbreth, T. J. Anderson, “Multi-color CARS for simultaneous measurements of multiple combustion species,” in Laser Applications to Chemical Dynamics, M. A. El-Sayed, ed., Proc. SPIE742, 34–41 (1987).
    [CrossRef]
  13. L. Martinsson, P.-E. Bengtsson, M. Aldén, “Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
    [CrossRef]
  14. P.-E. Bengtsson, L. Martinsson, M. Aldén, “Combined vibrational and rotational CARS for simultaneous measurements of temperature and concentration of fuel, oxygen, and nitrogen,” Appl. Spectrosc. 49, 188–192 (1995).
    [CrossRef]
  15. R. R. Antcliff, O. Jarrett, “Multispecies coherent anti-Stokes Raman scattering instrument for turbulent combustion,” Rev. Sci. Instrum. 58, 2075–2080 (1987).
    [CrossRef]
  16. A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Multi-color CARS for hydrogen-fueled scramjet applications,” Appl. Phys. B 45, 215–223 (1988).
    [CrossRef]
  17. K. Boyack, P. O. Hedman, “Dual-Stokes CARS system for simultaneous measurement of temperature and multiple species in turbulent flames,” in Proceedings of the Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1893–1899.
  18. R. E. Teets, “Three-color coherent anti-Stokes Raman scattering,” presented at the 1985 International Laser Science Conference, Dallas, Tex., 18–22 November 1985.
  19. R. P. Lucht, “Three-laser coherent anti-Stokes Raman scattering measurements of two species,” Opt. Lett. 12, 78–80 (1987).
    [CrossRef] [PubMed]
  20. R. P. Lucht, R. E. Palmer, M. A. Maris, “Simultaneous acquisition of pure rotational and vibrational nitrogen spectra using three-laser coherent anti-Stokes Raman spectroscopy,” Opt. Lett. 12, 386–388 (1987).
    [CrossRef] [PubMed]
  21. L. A. Rahn, L. J. Zych, P. L. Mattern, “Background-free CARS studies of carbon monoxide in a flame,” Opt. Commun. 30, 249–252 (1979).
    [CrossRef]
  22. J. W. Nibler, G. V. Knighten, “Coherent anti-Stokes Raman spectroscopy,” in Vol. 11 of Topics in Current Physics Series, A. Weber, ed. (Springer-Verlag, Stuttgart, 1977), pp. 253–297.
  23. A. Owyoung, “The origins of the nonlinear refractive indices of liquids and glasses,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1971).
  24. R. L. Farrow, R. P. Lucht, G. L. Clark, R. E. Palmer, “Species concentration measurements using CARS with nonresonant susceptibility normalization,” Appl. Opt. 24, 2241–2251 (1985).
    [CrossRef] [PubMed]
  25. R. E. Palmer, “The carsft computer code for calculating coherent anti-Stokes Raman spectra: user and programmer information,” (Sandia National Laboratories, Livermore, Calif., 1989).
  26. R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame (1997), in press.
    [CrossRef]
  27. J. A. Shirley, R. J. Hall, A. C. Eckbreth, “Folded BOXCARS for rotational Raman studies,” Opt. Lett. 5, 380–382 (1980).
    [CrossRef] [PubMed]
  28. D. J. Rakestraw, R. P. Lucht, T. Dreier, “Use of a charge-coupled device camera for broadband coherent anti-Stokes Raman scattering measurements,” Appl. Opt. 28, 4116–4120 (1989).
    [CrossRef] [PubMed]
  29. K. Hencken, Research Technologies, Inc., San Ramon, Calif. (personal communication, 1995).
  30. S. Gordon, B. J. McBride, “Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman–Jouguet detonations,” (NASA, Washington, D.C., 1976).
  31. T. Dreier, G. Schiff, “High temperature O2-CARS thermometry,” Appl. Phys. B 55, 388–390 (1992).
    [CrossRef]
  32. S. Fukutani, N. Kunioshi, H. Jinno, “Flame structure and axisymmetric hydrogen–air diffusion flames,” in Dynamics of Deflagrations and Reactive Systems: Flames, Vol. 131 of Progress in Astronautics and Aeronautics Series, A. L. Kuhl, J.-C. Leyer, A. A. Borisov, W. A. Sirignano, eds. (American Institute of Aeronautics and Astronautics, Washington, D.C., 1990), pp. 111–124.
  33. F. Takahashi, V. R. Katta, “A numerical study of the stability of methane jet diffusion flames,” presented at Central States Section/The Combustion Institute, St. Louis, Mo., 5–7 May 1996.
  34. F. Takahashi, V. R. Katta, “A further analysis of the stabilizing region of methane jet diffusion flames,” presented at Eastern States Section/The Combustion Institute, Hilton Head, S.C., 9–11 December 1996.
  35. M. D. Smooke, R. E. Mitchell, D. E. Keyes, “Numerical solution of two-dimensional axisymmetric laminar diffusion flames,” Combust. Sci. Technol. 67, 85–122 (1989).
    [CrossRef]

1996 (1)

L. Martinsson, P.-E. Bengtsson, M. Aldén, “Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

1995 (1)

1992 (1)

T. Dreier, G. Schiff, “High temperature O2-CARS thermometry,” Appl. Phys. B 55, 388–390 (1992).
[CrossRef]

1989 (3)

M. D. Smooke, R. E. Mitchell, D. E. Keyes, “Numerical solution of two-dimensional axisymmetric laminar diffusion flames,” Combust. Sci. Technol. 67, 85–122 (1989).
[CrossRef]

D. J. Rakestraw, R. P. Lucht, T. Dreier, “Use of a charge-coupled device camera for broadband coherent anti-Stokes Raman scattering measurements,” Appl. Opt. 28, 4116–4120 (1989).
[CrossRef] [PubMed]

J. H. Stufflebeam, A. C. Eckbreth, “CARS diagnostics of solid propellant combustion at elevated pressure,” Combust. Sci. Technol. 66, 167–179 (1989).
[CrossRef]

1988 (2)

F. Y. Yueh, E. J. Beiting, “Simultaneous N2, CO, and H2 multiplex CARS measurements in combustion environments using a single dye laser,” Appl. Opt. 27, 3233–3243 (1988).
[CrossRef] [PubMed]

A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Multi-color CARS for hydrogen-fueled scramjet applications,” Appl. Phys. B 45, 215–223 (1988).
[CrossRef]

1987 (3)

1986 (1)

1985 (2)

1983 (2)

1980 (1)

1979 (1)

L. A. Rahn, L. J. Zych, P. L. Mattern, “Background-free CARS studies of carbon monoxide in a flame,” Opt. Commun. 30, 249–252 (1979).
[CrossRef]

1975 (1)

F. S. Moya, S. A. J. Druet, J. P. E. Taran, “Gas spectroscopy and temperature measurement by coherent Raman anti-Stokes scattering,” Opt. Commun. 13, 169–174 (1975).
[CrossRef]

1974 (1)

P. R. Regnier, F. Moya, J. P. E. Taran, “Gas concentration by coherent Raman anti-Stokes scattering,” AIAA J. 12, 826–831 (1974).
[CrossRef]

1973 (1)

P. R. Regnier, J. P. E. Taran, “On the possibility of measuring gas concentrations by stimulated anti-Stokes scattering,” Appl. Phys. Lett. 23, 240–242 (1973).
[CrossRef]

Aldén, M.

L. Martinsson, P.-E. Bengtsson, M. Aldén, “Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

P.-E. Bengtsson, L. Martinsson, M. Aldén, “Combined vibrational and rotational CARS for simultaneous measurements of temperature and concentration of fuel, oxygen, and nitrogen,” Appl. Spectrosc. 49, 188–192 (1995).
[CrossRef]

Anderson, T. J.

A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Multi-color CARS for hydrogen-fueled scramjet applications,” Appl. Phys. B 45, 215–223 (1988).
[CrossRef]

A. C. Eckbreth, T. J. Anderson, “Dual broadband USED CARS,” Appl. Opt. 25, 1534–1536 (1986).
[CrossRef] [PubMed]

A. C. Eckbreth, T. J. Anderson, “Dual broadband CARS for simultaneous, multiple species measurements,” Appl. Opt. 24, 2731–2736 (1985).
[CrossRef] [PubMed]

A. C. Eckbreth, T. J. Anderson, “Multi-color CARS for simultaneous measurements of multiple combustion species,” in Laser Applications to Chemical Dynamics, M. A. El-Sayed, ed., Proc. SPIE742, 34–41 (1987).
[CrossRef]

A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Conditional sampling for fuel and soot in CARS thermometry,” in Proceedings of the Twenty-First Symposium (International) on Combustion, (The Combustion Institute, Pittsburgh, Pa., 1988), pp. 1747–1753.
[CrossRef]

Antcliff, R. R.

R. R. Antcliff, O. Jarrett, “Multispecies coherent anti-Stokes Raman scattering instrument for turbulent combustion,” Rev. Sci. Instrum. 58, 2075–2080 (1987).
[CrossRef]

Aron, K.

Beiting, E. J.

Bengtsson, P.-E.

L. Martinsson, P.-E. Bengtsson, M. Aldén, “Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

P.-E. Bengtsson, L. Martinsson, M. Aldén, “Combined vibrational and rotational CARS for simultaneous measurements of temperature and concentration of fuel, oxygen, and nitrogen,” Appl. Spectrosc. 49, 188–192 (1995).
[CrossRef]

Bertagnolli, K. E.

R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame (1997), in press.
[CrossRef]

Boyack, K.

K. Boyack, P. O. Hedman, “Dual-Stokes CARS system for simultaneous measurement of temperature and multiple species in turbulent flames,” in Proceedings of the Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1893–1899.

Clark, G. L.

Dobbs, G. M.

A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Multi-color CARS for hydrogen-fueled scramjet applications,” Appl. Phys. B 45, 215–223 (1988).
[CrossRef]

A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Conditional sampling for fuel and soot in CARS thermometry,” in Proceedings of the Twenty-First Symposium (International) on Combustion, (The Combustion Institute, Pittsburgh, Pa., 1988), pp. 1747–1753.
[CrossRef]

Dreier, T.

Druet, S. A. J.

F. S. Moya, S. A. J. Druet, J. P. E. Taran, “Gas spectroscopy and temperature measurement by coherent Raman anti-Stokes scattering,” Opt. Commun. 13, 169–174 (1975).
[CrossRef]

F. S. Moya, S. A. J. Druet, J. P. E. Taran, “Flame investigation by coherent anti-Stokes Raman scattering,” in Experimental Diagnostics in Gas Phase Combustion Systems, Vol. 53 of Progress in Astronautics and Aeronautics Series, B. T. Zinn, ed. (American Institute of Aeronautics and Astronautics, New York, 1977), pp. 549–574.

Eckbreth, A. C.

J. H. Stufflebeam, A. C. Eckbreth, “CARS diagnostics of solid propellant combustion at elevated pressure,” Combust. Sci. Technol. 66, 167–179 (1989).
[CrossRef]

A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Multi-color CARS for hydrogen-fueled scramjet applications,” Appl. Phys. B 45, 215–223 (1988).
[CrossRef]

A. C. Eckbreth, T. J. Anderson, “Dual broadband USED CARS,” Appl. Opt. 25, 1534–1536 (1986).
[CrossRef] [PubMed]

A. C. Eckbreth, T. J. Anderson, “Dual broadband CARS for simultaneous, multiple species measurements,” Appl. Opt. 24, 2731–2736 (1985).
[CrossRef] [PubMed]

J. A. Shirley, R. J. Hall, A. C. Eckbreth, “Folded BOXCARS for rotational Raman studies,” Opt. Lett. 5, 380–382 (1980).
[CrossRef] [PubMed]

A. C. Eckbreth, T. J. Anderson, “Multi-color CARS for simultaneous measurements of multiple combustion species,” in Laser Applications to Chemical Dynamics, M. A. El-Sayed, ed., Proc. SPIE742, 34–41 (1987).
[CrossRef]

A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Conditional sampling for fuel and soot in CARS thermometry,” in Proceedings of the Twenty-First Symposium (International) on Combustion, (The Combustion Institute, Pittsburgh, Pa., 1988), pp. 1747–1753.
[CrossRef]

Farrow, R. L.

Fendell, J.

Fukutani, S.

S. Fukutani, N. Kunioshi, H. Jinno, “Flame structure and axisymmetric hydrogen–air diffusion flames,” in Dynamics of Deflagrations and Reactive Systems: Flames, Vol. 131 of Progress in Astronautics and Aeronautics Series, A. L. Kuhl, J.-C. Leyer, A. A. Borisov, W. A. Sirignano, eds. (American Institute of Aeronautics and Astronautics, Washington, D.C., 1990), pp. 111–124.

Gordon, S.

S. Gordon, B. J. McBride, “Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman–Jouguet detonations,” (NASA, Washington, D.C., 1976).

Hall, R. J.

Hancock, R. D.

R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame (1997), in press.
[CrossRef]

Harris, L. E.

Hedman, P. O.

K. Boyack, P. O. Hedman, “Dual-Stokes CARS system for simultaneous measurement of temperature and multiple species in turbulent flames,” in Proceedings of the Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1893–1899.

Hencken, K.

K. Hencken, Research Technologies, Inc., San Ramon, Calif. (personal communication, 1995).

Jarrett, O.

R. R. Antcliff, O. Jarrett, “Multispecies coherent anti-Stokes Raman scattering instrument for turbulent combustion,” Rev. Sci. Instrum. 58, 2075–2080 (1987).
[CrossRef]

Jinno, H.

S. Fukutani, N. Kunioshi, H. Jinno, “Flame structure and axisymmetric hydrogen–air diffusion flames,” in Dynamics of Deflagrations and Reactive Systems: Flames, Vol. 131 of Progress in Astronautics and Aeronautics Series, A. L. Kuhl, J.-C. Leyer, A. A. Borisov, W. A. Sirignano, eds. (American Institute of Aeronautics and Astronautics, Washington, D.C., 1990), pp. 111–124.

Katta, V. R.

F. Takahashi, V. R. Katta, “A numerical study of the stability of methane jet diffusion flames,” presented at Central States Section/The Combustion Institute, St. Louis, Mo., 5–7 May 1996.

F. Takahashi, V. R. Katta, “A further analysis of the stabilizing region of methane jet diffusion flames,” presented at Eastern States Section/The Combustion Institute, Hilton Head, S.C., 9–11 December 1996.

Keyes, D. E.

M. D. Smooke, R. E. Mitchell, D. E. Keyes, “Numerical solution of two-dimensional axisymmetric laminar diffusion flames,” Combust. Sci. Technol. 67, 85–122 (1989).
[CrossRef]

Knighten, G. V.

J. W. Nibler, G. V. Knighten, “Coherent anti-Stokes Raman spectroscopy,” in Vol. 11 of Topics in Current Physics Series, A. Weber, ed. (Springer-Verlag, Stuttgart, 1977), pp. 253–297.

Kunioshi, N.

S. Fukutani, N. Kunioshi, H. Jinno, “Flame structure and axisymmetric hydrogen–air diffusion flames,” in Dynamics of Deflagrations and Reactive Systems: Flames, Vol. 131 of Progress in Astronautics and Aeronautics Series, A. L. Kuhl, J.-C. Leyer, A. A. Borisov, W. A. Sirignano, eds. (American Institute of Aeronautics and Astronautics, Washington, D.C., 1990), pp. 111–124.

Lucht, R. P.

Maris, M. A.

Martinsson, L.

L. Martinsson, P.-E. Bengtsson, M. Aldén, “Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

P.-E. Bengtsson, L. Martinsson, M. Aldén, “Combined vibrational and rotational CARS for simultaneous measurements of temperature and concentration of fuel, oxygen, and nitrogen,” Appl. Spectrosc. 49, 188–192 (1995).
[CrossRef]

Mattern, P. L.

L. A. Rahn, L. J. Zych, P. L. Mattern, “Background-free CARS studies of carbon monoxide in a flame,” Opt. Commun. 30, 249–252 (1979).
[CrossRef]

McBride, B. J.

S. Gordon, B. J. McBride, “Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman–Jouguet detonations,” (NASA, Washington, D.C., 1976).

Mitchell, R. E.

M. D. Smooke, R. E. Mitchell, D. E. Keyes, “Numerical solution of two-dimensional axisymmetric laminar diffusion flames,” Combust. Sci. Technol. 67, 85–122 (1989).
[CrossRef]

Moya, F.

P. R. Regnier, F. Moya, J. P. E. Taran, “Gas concentration by coherent Raman anti-Stokes scattering,” AIAA J. 12, 826–831 (1974).
[CrossRef]

Moya, F. S.

F. S. Moya, S. A. J. Druet, J. P. E. Taran, “Gas spectroscopy and temperature measurement by coherent Raman anti-Stokes scattering,” Opt. Commun. 13, 169–174 (1975).
[CrossRef]

F. S. Moya, S. A. J. Druet, J. P. E. Taran, “Flame investigation by coherent anti-Stokes Raman scattering,” in Experimental Diagnostics in Gas Phase Combustion Systems, Vol. 53 of Progress in Astronautics and Aeronautics Series, B. T. Zinn, ed. (American Institute of Aeronautics and Astronautics, New York, 1977), pp. 549–574.

Nibler, J. W.

J. W. Nibler, G. V. Knighten, “Coherent anti-Stokes Raman spectroscopy,” in Vol. 11 of Topics in Current Physics Series, A. Weber, ed. (Springer-Verlag, Stuttgart, 1977), pp. 253–297.

Owyoung, A.

A. Owyoung, “The origins of the nonlinear refractive indices of liquids and glasses,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1971).

Palmer, R. E.

Rahn, L. A.

L. A. Rahn, L. J. Zych, P. L. Mattern, “Background-free CARS studies of carbon monoxide in a flame,” Opt. Commun. 30, 249–252 (1979).
[CrossRef]

Rakestraw, D. J.

Regnier, P. R.

P. R. Regnier, F. Moya, J. P. E. Taran, “Gas concentration by coherent Raman anti-Stokes scattering,” AIAA J. 12, 826–831 (1974).
[CrossRef]

P. R. Regnier, J. P. E. Taran, “On the possibility of measuring gas concentrations by stimulated anti-Stokes scattering,” Appl. Phys. Lett. 23, 240–242 (1973).
[CrossRef]

Schiff, G.

T. Dreier, G. Schiff, “High temperature O2-CARS thermometry,” Appl. Phys. B 55, 388–390 (1992).
[CrossRef]

Shirley, J. A.

Smooke, M. D.

M. D. Smooke, R. E. Mitchell, D. E. Keyes, “Numerical solution of two-dimensional axisymmetric laminar diffusion flames,” Combust. Sci. Technol. 67, 85–122 (1989).
[CrossRef]

Stufflebeam, J. H.

J. H. Stufflebeam, A. C. Eckbreth, “CARS diagnostics of solid propellant combustion at elevated pressure,” Combust. Sci. Technol. 66, 167–179 (1989).
[CrossRef]

Takahashi, F.

F. Takahashi, V. R. Katta, “A further analysis of the stabilizing region of methane jet diffusion flames,” presented at Eastern States Section/The Combustion Institute, Hilton Head, S.C., 9–11 December 1996.

F. Takahashi, V. R. Katta, “A numerical study of the stability of methane jet diffusion flames,” presented at Central States Section/The Combustion Institute, St. Louis, Mo., 5–7 May 1996.

Taran, J. P. E.

F. S. Moya, S. A. J. Druet, J. P. E. Taran, “Gas spectroscopy and temperature measurement by coherent Raman anti-Stokes scattering,” Opt. Commun. 13, 169–174 (1975).
[CrossRef]

P. R. Regnier, F. Moya, J. P. E. Taran, “Gas concentration by coherent Raman anti-Stokes scattering,” AIAA J. 12, 826–831 (1974).
[CrossRef]

P. R. Regnier, J. P. E. Taran, “On the possibility of measuring gas concentrations by stimulated anti-Stokes scattering,” Appl. Phys. Lett. 23, 240–242 (1973).
[CrossRef]

F. S. Moya, S. A. J. Druet, J. P. E. Taran, “Flame investigation by coherent anti-Stokes Raman scattering,” in Experimental Diagnostics in Gas Phase Combustion Systems, Vol. 53 of Progress in Astronautics and Aeronautics Series, B. T. Zinn, ed. (American Institute of Aeronautics and Astronautics, New York, 1977), pp. 549–574.

Teets, R. E.

R. E. Teets, “Three-color coherent anti-Stokes Raman scattering,” presented at the 1985 International Laser Science Conference, Dallas, Tex., 18–22 November 1985.

Yueh, F. Y.

Zych, L. J.

L. A. Rahn, L. J. Zych, P. L. Mattern, “Background-free CARS studies of carbon monoxide in a flame,” Opt. Commun. 30, 249–252 (1979).
[CrossRef]

AIAA J. (1)

P. R. Regnier, F. Moya, J. P. E. Taran, “Gas concentration by coherent Raman anti-Stokes scattering,” AIAA J. 12, 826–831 (1974).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. B (3)

T. Dreier, G. Schiff, “High temperature O2-CARS thermometry,” Appl. Phys. B 55, 388–390 (1992).
[CrossRef]

L. Martinsson, P.-E. Bengtsson, M. Aldén, “Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Multi-color CARS for hydrogen-fueled scramjet applications,” Appl. Phys. B 45, 215–223 (1988).
[CrossRef]

Appl. Phys. Lett. (1)

P. R. Regnier, J. P. E. Taran, “On the possibility of measuring gas concentrations by stimulated anti-Stokes scattering,” Appl. Phys. Lett. 23, 240–242 (1973).
[CrossRef]

Appl. Spectrosc. (1)

Chem. Phys. Lett. (1)

K. Aron, L. E. Harris, “CARS probe of RDX decomposition,” Chem. Phys. Lett. 103, 413–417 (1983).
[CrossRef]

Combust. Sci. Technol. (2)

J. H. Stufflebeam, A. C. Eckbreth, “CARS diagnostics of solid propellant combustion at elevated pressure,” Combust. Sci. Technol. 66, 167–179 (1989).
[CrossRef]

M. D. Smooke, R. E. Mitchell, D. E. Keyes, “Numerical solution of two-dimensional axisymmetric laminar diffusion flames,” Combust. Sci. Technol. 67, 85–122 (1989).
[CrossRef]

Opt. Commun. (2)

L. A. Rahn, L. J. Zych, P. L. Mattern, “Background-free CARS studies of carbon monoxide in a flame,” Opt. Commun. 30, 249–252 (1979).
[CrossRef]

F. S. Moya, S. A. J. Druet, J. P. E. Taran, “Gas spectroscopy and temperature measurement by coherent Raman anti-Stokes scattering,” Opt. Commun. 13, 169–174 (1975).
[CrossRef]

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

R. R. Antcliff, O. Jarrett, “Multispecies coherent anti-Stokes Raman scattering instrument for turbulent combustion,” Rev. Sci. Instrum. 58, 2075–2080 (1987).
[CrossRef]

Other (14)

A. C. Eckbreth, T. J. Anderson, “Multi-color CARS for simultaneous measurements of multiple combustion species,” in Laser Applications to Chemical Dynamics, M. A. El-Sayed, ed., Proc. SPIE742, 34–41 (1987).
[CrossRef]

K. Boyack, P. O. Hedman, “Dual-Stokes CARS system for simultaneous measurement of temperature and multiple species in turbulent flames,” in Proceedings of the Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1893–1899.

R. E. Teets, “Three-color coherent anti-Stokes Raman scattering,” presented at the 1985 International Laser Science Conference, Dallas, Tex., 18–22 November 1985.

F. S. Moya, S. A. J. Druet, J. P. E. Taran, “Flame investigation by coherent anti-Stokes Raman scattering,” in Experimental Diagnostics in Gas Phase Combustion Systems, Vol. 53 of Progress in Astronautics and Aeronautics Series, B. T. Zinn, ed. (American Institute of Aeronautics and Astronautics, New York, 1977), pp. 549–574.

A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Conditional sampling for fuel and soot in CARS thermometry,” in Proceedings of the Twenty-First Symposium (International) on Combustion, (The Combustion Institute, Pittsburgh, Pa., 1988), pp. 1747–1753.
[CrossRef]

K. Hencken, Research Technologies, Inc., San Ramon, Calif. (personal communication, 1995).

S. Gordon, B. J. McBride, “Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman–Jouguet detonations,” (NASA, Washington, D.C., 1976).

J. W. Nibler, G. V. Knighten, “Coherent anti-Stokes Raman spectroscopy,” in Vol. 11 of Topics in Current Physics Series, A. Weber, ed. (Springer-Verlag, Stuttgart, 1977), pp. 253–297.

A. Owyoung, “The origins of the nonlinear refractive indices of liquids and glasses,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1971).

R. E. Palmer, “The carsft computer code for calculating coherent anti-Stokes Raman spectra: user and programmer information,” (Sandia National Laboratories, Livermore, Calif., 1989).

R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame (1997), in press.
[CrossRef]

S. Fukutani, N. Kunioshi, H. Jinno, “Flame structure and axisymmetric hydrogen–air diffusion flames,” in Dynamics of Deflagrations and Reactive Systems: Flames, Vol. 131 of Progress in Astronautics and Aeronautics Series, A. L. Kuhl, J.-C. Leyer, A. A. Borisov, W. A. Sirignano, eds. (American Institute of Aeronautics and Astronautics, Washington, D.C., 1990), pp. 111–124.

F. Takahashi, V. R. Katta, “A numerical study of the stability of methane jet diffusion flames,” presented at Central States Section/The Combustion Institute, St. Louis, Mo., 5–7 May 1996.

F. Takahashi, V. R. Katta, “A further analysis of the stabilizing region of methane jet diffusion flames,” presented at Eastern States Section/The Combustion Institute, Hilton Head, S.C., 9–11 December 1996.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Energy-level schematic for dual-pump CARS measurements of oxygen and nitrogen.

Fig. 2
Fig. 2

Polarization scheme for extending the dynamic range of dual-pump CARS.

Fig. 3
Fig. 3

Schematic diagram of the dual-pump CARS system: M’s, mirrors; 1/2’s, half-wave plates; GP’s, Glan polarizers; BS’s, beam splitters; FR’s, Fresnel rhombs; P’s, prisms; A’s, apertures; T’s, beam traps; L’s, lenses.

Fig. 4
Fig. 4

Room-temperature spectrum obtained by dual-pump CARS. The least-squares-fit O2 mole fraction is 0.21. The theoretical curve was calculated with carsft.

Fig. 5
Fig. 5

Effect of varying the angle of the transmission axis of the polarizer in the CARS signal channel. When polarization techniques are used with dual-pump CARS, the relative amount of signal transmitted into the spectrometer for each of the two species can be controlled by passing the CARS signal through a half-wave plate and polarizer. The angular setting of the CARS signal channel polarizer is indicated for each spectrum. The theoretical curves were calculated with carsft.

Fig. 6
Fig. 6

Location of the N2 CARS signal relative to the O2 CARS signal can be varied by changing the frequency of pump 2. Pump 1 was held constant at 532 nm, and the broadband dye laser was centered at 607 nm. Pump 2 was varied to the wavelengths indicated on the spectra. All three spectra were collected at the same conditions in a fuel-lean (ϕ = 0.236) H2–air flame produced with a Hencken burner and fit with the carsft code. The NASA Lewis equilibrium code calculates a temperature of 1025 K and an O2 mole fraction of 0.153.

Fig. 7
Fig. 7

Histogram (pdf) of the square root (SQRT) of the integrated area of the O2 CARS signal. The standard deviation divided by the mean is 18.8%.

Fig. 8
Fig. 8

Histogram (pdf) of the square root (SQRT) of the integrated area of the N2 CARS signal. The standard deviation divided by the mean is 15.4%.

Fig. 9
Fig. 9

Histogram (pdf) of the ratio of the square root (SQRT) of the integrated areas of the O2 and the N2 CARS signals. The standard deviation divided by the mean is 7.9%.

Fig. 10
Fig. 10

Histogram (pdf) of the O2 mole fraction from least-squares fits made with the Sandia carsft code. The mean O2 mole fraction was found to be 0.200. The standard deviation divided by the mean is 4.5%.

Fig. 11
Fig. 11

Dual-pump CARS spectra showing the presence of O2 on the fuel side of the flame zone. All three spectra were obtained 1.27 mm below the lip of the nozzle. Spectrum (a) is a point on the fuel side of the flame zone, (b) is at the peak temperature region of the flame zone, and (c) is on the air side of the flame zone.

Fig. 12
Fig. 12

Dual-pump CARS temperature profiles in the stabilization region of a H2–N2 jet diffusion flame.

Fig. 13
Fig. 13

Dual-pump CARS O2 mole fraction profiles in the stabilization region of a H2–N2 jet diffusion flame.

Fig. 14
Fig. 14

Dual-pump CARS temperature and O2 mole fraction measurements below the nozzle for flame 1. The peak flame temperatures are indicated for each radial profile. Note that some O2 is located on the fuel side of the peak temperature line for the lower radial profiles.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

Easχ11223eˆ1eˆ2·eˆs+χ12123eˆ2e1·eˆs+χ12213eˆseˆ1·eˆ2E1Es*E2,
χ11223=124σ+2aω2-ωs+bω1-ωs,
χ12123=124σ+2aω1-ωs+bω2-ωs,
χ12213=124σ+bω2-ωs+bω1-ωs,
χ11113=χ11223+χ12213+χ12123,
aωk-ωs=KνJJa2δJJ-245bJJγ2,
bωk-ωs=KνJJ215bJJγ2,
KνJJ=ΔNν+12μω0ω0-ωk+ωs-iΓ-1,
IasI1IsI2χ11112.
IasEas2σ+2a2+b1cos θas+σ+2a1+b2sin θas2I1IsI2,
Iasσ+2a2cos θas+σ+2a1sin θas2I1IsI2.
Iasωas=κχω1-ωs+χω2-ωs2I1ω1I2ω2Isωs×δω1+ω2-ωs-ωasdω1dω2dωs,
I1ω1=I1g1ω1-ω10=I1δω1-ω10,
Isωs=Isgsωs-ωs0=Isω.
Iasωas=κI1I2Isωχωas-ω2+χωas-ω102g2ω2-ω20dω2.
Iasωas=κI1I2Isωχωas-ω22g2ω2-ω20dω2+χωas-ω102+χωas-ω2×χ*ωas-ω10+χ*ωas-ω2χωas-ω10×g2ω2-ω20dω2.
SasωasIasωasgdωas-ωasdωas=κI1I2Isωχωas-ω22g2ω2-ω20×gdωas-ωasdωasdω2+χωas-ω102×gdωas-ωasdωas+2 Reχωas-ω2×χ*ωas-ω10g2ω2-ω20×gdωas-ωasdωasdω2,

Metrics