Abstract

An acoustically resonant CO2 laser photoacoustic (PA) spectrometer for remote or in situ monitoring of air pollutants has been designed. The salient features of this PA system, along with the optimization tests of various operating parameters that affect the PA signal (buffer-gas pressure, type of buffer gas, laser power, gas concentration, and acoustic modes), are described. The system has been applied for the detection of pollutants emitted from the exhaust of a car located at a remote distance. Also, an alarm system based on the PA detection technique has been built for leak detection of toxic gases at industrial complexes. The minimum detectable concentration of C2H4 and SO2 with this system is 50 parts in 1012 by volume and 50 parts in 109 by volume, respectively.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Dickinson, R. J. Cicerone, “Future global warming from atmospheric trace gases,” Nature (London) 319, 109–115 (1986).
    [CrossRef]
  2. J. T. Houghton, G. M. Woodwell, “Global climate change,” Sci. Am. 260, (4), 18–26 (1989).
    [CrossRef]
  3. J. T. Graedel, P. J. Crutzen, “The changing atmosphere,” Sci. Am. 261 (9), 28–36 (1989).
    [CrossRef]
  4. G. Megie, “Laser measurements of atmospheric constituents” in Laser Remote Chemical Analysis, R. M. Measure, ed., Vol. 94 of Chemical Analysis Series (Wiley, New York, 1988), pp. 333–408.
  5. J. P. Wolf, H. J. Kolsch, P. Rairoux, L. Woste, “Remote detection of atmospheric pollutants using differential absorption techniques,” in Applied Spectroscopy, W. Demtroder, M. Ingusscio, eds. (Plenum, New York, 1990), pp. 435–467.
    [CrossRef]
  6. H. Edner, S. Svanberg, “Differential lidar measurements of atmospheric mercury,” Water Air Soil Pollut. 56, 131–139 (1991).
    [CrossRef]
  7. M. W. Sigrist, “Air monitoring by spectroscopic techniques,” Vol. 127 of Chemical Analysis Series (Wiley, New York, 1994), Chap. 3, pp. 163–238.
  8. P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2 laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
    [CrossRef]
  9. P. Hess, “Resonant photoacoustic spectroscopy,” in Physical and Inorganic Chemistry, J. Barthel, ed., Vol. 111 of Springer Topics in Current Chemistry Series (Springer-Verlag, Berlin, 1983), pp. 1–32.
    [CrossRef]
  10. C. Brand, A. Winkler, P. Hess, A. Miklos, Z. Bozoki, J. Sneider, “Pulsed laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace gas monitoring: results for C2H4,” Appl. Opt. 34, 3257–3266 (1995).
    [CrossRef] [PubMed]
  11. Ch. Horenberger, M. Konig, S. B. Rai, W. Demtroder, “Sensitive photoacoustic overtone spectroscopy of acetylene with a multipass photoacoustic cell and a colour centre laser at 1.5 µm,” Chem. Phys. Lett. 190, 171–177 (1995).
  12. P. Hess, Photoacoustic, Photothermal and Photochemical Processes in Gases, Vol. 46 of Springer Topics in Current Physics Series (Springer-Verlag, Berlin, 1989), Chap. 7, pp. 172–211.
  13. J. Davidson, J. H. Gutow, R. N. Zare, “Experimental improvements in recording gas-phase photoacoustic spectra,” J. Phys. Chem. 94, 4069–4073 (1990).
    [CrossRef]
  14. F. J. M. Harren, J. Reuss, E. J. Woltering, D. D. Bicanic, “Photoacoustic measurements of agriculturally interesting gases and detection of C2H4 below ppb level,” Appl. Spectrosc. 44, 1360–1368 (1990).
    [CrossRef]
  15. Y. H. Pao, Optoacoustic Spectroscopy and Detection (Academic, New York, 1977), Chap. 3, pp. 47–77.
  16. M. A. Gondal, “Photoacoustic trace gas analysis using CO2 and Nd:YAG lasers,” WS-412 PR, Deutsche Akademischer Austauschdienst Bonn, Germany.
  17. M. A. Gondal, “Remote monitoring of trace gases using CO2-laser photoacoustic system,” in Quantum Electronics and Laser Science Conference, Vol. 10 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 244.
  18. R. Gerlach, N. M. Amer, “Brewster window and windowless spectrophones for intracavity operation,” Appl. Phys. 23, 319–326 (1980).
    [CrossRef]
  19. P. V. Cvijin, D. A. Gilmore, G. H. Atkinson, “Determination of sulfur dioxide by pulsed ultraviolet laser photoacoustic spectroscopy,” Anal. Chem. 59, 300–304 (1987).
    [CrossRef]
  20. L. T. Petkovska, B. B. Radak, S. S. Miljanic, R. T. Bailey, F. R. Cruickshank, D. Pugh, “SO2 absorption of the CO2-laser emission measured by the photoacoustic technique,” Proc. Indian Acad. Sci. 103, 401–404 (1991).

1995 (2)

C. Brand, A. Winkler, P. Hess, A. Miklos, Z. Bozoki, J. Sneider, “Pulsed laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace gas monitoring: results for C2H4,” Appl. Opt. 34, 3257–3266 (1995).
[CrossRef] [PubMed]

Ch. Horenberger, M. Konig, S. B. Rai, W. Demtroder, “Sensitive photoacoustic overtone spectroscopy of acetylene with a multipass photoacoustic cell and a colour centre laser at 1.5 µm,” Chem. Phys. Lett. 190, 171–177 (1995).

1991 (2)

H. Edner, S. Svanberg, “Differential lidar measurements of atmospheric mercury,” Water Air Soil Pollut. 56, 131–139 (1991).
[CrossRef]

L. T. Petkovska, B. B. Radak, S. S. Miljanic, R. T. Bailey, F. R. Cruickshank, D. Pugh, “SO2 absorption of the CO2-laser emission measured by the photoacoustic technique,” Proc. Indian Acad. Sci. 103, 401–404 (1991).

1990 (3)

P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2 laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

J. Davidson, J. H. Gutow, R. N. Zare, “Experimental improvements in recording gas-phase photoacoustic spectra,” J. Phys. Chem. 94, 4069–4073 (1990).
[CrossRef]

F. J. M. Harren, J. Reuss, E. J. Woltering, D. D. Bicanic, “Photoacoustic measurements of agriculturally interesting gases and detection of C2H4 below ppb level,” Appl. Spectrosc. 44, 1360–1368 (1990).
[CrossRef]

1989 (2)

J. T. Houghton, G. M. Woodwell, “Global climate change,” Sci. Am. 260, (4), 18–26 (1989).
[CrossRef]

J. T. Graedel, P. J. Crutzen, “The changing atmosphere,” Sci. Am. 261 (9), 28–36 (1989).
[CrossRef]

1987 (1)

P. V. Cvijin, D. A. Gilmore, G. H. Atkinson, “Determination of sulfur dioxide by pulsed ultraviolet laser photoacoustic spectroscopy,” Anal. Chem. 59, 300–304 (1987).
[CrossRef]

1986 (1)

R. E. Dickinson, R. J. Cicerone, “Future global warming from atmospheric trace gases,” Nature (London) 319, 109–115 (1986).
[CrossRef]

1980 (1)

R. Gerlach, N. M. Amer, “Brewster window and windowless spectrophones for intracavity operation,” Appl. Phys. 23, 319–326 (1980).
[CrossRef]

Amer, N. M.

R. Gerlach, N. M. Amer, “Brewster window and windowless spectrophones for intracavity operation,” Appl. Phys. 23, 319–326 (1980).
[CrossRef]

Atkinson, G. H.

P. V. Cvijin, D. A. Gilmore, G. H. Atkinson, “Determination of sulfur dioxide by pulsed ultraviolet laser photoacoustic spectroscopy,” Anal. Chem. 59, 300–304 (1987).
[CrossRef]

Bailey, R. T.

L. T. Petkovska, B. B. Radak, S. S. Miljanic, R. T. Bailey, F. R. Cruickshank, D. Pugh, “SO2 absorption of the CO2-laser emission measured by the photoacoustic technique,” Proc. Indian Acad. Sci. 103, 401–404 (1991).

Bicanic, D. D.

Bozoki, Z.

Brand, C.

Cicerone, R. J.

R. E. Dickinson, R. J. Cicerone, “Future global warming from atmospheric trace gases,” Nature (London) 319, 109–115 (1986).
[CrossRef]

Cruickshank, F. R.

L. T. Petkovska, B. B. Radak, S. S. Miljanic, R. T. Bailey, F. R. Cruickshank, D. Pugh, “SO2 absorption of the CO2-laser emission measured by the photoacoustic technique,” Proc. Indian Acad. Sci. 103, 401–404 (1991).

Crutzen, P. J.

J. T. Graedel, P. J. Crutzen, “The changing atmosphere,” Sci. Am. 261 (9), 28–36 (1989).
[CrossRef]

Cvijin, P. V.

P. V. Cvijin, D. A. Gilmore, G. H. Atkinson, “Determination of sulfur dioxide by pulsed ultraviolet laser photoacoustic spectroscopy,” Anal. Chem. 59, 300–304 (1987).
[CrossRef]

Davidson, J.

J. Davidson, J. H. Gutow, R. N. Zare, “Experimental improvements in recording gas-phase photoacoustic spectra,” J. Phys. Chem. 94, 4069–4073 (1990).
[CrossRef]

Demtroder, W.

Ch. Horenberger, M. Konig, S. B. Rai, W. Demtroder, “Sensitive photoacoustic overtone spectroscopy of acetylene with a multipass photoacoustic cell and a colour centre laser at 1.5 µm,” Chem. Phys. Lett. 190, 171–177 (1995).

Dickinson, R. E.

R. E. Dickinson, R. J. Cicerone, “Future global warming from atmospheric trace gases,” Nature (London) 319, 109–115 (1986).
[CrossRef]

Edner, H.

H. Edner, S. Svanberg, “Differential lidar measurements of atmospheric mercury,” Water Air Soil Pollut. 56, 131–139 (1991).
[CrossRef]

Gerlach, R.

R. Gerlach, N. M. Amer, “Brewster window and windowless spectrophones for intracavity operation,” Appl. Phys. 23, 319–326 (1980).
[CrossRef]

Gilmore, D. A.

P. V. Cvijin, D. A. Gilmore, G. H. Atkinson, “Determination of sulfur dioxide by pulsed ultraviolet laser photoacoustic spectroscopy,” Anal. Chem. 59, 300–304 (1987).
[CrossRef]

Gondal, M. A.

M. A. Gondal, “Remote monitoring of trace gases using CO2-laser photoacoustic system,” in Quantum Electronics and Laser Science Conference, Vol. 10 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 244.

Graedel, J. T.

J. T. Graedel, P. J. Crutzen, “The changing atmosphere,” Sci. Am. 261 (9), 28–36 (1989).
[CrossRef]

Gutow, J. H.

J. Davidson, J. H. Gutow, R. N. Zare, “Experimental improvements in recording gas-phase photoacoustic spectra,” J. Phys. Chem. 94, 4069–4073 (1990).
[CrossRef]

Harren, F. J. M.

Hess, P.

C. Brand, A. Winkler, P. Hess, A. Miklos, Z. Bozoki, J. Sneider, “Pulsed laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace gas monitoring: results for C2H4,” Appl. Opt. 34, 3257–3266 (1995).
[CrossRef] [PubMed]

P. Hess, Photoacoustic, Photothermal and Photochemical Processes in Gases, Vol. 46 of Springer Topics in Current Physics Series (Springer-Verlag, Berlin, 1989), Chap. 7, pp. 172–211.

P. Hess, “Resonant photoacoustic spectroscopy,” in Physical and Inorganic Chemistry, J. Barthel, ed., Vol. 111 of Springer Topics in Current Chemistry Series (Springer-Verlag, Berlin, 1983), pp. 1–32.
[CrossRef]

Horenberger, Ch.

Ch. Horenberger, M. Konig, S. B. Rai, W. Demtroder, “Sensitive photoacoustic overtone spectroscopy of acetylene with a multipass photoacoustic cell and a colour centre laser at 1.5 µm,” Chem. Phys. Lett. 190, 171–177 (1995).

Houghton, J. T.

J. T. Houghton, G. M. Woodwell, “Global climate change,” Sci. Am. 260, (4), 18–26 (1989).
[CrossRef]

Kolsch, H. J.

J. P. Wolf, H. J. Kolsch, P. Rairoux, L. Woste, “Remote detection of atmospheric pollutants using differential absorption techniques,” in Applied Spectroscopy, W. Demtroder, M. Ingusscio, eds. (Plenum, New York, 1990), pp. 435–467.
[CrossRef]

Konig, M.

Ch. Horenberger, M. Konig, S. B. Rai, W. Demtroder, “Sensitive photoacoustic overtone spectroscopy of acetylene with a multipass photoacoustic cell and a colour centre laser at 1.5 µm,” Chem. Phys. Lett. 190, 171–177 (1995).

Megie, G.

G. Megie, “Laser measurements of atmospheric constituents” in Laser Remote Chemical Analysis, R. M. Measure, ed., Vol. 94 of Chemical Analysis Series (Wiley, New York, 1988), pp. 333–408.

Meyer, P. L.

P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2 laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

Miklos, A.

Miljanic, S. S.

L. T. Petkovska, B. B. Radak, S. S. Miljanic, R. T. Bailey, F. R. Cruickshank, D. Pugh, “SO2 absorption of the CO2-laser emission measured by the photoacoustic technique,” Proc. Indian Acad. Sci. 103, 401–404 (1991).

Pao, Y. H.

Y. H. Pao, Optoacoustic Spectroscopy and Detection (Academic, New York, 1977), Chap. 3, pp. 47–77.

Petkovska, L. T.

L. T. Petkovska, B. B. Radak, S. S. Miljanic, R. T. Bailey, F. R. Cruickshank, D. Pugh, “SO2 absorption of the CO2-laser emission measured by the photoacoustic technique,” Proc. Indian Acad. Sci. 103, 401–404 (1991).

Pugh, D.

L. T. Petkovska, B. B. Radak, S. S. Miljanic, R. T. Bailey, F. R. Cruickshank, D. Pugh, “SO2 absorption of the CO2-laser emission measured by the photoacoustic technique,” Proc. Indian Acad. Sci. 103, 401–404 (1991).

Radak, B. B.

L. T. Petkovska, B. B. Radak, S. S. Miljanic, R. T. Bailey, F. R. Cruickshank, D. Pugh, “SO2 absorption of the CO2-laser emission measured by the photoacoustic technique,” Proc. Indian Acad. Sci. 103, 401–404 (1991).

Rai, S. B.

Ch. Horenberger, M. Konig, S. B. Rai, W. Demtroder, “Sensitive photoacoustic overtone spectroscopy of acetylene with a multipass photoacoustic cell and a colour centre laser at 1.5 µm,” Chem. Phys. Lett. 190, 171–177 (1995).

Rairoux, P.

J. P. Wolf, H. J. Kolsch, P. Rairoux, L. Woste, “Remote detection of atmospheric pollutants using differential absorption techniques,” in Applied Spectroscopy, W. Demtroder, M. Ingusscio, eds. (Plenum, New York, 1990), pp. 435–467.
[CrossRef]

Reuss, J.

Sigrist, M. W.

P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2 laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

M. W. Sigrist, “Air monitoring by spectroscopic techniques,” Vol. 127 of Chemical Analysis Series (Wiley, New York, 1994), Chap. 3, pp. 163–238.

Sneider, J.

Svanberg, S.

H. Edner, S. Svanberg, “Differential lidar measurements of atmospheric mercury,” Water Air Soil Pollut. 56, 131–139 (1991).
[CrossRef]

Winkler, A.

Wolf, J. P.

J. P. Wolf, H. J. Kolsch, P. Rairoux, L. Woste, “Remote detection of atmospheric pollutants using differential absorption techniques,” in Applied Spectroscopy, W. Demtroder, M. Ingusscio, eds. (Plenum, New York, 1990), pp. 435–467.
[CrossRef]

Woltering, E. J.

Woodwell, G. M.

J. T. Houghton, G. M. Woodwell, “Global climate change,” Sci. Am. 260, (4), 18–26 (1989).
[CrossRef]

Woste, L.

J. P. Wolf, H. J. Kolsch, P. Rairoux, L. Woste, “Remote detection of atmospheric pollutants using differential absorption techniques,” in Applied Spectroscopy, W. Demtroder, M. Ingusscio, eds. (Plenum, New York, 1990), pp. 435–467.
[CrossRef]

Zare, R. N.

J. Davidson, J. H. Gutow, R. N. Zare, “Experimental improvements in recording gas-phase photoacoustic spectra,” J. Phys. Chem. 94, 4069–4073 (1990).
[CrossRef]

Anal. Chem. (1)

P. V. Cvijin, D. A. Gilmore, G. H. Atkinson, “Determination of sulfur dioxide by pulsed ultraviolet laser photoacoustic spectroscopy,” Anal. Chem. 59, 300–304 (1987).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. (1)

R. Gerlach, N. M. Amer, “Brewster window and windowless spectrophones for intracavity operation,” Appl. Phys. 23, 319–326 (1980).
[CrossRef]

Appl. Spectrosc. (1)

Chem. Phys. Lett. (1)

Ch. Horenberger, M. Konig, S. B. Rai, W. Demtroder, “Sensitive photoacoustic overtone spectroscopy of acetylene with a multipass photoacoustic cell and a colour centre laser at 1.5 µm,” Chem. Phys. Lett. 190, 171–177 (1995).

J. Phys. Chem. (1)

J. Davidson, J. H. Gutow, R. N. Zare, “Experimental improvements in recording gas-phase photoacoustic spectra,” J. Phys. Chem. 94, 4069–4073 (1990).
[CrossRef]

Nature (London) (1)

R. E. Dickinson, R. J. Cicerone, “Future global warming from atmospheric trace gases,” Nature (London) 319, 109–115 (1986).
[CrossRef]

Proc. Indian Acad. Sci. (1)

L. T. Petkovska, B. B. Radak, S. S. Miljanic, R. T. Bailey, F. R. Cruickshank, D. Pugh, “SO2 absorption of the CO2-laser emission measured by the photoacoustic technique,” Proc. Indian Acad. Sci. 103, 401–404 (1991).

Rev. Sci. Instrum. (1)

P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2 laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

Sci. Am. (2)

J. T. Houghton, G. M. Woodwell, “Global climate change,” Sci. Am. 260, (4), 18–26 (1989).
[CrossRef]

J. T. Graedel, P. J. Crutzen, “The changing atmosphere,” Sci. Am. 261 (9), 28–36 (1989).
[CrossRef]

Water Air Soil Pollut. (1)

H. Edner, S. Svanberg, “Differential lidar measurements of atmospheric mercury,” Water Air Soil Pollut. 56, 131–139 (1991).
[CrossRef]

Other (8)

M. W. Sigrist, “Air monitoring by spectroscopic techniques,” Vol. 127 of Chemical Analysis Series (Wiley, New York, 1994), Chap. 3, pp. 163–238.

P. Hess, “Resonant photoacoustic spectroscopy,” in Physical and Inorganic Chemistry, J. Barthel, ed., Vol. 111 of Springer Topics in Current Chemistry Series (Springer-Verlag, Berlin, 1983), pp. 1–32.
[CrossRef]

G. Megie, “Laser measurements of atmospheric constituents” in Laser Remote Chemical Analysis, R. M. Measure, ed., Vol. 94 of Chemical Analysis Series (Wiley, New York, 1988), pp. 333–408.

J. P. Wolf, H. J. Kolsch, P. Rairoux, L. Woste, “Remote detection of atmospheric pollutants using differential absorption techniques,” in Applied Spectroscopy, W. Demtroder, M. Ingusscio, eds. (Plenum, New York, 1990), pp. 435–467.
[CrossRef]

P. Hess, Photoacoustic, Photothermal and Photochemical Processes in Gases, Vol. 46 of Springer Topics in Current Physics Series (Springer-Verlag, Berlin, 1989), Chap. 7, pp. 172–211.

Y. H. Pao, Optoacoustic Spectroscopy and Detection (Academic, New York, 1977), Chap. 3, pp. 47–77.

M. A. Gondal, “Photoacoustic trace gas analysis using CO2 and Nd:YAG lasers,” WS-412 PR, Deutsche Akademischer Austauschdienst Bonn, Germany.

M. A. Gondal, “Remote monitoring of trace gases using CO2-laser photoacoustic system,” in Quantum Electronics and Laser Science Conference, Vol. 10 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 244.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the CO2 laser PA system for remote monitoring of pollutants and the alarm system for early warning of leaks that are due to hazardous gases at an industrial complex.

Fig. 2
Fig. 2

PA signal versus the chopper frequency for 1 part in 106 of C2H4 buffered in 1000 mbar of (a) N2, Ar, (c) He.

Fig. 3
Fig. 3

Variations of the resonant longitudinal mode frequency as a function of buffer-gas pressure for N2, Ar, and He.

Fig. 4
Fig. 4

PA signal dependence on buffer-gas pressure for N2, Ar, and He. Here the laser was tuned to 10P(14) CO2 laser transition, and 1 ppm of C2H4 was buffered at different pressures.

Fig. 5
Fig. 5

Plot of the PA signal versus the concentration of C2H4 recorded at the 10P(14) CO2 laser transition. Laser power was normalized to 1 W for each measurement. The calibration curve shows the linear dependence of the PA signal on concentration, which is indicated by a least-squares fit with a value of 0.999.

Fig. 6
Fig. 6

(a) C2H4 spectrum recorded with the PA setup from the exhaust of a car that was (Honda Accord Model 1981) standing at a distance of 60 m. The engine rotation was 700 rpm. (b) PA absorption spectrum measured with a CO2 laser by the introduction of a known concentration of C2H4 into the PA cell. Here 8-ppm C2H4 was buffered in N2 at a total pressure of 1000 mbar.

Fig. 7
Fig. 7

Plot of the PA signal versus the engine rotation speed. The PA signal was recorded for C2H4 emitted from the exhaust of a car that was standing at a distance of 60 m.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

νn,m,nz=υ/2αmn/R2+nz/L2,
S=QSjνj, r,
Sjνj, r=pjrγ-1/2π  pj*Hνj, rdV,
dN0*/dt=-AN0*-kN0*M,
dQ/dt=kN0*Mhν.
Q=N0*hνkM/A+kM,
dN0*/dt=N0σ1P/hν-kN0*M.
dN0*/dt=0N0*=N0σ1P/hνkM.
SPARmicN0σ1P/CVA+kM.
SPA  N0P/CVA+kM.

Metrics