Abstract

We present the application of a compact setup for real-time in situ trace-gas detection based on photothermal beam deflection (mirage-effect) spectroscopy to environmental monitoring and chemical analysis. The setup provides many advantages for local (nonremote) detection applications, such as rapid response and high sensitivity under true in situ conditions. The detection limit of C2H4 in open air is estimated to be 0.25 parts in 109, based on concentration calibration with the dominant noise that is due to atmospheric turbulence on a time scale of 1 s. Detection limits are extrapolated for other species, and applications are explored by real-time measurements of gas emissions from a variety of solid and semisolid samples.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Tam, C. K. N. Patel, “High-resolution optoacoustic spectroscopy of rare-earth oxide powders,” Appl. Phys. Lett. 35, 843–845 (1979).
    [CrossRef]
  2. C. J. Bordé, “Comments on photoacoustic and photothermal spectroscopy of gases compared to optical methods,” J. Phys. 10, 593–601 (1983).
  3. P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2 laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
    [CrossRef]
  4. H. Sauren, D. Bicanic, H. Jalink, J. Reuss, “High sensitivity interference free Stark tuned CO2 laser photoacoustic sensing of urban ammonia,” J. Appl. Phys. 66, 5085–5087 (1989).
    [CrossRef]
  5. M. W. Sigrist, “Laser photoacoustics for gas analysis and materials testing,” Opt. Eng. 34, 1917–1922 (1995).
    [CrossRef]
  6. F. Harren, J. Reuss, D. Bicanic, E. Woltering, “Ethylene exhalation of a single flower detected by photoacoustic methods,” in Photoacoustic and Photothermal Processes in Gases, P. Hess, ed. (Springer-Verlag, Berlin, 1989), pp. 148–150.
  7. R. F. Adamowicz, K. P. Koo, “Characteristics of a photoacoustic air pollution detector at CO2 laser frequencies,” Appl. Opt. 18, 2938–2946 (1979).
    [CrossRef] [PubMed]
  8. D. Fournier, A. C. Boccara, N. M. Amer, R. R. Gerlach, “Sensitive in situ trace-gas detection by photothermal deflection spectroscopy,” Appl. Phys. Lett. 37, 519–521 (1980).
    [CrossRef]
  9. G. R. Long, S. E. Bialkowski, “Saturation effects in gas-phase photothermal deflection spectrophotometry,” Anal. Chem. 57, 1079–1083 (1985).
    [CrossRef] [PubMed]
  10. H. DeVries, F. J. M. Harren, G. P. Wyers, R. P. Otjes, J. Slanina, J. Reuss, “Non-intrusive, fast and sensitive ammonia detection by laser photothermal deflection,” Atmos. Environ. 29, 1069–1074 (1995).
    [CrossRef]
  11. E. Strauss, J. P. Favier, D. Bicanic, K. Van Asselt, M. Lubbers, “Sensitive colorimetric determination of ammonium ion in water by laser photothermal detection,” Analyst 116, 77–79 (1991).
    [CrossRef]
  12. B. Zimering, A. C. Boccara, “Compact design for real time in situ atmospheric trace gas detection based on mirage effect (photothermal deflection) spectroscopy,” Rev. Sci. Instrum. 67, 1891–1895 (1996).
    [CrossRef]
  13. W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal detection spectroscopy and detection,” Appl. Opt. 20, 1333–1344 (1981).
    [CrossRef] [PubMed]
  14. P. K. Kuo, E. D. Sendler, L. D. Favro, R. L. Thomas, “Mirage-effect measurement of thermal diffusivity. Part II: Theory,” Can. J. Phys. 64, 1168–1171 (1986).
    [CrossRef]
  15. A. Mayer, J. Comera, H. Charpentier, C. Jaussaud, “Absorption coefficients of various pollutant gases at CO2 laser wavelengths: application to the remote sensing of these pollutants,” Appl. Opt. 17, 391–393 (1978).
    [CrossRef]
  16. Interspecies interference, the error induced in the concentration measurement of one absorbing gas species in the presence of others, is discussed from a theoretical standpoint in Ref. 3. Our experimental findings indicate a 30% error compared with known concentrations associated with measurements of C2H4 in air containing H2O and CO2 based on absorption on a single line. When five lines or more are used for concentration determination, the error can improve to between 5% and 10%.
  17. M. S. Shumate, R. T. Menzies, J. S. Margolis, L.-G. Rosengren, “Water vapor absorption of CO2 laser radiation,” Appl. Opt. 15, 2480–2488 (1976).
    [CrossRef] [PubMed]
  18. F. B. Abeles, P. W. Morgan, M. E. Saltveit, Ethylene in Plant Biology (Academic, San Diego, Calif., 1992).
  19. E. J. Woltering, D. Somhorst, P. van der Veer, “The role of ethylene in interorgan signaling during flower senescence,” Plant Physiol. 109, 1–7 (1995).
  20. T. Fink, “Photoacustische spektroskopie für die umweltanalytik,” Ph.D. dissertation (Friedrich-Wilhelms Universität, Bonn, Germany, 1994).
  21. G. Bults, B. A. Horwitz, S. Malkin, D. Cahen, “Photoacoustic measurements of photosynthetic activities in whole leaves photochemistry and gas exchange,” Biochim. Biophys. Acta 679, 452–465 (1982).
    [CrossRef]
  22. H. de Vries, “Local trace gas measurements by laser photothermal detection: physics meets physiology,” Ph.D. dissertation (Catholic University of Nijmegen, Nijmegen, The Netherlands, 1994).
  23. Bioindicateurs Vegetaux et Qualité de l’Air, seminar organized by C. Elichegaray, Agence de l’Environnement et de la Maitrise de l’Energie A. Perrier, Institut Nationale de la Recherche Agronomique, Paris, France, 14 November 1995.
  24. “Photoacoustics in science: development of laser photoacoustics and related technology for monitoring ethylene production by plants suffering from environmental and pollution stress,” , organized by J. Reuss, Catholic University of Nijmegen, Nijmegen, The Netherlands, 1December1995.
  25. R. Mani, R. P. Singh, S. Sivaram, “Ethylene-propylene copolymers: some aspects of thermal- and photo-degradation and stabilization,” Trends Polym. Sci. 1, 322–328 (1993).
  26. D. Bicanic, A. M. Solyom, G. Z. Angell, H. Wegh, M. Posthumus, H. Jalink, “The extent of unwanted infrared photoacoustic signals from polymer sampling tubings exposed to ultraviolet radiation,” Infrared Phys. Technol. 35, 637–644 (1994).
    [CrossRef]
  27. G. C. Pandey, B. P. Singh, A. K. Kulshreshtha, “Morphological characterization of autoclave and tubular LDPE by high temperature IR spectroscopy,” Polym. Test. 9, 341–351 (1990).
    [CrossRef]
  28. B. Zimering, G. C. Pandey, A. C. Boccara, “Gas phase mirage spectroscopy and applications: the advantages of a compact and sensitive setup,” in Proceedings of the Ninth International Conference on Photoacoustic and Photothermal Phenomena, S. Zhang, ed., Science in China Supplement (Nanjing University, Nanjing, China, 1997).

1996 (1)

B. Zimering, A. C. Boccara, “Compact design for real time in situ atmospheric trace gas detection based on mirage effect (photothermal deflection) spectroscopy,” Rev. Sci. Instrum. 67, 1891–1895 (1996).
[CrossRef]

1995 (3)

E. J. Woltering, D. Somhorst, P. van der Veer, “The role of ethylene in interorgan signaling during flower senescence,” Plant Physiol. 109, 1–7 (1995).

M. W. Sigrist, “Laser photoacoustics for gas analysis and materials testing,” Opt. Eng. 34, 1917–1922 (1995).
[CrossRef]

H. DeVries, F. J. M. Harren, G. P. Wyers, R. P. Otjes, J. Slanina, J. Reuss, “Non-intrusive, fast and sensitive ammonia detection by laser photothermal deflection,” Atmos. Environ. 29, 1069–1074 (1995).
[CrossRef]

1994 (1)

D. Bicanic, A. M. Solyom, G. Z. Angell, H. Wegh, M. Posthumus, H. Jalink, “The extent of unwanted infrared photoacoustic signals from polymer sampling tubings exposed to ultraviolet radiation,” Infrared Phys. Technol. 35, 637–644 (1994).
[CrossRef]

1993 (1)

R. Mani, R. P. Singh, S. Sivaram, “Ethylene-propylene copolymers: some aspects of thermal- and photo-degradation and stabilization,” Trends Polym. Sci. 1, 322–328 (1993).

1991 (1)

E. Strauss, J. P. Favier, D. Bicanic, K. Van Asselt, M. Lubbers, “Sensitive colorimetric determination of ammonium ion in water by laser photothermal detection,” Analyst 116, 77–79 (1991).
[CrossRef]

1990 (2)

P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2 laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

G. C. Pandey, B. P. Singh, A. K. Kulshreshtha, “Morphological characterization of autoclave and tubular LDPE by high temperature IR spectroscopy,” Polym. Test. 9, 341–351 (1990).
[CrossRef]

1989 (1)

H. Sauren, D. Bicanic, H. Jalink, J. Reuss, “High sensitivity interference free Stark tuned CO2 laser photoacoustic sensing of urban ammonia,” J. Appl. Phys. 66, 5085–5087 (1989).
[CrossRef]

1986 (1)

P. K. Kuo, E. D. Sendler, L. D. Favro, R. L. Thomas, “Mirage-effect measurement of thermal diffusivity. Part II: Theory,” Can. J. Phys. 64, 1168–1171 (1986).
[CrossRef]

1985 (1)

G. R. Long, S. E. Bialkowski, “Saturation effects in gas-phase photothermal deflection spectrophotometry,” Anal. Chem. 57, 1079–1083 (1985).
[CrossRef] [PubMed]

1983 (1)

C. J. Bordé, “Comments on photoacoustic and photothermal spectroscopy of gases compared to optical methods,” J. Phys. 10, 593–601 (1983).

1982 (1)

G. Bults, B. A. Horwitz, S. Malkin, D. Cahen, “Photoacoustic measurements of photosynthetic activities in whole leaves photochemistry and gas exchange,” Biochim. Biophys. Acta 679, 452–465 (1982).
[CrossRef]

1981 (1)

1980 (1)

D. Fournier, A. C. Boccara, N. M. Amer, R. R. Gerlach, “Sensitive in situ trace-gas detection by photothermal deflection spectroscopy,” Appl. Phys. Lett. 37, 519–521 (1980).
[CrossRef]

1979 (2)

A. C. Tam, C. K. N. Patel, “High-resolution optoacoustic spectroscopy of rare-earth oxide powders,” Appl. Phys. Lett. 35, 843–845 (1979).
[CrossRef]

R. F. Adamowicz, K. P. Koo, “Characteristics of a photoacoustic air pollution detector at CO2 laser frequencies,” Appl. Opt. 18, 2938–2946 (1979).
[CrossRef] [PubMed]

1978 (1)

1976 (1)

Abeles, F. B.

F. B. Abeles, P. W. Morgan, M. E. Saltveit, Ethylene in Plant Biology (Academic, San Diego, Calif., 1992).

Adamowicz, R. F.

Amer, N. M.

W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal detection spectroscopy and detection,” Appl. Opt. 20, 1333–1344 (1981).
[CrossRef] [PubMed]

D. Fournier, A. C. Boccara, N. M. Amer, R. R. Gerlach, “Sensitive in situ trace-gas detection by photothermal deflection spectroscopy,” Appl. Phys. Lett. 37, 519–521 (1980).
[CrossRef]

Angell, G. Z.

D. Bicanic, A. M. Solyom, G. Z. Angell, H. Wegh, M. Posthumus, H. Jalink, “The extent of unwanted infrared photoacoustic signals from polymer sampling tubings exposed to ultraviolet radiation,” Infrared Phys. Technol. 35, 637–644 (1994).
[CrossRef]

Bialkowski, S. E.

G. R. Long, S. E. Bialkowski, “Saturation effects in gas-phase photothermal deflection spectrophotometry,” Anal. Chem. 57, 1079–1083 (1985).
[CrossRef] [PubMed]

Bicanic, D.

D. Bicanic, A. M. Solyom, G. Z. Angell, H. Wegh, M. Posthumus, H. Jalink, “The extent of unwanted infrared photoacoustic signals from polymer sampling tubings exposed to ultraviolet radiation,” Infrared Phys. Technol. 35, 637–644 (1994).
[CrossRef]

E. Strauss, J. P. Favier, D. Bicanic, K. Van Asselt, M. Lubbers, “Sensitive colorimetric determination of ammonium ion in water by laser photothermal detection,” Analyst 116, 77–79 (1991).
[CrossRef]

H. Sauren, D. Bicanic, H. Jalink, J. Reuss, “High sensitivity interference free Stark tuned CO2 laser photoacoustic sensing of urban ammonia,” J. Appl. Phys. 66, 5085–5087 (1989).
[CrossRef]

F. Harren, J. Reuss, D. Bicanic, E. Woltering, “Ethylene exhalation of a single flower detected by photoacoustic methods,” in Photoacoustic and Photothermal Processes in Gases, P. Hess, ed. (Springer-Verlag, Berlin, 1989), pp. 148–150.

Boccara, A. C.

B. Zimering, A. C. Boccara, “Compact design for real time in situ atmospheric trace gas detection based on mirage effect (photothermal deflection) spectroscopy,” Rev. Sci. Instrum. 67, 1891–1895 (1996).
[CrossRef]

W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal detection spectroscopy and detection,” Appl. Opt. 20, 1333–1344 (1981).
[CrossRef] [PubMed]

D. Fournier, A. C. Boccara, N. M. Amer, R. R. Gerlach, “Sensitive in situ trace-gas detection by photothermal deflection spectroscopy,” Appl. Phys. Lett. 37, 519–521 (1980).
[CrossRef]

B. Zimering, G. C. Pandey, A. C. Boccara, “Gas phase mirage spectroscopy and applications: the advantages of a compact and sensitive setup,” in Proceedings of the Ninth International Conference on Photoacoustic and Photothermal Phenomena, S. Zhang, ed., Science in China Supplement (Nanjing University, Nanjing, China, 1997).

Bordé, C. J.

C. J. Bordé, “Comments on photoacoustic and photothermal spectroscopy of gases compared to optical methods,” J. Phys. 10, 593–601 (1983).

Bults, G.

G. Bults, B. A. Horwitz, S. Malkin, D. Cahen, “Photoacoustic measurements of photosynthetic activities in whole leaves photochemistry and gas exchange,” Biochim. Biophys. Acta 679, 452–465 (1982).
[CrossRef]

Cahen, D.

G. Bults, B. A. Horwitz, S. Malkin, D. Cahen, “Photoacoustic measurements of photosynthetic activities in whole leaves photochemistry and gas exchange,” Biochim. Biophys. Acta 679, 452–465 (1982).
[CrossRef]

Charpentier, H.

Comera, J.

de Vries, H.

H. de Vries, “Local trace gas measurements by laser photothermal detection: physics meets physiology,” Ph.D. dissertation (Catholic University of Nijmegen, Nijmegen, The Netherlands, 1994).

DeVries, H.

H. DeVries, F. J. M. Harren, G. P. Wyers, R. P. Otjes, J. Slanina, J. Reuss, “Non-intrusive, fast and sensitive ammonia detection by laser photothermal deflection,” Atmos. Environ. 29, 1069–1074 (1995).
[CrossRef]

Elichegaray, C.

Bioindicateurs Vegetaux et Qualité de l’Air, seminar organized by C. Elichegaray, Agence de l’Environnement et de la Maitrise de l’Energie A. Perrier, Institut Nationale de la Recherche Agronomique, Paris, France, 14 November 1995.

Favier, J. P.

E. Strauss, J. P. Favier, D. Bicanic, K. Van Asselt, M. Lubbers, “Sensitive colorimetric determination of ammonium ion in water by laser photothermal detection,” Analyst 116, 77–79 (1991).
[CrossRef]

Favro, L. D.

P. K. Kuo, E. D. Sendler, L. D. Favro, R. L. Thomas, “Mirage-effect measurement of thermal diffusivity. Part II: Theory,” Can. J. Phys. 64, 1168–1171 (1986).
[CrossRef]

Fink, T.

T. Fink, “Photoacustische spektroskopie für die umweltanalytik,” Ph.D. dissertation (Friedrich-Wilhelms Universität, Bonn, Germany, 1994).

Fournier, D.

W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal detection spectroscopy and detection,” Appl. Opt. 20, 1333–1344 (1981).
[CrossRef] [PubMed]

D. Fournier, A. C. Boccara, N. M. Amer, R. R. Gerlach, “Sensitive in situ trace-gas detection by photothermal deflection spectroscopy,” Appl. Phys. Lett. 37, 519–521 (1980).
[CrossRef]

Gerlach, R. R.

D. Fournier, A. C. Boccara, N. M. Amer, R. R. Gerlach, “Sensitive in situ trace-gas detection by photothermal deflection spectroscopy,” Appl. Phys. Lett. 37, 519–521 (1980).
[CrossRef]

Harren, F.

F. Harren, J. Reuss, D. Bicanic, E. Woltering, “Ethylene exhalation of a single flower detected by photoacoustic methods,” in Photoacoustic and Photothermal Processes in Gases, P. Hess, ed. (Springer-Verlag, Berlin, 1989), pp. 148–150.

Harren, F. J. M.

H. DeVries, F. J. M. Harren, G. P. Wyers, R. P. Otjes, J. Slanina, J. Reuss, “Non-intrusive, fast and sensitive ammonia detection by laser photothermal deflection,” Atmos. Environ. 29, 1069–1074 (1995).
[CrossRef]

Horwitz, B. A.

G. Bults, B. A. Horwitz, S. Malkin, D. Cahen, “Photoacoustic measurements of photosynthetic activities in whole leaves photochemistry and gas exchange,” Biochim. Biophys. Acta 679, 452–465 (1982).
[CrossRef]

Jackson, W. B.

Jalink, H.

D. Bicanic, A. M. Solyom, G. Z. Angell, H. Wegh, M. Posthumus, H. Jalink, “The extent of unwanted infrared photoacoustic signals from polymer sampling tubings exposed to ultraviolet radiation,” Infrared Phys. Technol. 35, 637–644 (1994).
[CrossRef]

H. Sauren, D. Bicanic, H. Jalink, J. Reuss, “High sensitivity interference free Stark tuned CO2 laser photoacoustic sensing of urban ammonia,” J. Appl. Phys. 66, 5085–5087 (1989).
[CrossRef]

Jaussaud, C.

Koo, K. P.

Kulshreshtha, A. K.

G. C. Pandey, B. P. Singh, A. K. Kulshreshtha, “Morphological characterization of autoclave and tubular LDPE by high temperature IR spectroscopy,” Polym. Test. 9, 341–351 (1990).
[CrossRef]

Kuo, P. K.

P. K. Kuo, E. D. Sendler, L. D. Favro, R. L. Thomas, “Mirage-effect measurement of thermal diffusivity. Part II: Theory,” Can. J. Phys. 64, 1168–1171 (1986).
[CrossRef]

Long, G. R.

G. R. Long, S. E. Bialkowski, “Saturation effects in gas-phase photothermal deflection spectrophotometry,” Anal. Chem. 57, 1079–1083 (1985).
[CrossRef] [PubMed]

Lubbers, M.

E. Strauss, J. P. Favier, D. Bicanic, K. Van Asselt, M. Lubbers, “Sensitive colorimetric determination of ammonium ion in water by laser photothermal detection,” Analyst 116, 77–79 (1991).
[CrossRef]

Malkin, S.

G. Bults, B. A. Horwitz, S. Malkin, D. Cahen, “Photoacoustic measurements of photosynthetic activities in whole leaves photochemistry and gas exchange,” Biochim. Biophys. Acta 679, 452–465 (1982).
[CrossRef]

Mani, R.

R. Mani, R. P. Singh, S. Sivaram, “Ethylene-propylene copolymers: some aspects of thermal- and photo-degradation and stabilization,” Trends Polym. Sci. 1, 322–328 (1993).

Margolis, J. S.

Mayer, A.

Menzies, R. T.

Meyer, P. L.

P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2 laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

Morgan, P. W.

F. B. Abeles, P. W. Morgan, M. E. Saltveit, Ethylene in Plant Biology (Academic, San Diego, Calif., 1992).

Otjes, R. P.

H. DeVries, F. J. M. Harren, G. P. Wyers, R. P. Otjes, J. Slanina, J. Reuss, “Non-intrusive, fast and sensitive ammonia detection by laser photothermal deflection,” Atmos. Environ. 29, 1069–1074 (1995).
[CrossRef]

Pandey, G. C.

G. C. Pandey, B. P. Singh, A. K. Kulshreshtha, “Morphological characterization of autoclave and tubular LDPE by high temperature IR spectroscopy,” Polym. Test. 9, 341–351 (1990).
[CrossRef]

B. Zimering, G. C. Pandey, A. C. Boccara, “Gas phase mirage spectroscopy and applications: the advantages of a compact and sensitive setup,” in Proceedings of the Ninth International Conference on Photoacoustic and Photothermal Phenomena, S. Zhang, ed., Science in China Supplement (Nanjing University, Nanjing, China, 1997).

Patel, C. K. N.

A. C. Tam, C. K. N. Patel, “High-resolution optoacoustic spectroscopy of rare-earth oxide powders,” Appl. Phys. Lett. 35, 843–845 (1979).
[CrossRef]

Perrier, A.

Bioindicateurs Vegetaux et Qualité de l’Air, seminar organized by C. Elichegaray, Agence de l’Environnement et de la Maitrise de l’Energie A. Perrier, Institut Nationale de la Recherche Agronomique, Paris, France, 14 November 1995.

Posthumus, M.

D. Bicanic, A. M. Solyom, G. Z. Angell, H. Wegh, M. Posthumus, H. Jalink, “The extent of unwanted infrared photoacoustic signals from polymer sampling tubings exposed to ultraviolet radiation,” Infrared Phys. Technol. 35, 637–644 (1994).
[CrossRef]

Reuss, J.

H. DeVries, F. J. M. Harren, G. P. Wyers, R. P. Otjes, J. Slanina, J. Reuss, “Non-intrusive, fast and sensitive ammonia detection by laser photothermal deflection,” Atmos. Environ. 29, 1069–1074 (1995).
[CrossRef]

H. Sauren, D. Bicanic, H. Jalink, J. Reuss, “High sensitivity interference free Stark tuned CO2 laser photoacoustic sensing of urban ammonia,” J. Appl. Phys. 66, 5085–5087 (1989).
[CrossRef]

F. Harren, J. Reuss, D. Bicanic, E. Woltering, “Ethylene exhalation of a single flower detected by photoacoustic methods,” in Photoacoustic and Photothermal Processes in Gases, P. Hess, ed. (Springer-Verlag, Berlin, 1989), pp. 148–150.

“Photoacoustics in science: development of laser photoacoustics and related technology for monitoring ethylene production by plants suffering from environmental and pollution stress,” , organized by J. Reuss, Catholic University of Nijmegen, Nijmegen, The Netherlands, 1December1995.

Rosengren, L.-G.

Saltveit, M. E.

F. B. Abeles, P. W. Morgan, M. E. Saltveit, Ethylene in Plant Biology (Academic, San Diego, Calif., 1992).

Sauren, H.

H. Sauren, D. Bicanic, H. Jalink, J. Reuss, “High sensitivity interference free Stark tuned CO2 laser photoacoustic sensing of urban ammonia,” J. Appl. Phys. 66, 5085–5087 (1989).
[CrossRef]

Sendler, E. D.

P. K. Kuo, E. D. Sendler, L. D. Favro, R. L. Thomas, “Mirage-effect measurement of thermal diffusivity. Part II: Theory,” Can. J. Phys. 64, 1168–1171 (1986).
[CrossRef]

Shumate, M. S.

Sigrist, M. W.

M. W. Sigrist, “Laser photoacoustics for gas analysis and materials testing,” Opt. Eng. 34, 1917–1922 (1995).
[CrossRef]

P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2 laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

Singh, B. P.

G. C. Pandey, B. P. Singh, A. K. Kulshreshtha, “Morphological characterization of autoclave and tubular LDPE by high temperature IR spectroscopy,” Polym. Test. 9, 341–351 (1990).
[CrossRef]

Singh, R. P.

R. Mani, R. P. Singh, S. Sivaram, “Ethylene-propylene copolymers: some aspects of thermal- and photo-degradation and stabilization,” Trends Polym. Sci. 1, 322–328 (1993).

Sivaram, S.

R. Mani, R. P. Singh, S. Sivaram, “Ethylene-propylene copolymers: some aspects of thermal- and photo-degradation and stabilization,” Trends Polym. Sci. 1, 322–328 (1993).

Slanina, J.

H. DeVries, F. J. M. Harren, G. P. Wyers, R. P. Otjes, J. Slanina, J. Reuss, “Non-intrusive, fast and sensitive ammonia detection by laser photothermal deflection,” Atmos. Environ. 29, 1069–1074 (1995).
[CrossRef]

Solyom, A. M.

D. Bicanic, A. M. Solyom, G. Z. Angell, H. Wegh, M. Posthumus, H. Jalink, “The extent of unwanted infrared photoacoustic signals from polymer sampling tubings exposed to ultraviolet radiation,” Infrared Phys. Technol. 35, 637–644 (1994).
[CrossRef]

Somhorst, D.

E. J. Woltering, D. Somhorst, P. van der Veer, “The role of ethylene in interorgan signaling during flower senescence,” Plant Physiol. 109, 1–7 (1995).

Strauss, E.

E. Strauss, J. P. Favier, D. Bicanic, K. Van Asselt, M. Lubbers, “Sensitive colorimetric determination of ammonium ion in water by laser photothermal detection,” Analyst 116, 77–79 (1991).
[CrossRef]

Tam, A. C.

A. C. Tam, C. K. N. Patel, “High-resolution optoacoustic spectroscopy of rare-earth oxide powders,” Appl. Phys. Lett. 35, 843–845 (1979).
[CrossRef]

Thomas, R. L.

P. K. Kuo, E. D. Sendler, L. D. Favro, R. L. Thomas, “Mirage-effect measurement of thermal diffusivity. Part II: Theory,” Can. J. Phys. 64, 1168–1171 (1986).
[CrossRef]

Van Asselt, K.

E. Strauss, J. P. Favier, D. Bicanic, K. Van Asselt, M. Lubbers, “Sensitive colorimetric determination of ammonium ion in water by laser photothermal detection,” Analyst 116, 77–79 (1991).
[CrossRef]

van der Veer, P.

E. J. Woltering, D. Somhorst, P. van der Veer, “The role of ethylene in interorgan signaling during flower senescence,” Plant Physiol. 109, 1–7 (1995).

Wegh, H.

D. Bicanic, A. M. Solyom, G. Z. Angell, H. Wegh, M. Posthumus, H. Jalink, “The extent of unwanted infrared photoacoustic signals from polymer sampling tubings exposed to ultraviolet radiation,” Infrared Phys. Technol. 35, 637–644 (1994).
[CrossRef]

Woltering, E.

F. Harren, J. Reuss, D. Bicanic, E. Woltering, “Ethylene exhalation of a single flower detected by photoacoustic methods,” in Photoacoustic and Photothermal Processes in Gases, P. Hess, ed. (Springer-Verlag, Berlin, 1989), pp. 148–150.

Woltering, E. J.

E. J. Woltering, D. Somhorst, P. van der Veer, “The role of ethylene in interorgan signaling during flower senescence,” Plant Physiol. 109, 1–7 (1995).

Wyers, G. P.

H. DeVries, F. J. M. Harren, G. P. Wyers, R. P. Otjes, J. Slanina, J. Reuss, “Non-intrusive, fast and sensitive ammonia detection by laser photothermal deflection,” Atmos. Environ. 29, 1069–1074 (1995).
[CrossRef]

Zimering, B.

B. Zimering, A. C. Boccara, “Compact design for real time in situ atmospheric trace gas detection based on mirage effect (photothermal deflection) spectroscopy,” Rev. Sci. Instrum. 67, 1891–1895 (1996).
[CrossRef]

B. Zimering, G. C. Pandey, A. C. Boccara, “Gas phase mirage spectroscopy and applications: the advantages of a compact and sensitive setup,” in Proceedings of the Ninth International Conference on Photoacoustic and Photothermal Phenomena, S. Zhang, ed., Science in China Supplement (Nanjing University, Nanjing, China, 1997).

Anal. Chem. (1)

G. R. Long, S. E. Bialkowski, “Saturation effects in gas-phase photothermal deflection spectrophotometry,” Anal. Chem. 57, 1079–1083 (1985).
[CrossRef] [PubMed]

Analyst (1)

E. Strauss, J. P. Favier, D. Bicanic, K. Van Asselt, M. Lubbers, “Sensitive colorimetric determination of ammonium ion in water by laser photothermal detection,” Analyst 116, 77–79 (1991).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

A. C. Tam, C. K. N. Patel, “High-resolution optoacoustic spectroscopy of rare-earth oxide powders,” Appl. Phys. Lett. 35, 843–845 (1979).
[CrossRef]

D. Fournier, A. C. Boccara, N. M. Amer, R. R. Gerlach, “Sensitive in situ trace-gas detection by photothermal deflection spectroscopy,” Appl. Phys. Lett. 37, 519–521 (1980).
[CrossRef]

Atmos. Environ. (1)

H. DeVries, F. J. M. Harren, G. P. Wyers, R. P. Otjes, J. Slanina, J. Reuss, “Non-intrusive, fast and sensitive ammonia detection by laser photothermal deflection,” Atmos. Environ. 29, 1069–1074 (1995).
[CrossRef]

Biochim. Biophys. Acta (1)

G. Bults, B. A. Horwitz, S. Malkin, D. Cahen, “Photoacoustic measurements of photosynthetic activities in whole leaves photochemistry and gas exchange,” Biochim. Biophys. Acta 679, 452–465 (1982).
[CrossRef]

Can. J. Phys. (1)

P. K. Kuo, E. D. Sendler, L. D. Favro, R. L. Thomas, “Mirage-effect measurement of thermal diffusivity. Part II: Theory,” Can. J. Phys. 64, 1168–1171 (1986).
[CrossRef]

Infrared Phys. Technol. (1)

D. Bicanic, A. M. Solyom, G. Z. Angell, H. Wegh, M. Posthumus, H. Jalink, “The extent of unwanted infrared photoacoustic signals from polymer sampling tubings exposed to ultraviolet radiation,” Infrared Phys. Technol. 35, 637–644 (1994).
[CrossRef]

J. Appl. Phys. (1)

H. Sauren, D. Bicanic, H. Jalink, J. Reuss, “High sensitivity interference free Stark tuned CO2 laser photoacoustic sensing of urban ammonia,” J. Appl. Phys. 66, 5085–5087 (1989).
[CrossRef]

J. Phys. (1)

C. J. Bordé, “Comments on photoacoustic and photothermal spectroscopy of gases compared to optical methods,” J. Phys. 10, 593–601 (1983).

Opt. Eng. (1)

M. W. Sigrist, “Laser photoacoustics for gas analysis and materials testing,” Opt. Eng. 34, 1917–1922 (1995).
[CrossRef]

Plant Physiol. (1)

E. J. Woltering, D. Somhorst, P. van der Veer, “The role of ethylene in interorgan signaling during flower senescence,” Plant Physiol. 109, 1–7 (1995).

Polym. Test. (1)

G. C. Pandey, B. P. Singh, A. K. Kulshreshtha, “Morphological characterization of autoclave and tubular LDPE by high temperature IR spectroscopy,” Polym. Test. 9, 341–351 (1990).
[CrossRef]

Rev. Sci. Instrum. (2)

P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2 laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

B. Zimering, A. C. Boccara, “Compact design for real time in situ atmospheric trace gas detection based on mirage effect (photothermal deflection) spectroscopy,” Rev. Sci. Instrum. 67, 1891–1895 (1996).
[CrossRef]

Trends Polym. Sci. (1)

R. Mani, R. P. Singh, S. Sivaram, “Ethylene-propylene copolymers: some aspects of thermal- and photo-degradation and stabilization,” Trends Polym. Sci. 1, 322–328 (1993).

Other (8)

T. Fink, “Photoacustische spektroskopie für die umweltanalytik,” Ph.D. dissertation (Friedrich-Wilhelms Universität, Bonn, Germany, 1994).

H. de Vries, “Local trace gas measurements by laser photothermal detection: physics meets physiology,” Ph.D. dissertation (Catholic University of Nijmegen, Nijmegen, The Netherlands, 1994).

Bioindicateurs Vegetaux et Qualité de l’Air, seminar organized by C. Elichegaray, Agence de l’Environnement et de la Maitrise de l’Energie A. Perrier, Institut Nationale de la Recherche Agronomique, Paris, France, 14 November 1995.

“Photoacoustics in science: development of laser photoacoustics and related technology for monitoring ethylene production by plants suffering from environmental and pollution stress,” , organized by J. Reuss, Catholic University of Nijmegen, Nijmegen, The Netherlands, 1December1995.

F. B. Abeles, P. W. Morgan, M. E. Saltveit, Ethylene in Plant Biology (Academic, San Diego, Calif., 1992).

F. Harren, J. Reuss, D. Bicanic, E. Woltering, “Ethylene exhalation of a single flower detected by photoacoustic methods,” in Photoacoustic and Photothermal Processes in Gases, P. Hess, ed. (Springer-Verlag, Berlin, 1989), pp. 148–150.

B. Zimering, G. C. Pandey, A. C. Boccara, “Gas phase mirage spectroscopy and applications: the advantages of a compact and sensitive setup,” in Proceedings of the Ninth International Conference on Photoacoustic and Photothermal Phenomena, S. Zhang, ed., Science in China Supplement (Nanjing University, Nanjing, China, 1997).

Interspecies interference, the error induced in the concentration measurement of one absorbing gas species in the presence of others, is discussed from a theoretical standpoint in Ref. 3. Our experimental findings indicate a 30% error compared with known concentrations associated with measurements of C2H4 in air containing H2O and CO2 based on absorption on a single line. When five lines or more are used for concentration determination, the error can improve to between 5% and 10%.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup. GPIB, general-purpose interface bus.

Fig. 2
Fig. 2

S-shaped signal dependence on beam separation.

Fig. 3
Fig. 3

Details of deviation geometry.

Fig. 4
Fig. 4

Pump modulation frequency dependence of mirage signal.

Fig. 5
Fig. 5

Linear calibration curve of the setup for C2H4. ppm, parts in 106

Fig. 6
Fig. 6

C2H4 absorption spectrum on the 10P CO2 band.

Fig. 7
Fig. 7

Open-air detection application: cherry tomato stress reaction.

Fig. 8
Fig. 8

Seedling response to acid rain. Communication in a biomonitor.

Fig. 9
Fig. 9

Spectra recorded for five different LDPE samples: TLDPE, tubular LDPE; ALPDE, autoclave LPDE; Powlex LDPE; LLDPE, Ladden LDPE; HDPE, high-density PE.

Fig. 10
Fig. 10

Real-time measurements of photodissociation gas product spectra.

Tables (2)

Tables Icon

Table 1 Extrapolated Limits for Some Important Pollution Gases

Tables Icon

Table 2 Summary of Single and Multiple Gas Measurements

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕ=-2x0ap21n0dndTPωρcπ2a2×1-exp-αlexp-x02a2.
ϕ=Pωlap31ρcn0dndTα.

Metrics