Abstract

Speckle imaging techniques have been shown to mitigate atmospheric-resolution limits, allowing near-diffraction-limited images to be reconstructed. Few images of extended objects reconstructed by use of these techniques have been published, and most of these results are for relatively bright objects. We present image reconstructions of an orbiting Molniya 3 spacecraft from data collected by use of a 2.3-m ground-based telescope. The apparent brightness of the satellite was 15th visual magnitude. Power-spectrum and bispectrum speckle imaging techniques are used prior to image reconstruction to ameliorate atmospheric blurring. We discuss how these images, although poorly resolved, can be used to provide information on the satellite’s functional status. It is shown that our previously published optimal algorithms produce a higher-quality image than do conventional speckle imaging methods.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. L. Matson, “Weighted-least-squares phase reconstruction from the bispectrum,” J. Opt. Soc. Am. A 8, 1905–1913 (1991).
    [CrossRef]
  2. C. L. Matson, “Weighted-least-squares magnitude-spectrum estimation from the bispectrum,” J. Opt. Soc. Am. A 8, 1914–1921 (1991).
    [CrossRef]
  3. C. L. Matson, “Fourier spectrum extrapolation and enhancement using support constraints,” IEEE Trans. Signal Proc. 42, 156–163 (1994).
    [CrossRef]
  4. T. W. Lawrence, J. P. Fitch, D.M. Goodman, N. A. Massie, R. J. Sherwood, and E. M. Johansson, “Extended image reconstruction through horizontal path turbulence using bispectral speckle interferometry,” Opt. Eng. 31, 627–636 (1992).
    [CrossRef]
  5. D. Dayton, S. Sandven, J. Gonglewski, S. Rogers, and S. McDermott, “Hybrid blind deconvolution for high-resolution satellite imaging,” in Optics in Atmospheric Propagation and Adaptive Systems, A. Kohnle, ed., Proc. SPIE 2580, 268–274 (1995).
    [CrossRef]
  6. J. D. Drummond, A. Eckart, and E. K. Hege, “Speckle interferometry of asteroids,” Icarus 73, 1–14 (1988).
    [CrossRef]
  7. J. D. Drummond, W. J. Cocke, E.K. Hege, and P. A. Strittmatter, “Speckle interferometry of asteroids I. 433 Eros,” Icarus 61, 132–151 (1985).
    [CrossRef]
  8. J. D. Drummond, E. K. Hege, W. J. Cocke, J. D. Freeman, J. C. Christou, and R. P. Binzel, “Speckle interferometry of asteroids II. 532 Herculina,” Icarus 61, 232–240 (1985).
    [CrossRef]
  9. J. D. Drummond and E. K. Hege, “Speckle interferometry of asteroids III. 511 Davida and its photometry,” Icarus 67, 251–263 (1986).
    [CrossRef]
  10. E. K. Hege, “Investigations of high resolution imaging through the earth’s atmosphere using speckle interferometry,” Air Force tech. rep. AFGL-TR-87–0097 (Hanscom Air Force Base, Mass., 1987), pp. 286–292.
  11. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3, 27–29 (1978).
    [CrossRef] [PubMed]
  12. A. Wilson, ed., Jane’s Space Directory, 11th ed. (Jane’s Information Group Limited, Coulsdon, UK, 1995), pp. 329–330.
  13. Aviat. Week Space Technol. 98 (25), 21 (18 June 1973").
  14. N. L. Johnson, The Soviet Year in Space (Teledyne Brown Engineering, Colorado Springs, Colo., 1990), 40–42.
  15. Interactive Data Language (Idl), Version 4.0 (Research Systems, Inc., Boulder, Colo., 1995).
  16. G. Weigelt and B. Wirnitzer, “Image reconstruction by the speckle-masking method,” Opt. Lett. 8, 389–392 (1983).
    [CrossRef] [PubMed]
  17. K.-H. Hofmann and G. Weigelt, “Astronomical speckle masking: image reconstruction by cross triple correlation,” Appl. Opt. 26, 2011–2015 (1987).
    [CrossRef] [PubMed]
  18. G. R. Ayers, M. J. Northcott, and J. C. Dainty, “Knox-Thompson and triple-correlation imaging through atmospheric turbulence,” J. Opt. Soc. Am. A 5, 963–985 (1988).
    [CrossRef]
  19. J. G. Timothy and J. S. Morgan, “Imaging by time-tagging photons with the multi-anode microchannel array detector system,” in Instrumentation in Astronomy VI, D. L. Crawford, ed., Proc. SPIE 627, 654–659 (1986).
    [CrossRef]
  20. J. G. Timothy, “Multianode microchannel array detector systems: performance characteristics,” Opt. Eng. 24, 1066–1071 (1985).
    [CrossRef]
  21. E. Horch, J. S. Morgan, G. Giaretta, and D. B. Kasle, “A new speckle interferometry system for the MAMA detector,” Pub. Astron. Soc. Pac. 104, 939–948 (1992).
    [CrossRef]
  22. C. L. Matson, I. A. DeLarue, T. M. Gray, and I. E. Drunzer, “Optimal Fourier spectrum estimation from the bispectrum,” Comput. Elect. Eng. 18 (6), 485–497 (1992).
    [CrossRef]
  23. J. C. Dainty, “Stellar speckle interferometry,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 255–320.
  24. T. Nakajima, “Signal-to-noise ratio of the bispectral analysis of speckle interferometry,” J. Opt. Soc. Am. A 5, 1477–1491 (1988).
    [CrossRef]

1994

C. L. Matson, “Fourier spectrum extrapolation and enhancement using support constraints,” IEEE Trans. Signal Proc. 42, 156–163 (1994).
[CrossRef]

1992

T. W. Lawrence, J. P. Fitch, D.M. Goodman, N. A. Massie, R. J. Sherwood, and E. M. Johansson, “Extended image reconstruction through horizontal path turbulence using bispectral speckle interferometry,” Opt. Eng. 31, 627–636 (1992).
[CrossRef]

E. Horch, J. S. Morgan, G. Giaretta, and D. B. Kasle, “A new speckle interferometry system for the MAMA detector,” Pub. Astron. Soc. Pac. 104, 939–948 (1992).
[CrossRef]

1991

1988

1987

1986

J. D. Drummond and E. K. Hege, “Speckle interferometry of asteroids III. 511 Davida and its photometry,” Icarus 67, 251–263 (1986).
[CrossRef]

1985

J. D. Drummond, W. J. Cocke, E.K. Hege, and P. A. Strittmatter, “Speckle interferometry of asteroids I. 433 Eros,” Icarus 61, 132–151 (1985).
[CrossRef]

J. D. Drummond, E. K. Hege, W. J. Cocke, J. D. Freeman, J. C. Christou, and R. P. Binzel, “Speckle interferometry of asteroids II. 532 Herculina,” Icarus 61, 232–240 (1985).
[CrossRef]

J. G. Timothy, “Multianode microchannel array detector systems: performance characteristics,” Opt. Eng. 24, 1066–1071 (1985).
[CrossRef]

1983

1978

Ayers, G. R.

Binzel, R. P.

J. D. Drummond, E. K. Hege, W. J. Cocke, J. D. Freeman, J. C. Christou, and R. P. Binzel, “Speckle interferometry of asteroids II. 532 Herculina,” Icarus 61, 232–240 (1985).
[CrossRef]

Christou, J. C.

J. D. Drummond, E. K. Hege, W. J. Cocke, J. D. Freeman, J. C. Christou, and R. P. Binzel, “Speckle interferometry of asteroids II. 532 Herculina,” Icarus 61, 232–240 (1985).
[CrossRef]

Cocke, W. J.

J. D. Drummond, E. K. Hege, W. J. Cocke, J. D. Freeman, J. C. Christou, and R. P. Binzel, “Speckle interferometry of asteroids II. 532 Herculina,” Icarus 61, 232–240 (1985).
[CrossRef]

J. D. Drummond, W. J. Cocke, E.K. Hege, and P. A. Strittmatter, “Speckle interferometry of asteroids I. 433 Eros,” Icarus 61, 132–151 (1985).
[CrossRef]

Dainty, J. C.

Drummond, J. D.

J. D. Drummond, A. Eckart, and E. K. Hege, “Speckle interferometry of asteroids,” Icarus 73, 1–14 (1988).
[CrossRef]

J. D. Drummond and E. K. Hege, “Speckle interferometry of asteroids III. 511 Davida and its photometry,” Icarus 67, 251–263 (1986).
[CrossRef]

J. D. Drummond, W. J. Cocke, E.K. Hege, and P. A. Strittmatter, “Speckle interferometry of asteroids I. 433 Eros,” Icarus 61, 132–151 (1985).
[CrossRef]

J. D. Drummond, E. K. Hege, W. J. Cocke, J. D. Freeman, J. C. Christou, and R. P. Binzel, “Speckle interferometry of asteroids II. 532 Herculina,” Icarus 61, 232–240 (1985).
[CrossRef]

Eckart, A.

J. D. Drummond, A. Eckart, and E. K. Hege, “Speckle interferometry of asteroids,” Icarus 73, 1–14 (1988).
[CrossRef]

Fienup, J. R.

Fitch, J. P.

T. W. Lawrence, J. P. Fitch, D.M. Goodman, N. A. Massie, R. J. Sherwood, and E. M. Johansson, “Extended image reconstruction through horizontal path turbulence using bispectral speckle interferometry,” Opt. Eng. 31, 627–636 (1992).
[CrossRef]

Freeman, J. D.

J. D. Drummond, E. K. Hege, W. J. Cocke, J. D. Freeman, J. C. Christou, and R. P. Binzel, “Speckle interferometry of asteroids II. 532 Herculina,” Icarus 61, 232–240 (1985).
[CrossRef]

Giaretta, G.

E. Horch, J. S. Morgan, G. Giaretta, and D. B. Kasle, “A new speckle interferometry system for the MAMA detector,” Pub. Astron. Soc. Pac. 104, 939–948 (1992).
[CrossRef]

Goodman, D.M.

T. W. Lawrence, J. P. Fitch, D.M. Goodman, N. A. Massie, R. J. Sherwood, and E. M. Johansson, “Extended image reconstruction through horizontal path turbulence using bispectral speckle interferometry,” Opt. Eng. 31, 627–636 (1992).
[CrossRef]

Hege, E. K.

J. D. Drummond, A. Eckart, and E. K. Hege, “Speckle interferometry of asteroids,” Icarus 73, 1–14 (1988).
[CrossRef]

J. D. Drummond and E. K. Hege, “Speckle interferometry of asteroids III. 511 Davida and its photometry,” Icarus 67, 251–263 (1986).
[CrossRef]

J. D. Drummond, E. K. Hege, W. J. Cocke, J. D. Freeman, J. C. Christou, and R. P. Binzel, “Speckle interferometry of asteroids II. 532 Herculina,” Icarus 61, 232–240 (1985).
[CrossRef]

Hege, E.K.

J. D. Drummond, W. J. Cocke, E.K. Hege, and P. A. Strittmatter, “Speckle interferometry of asteroids I. 433 Eros,” Icarus 61, 132–151 (1985).
[CrossRef]

Hofmann, K.-H.

Horch, E.

E. Horch, J. S. Morgan, G. Giaretta, and D. B. Kasle, “A new speckle interferometry system for the MAMA detector,” Pub. Astron. Soc. Pac. 104, 939–948 (1992).
[CrossRef]

Johansson, E. M.

T. W. Lawrence, J. P. Fitch, D.M. Goodman, N. A. Massie, R. J. Sherwood, and E. M. Johansson, “Extended image reconstruction through horizontal path turbulence using bispectral speckle interferometry,” Opt. Eng. 31, 627–636 (1992).
[CrossRef]

Johnson, N. L.

N. L. Johnson, The Soviet Year in Space (Teledyne Brown Engineering, Colorado Springs, Colo., 1990), 40–42.

Kasle, D. B.

E. Horch, J. S. Morgan, G. Giaretta, and D. B. Kasle, “A new speckle interferometry system for the MAMA detector,” Pub. Astron. Soc. Pac. 104, 939–948 (1992).
[CrossRef]

Lawrence, T. W.

T. W. Lawrence, J. P. Fitch, D.M. Goodman, N. A. Massie, R. J. Sherwood, and E. M. Johansson, “Extended image reconstruction through horizontal path turbulence using bispectral speckle interferometry,” Opt. Eng. 31, 627–636 (1992).
[CrossRef]

Massie, N. A.

T. W. Lawrence, J. P. Fitch, D.M. Goodman, N. A. Massie, R. J. Sherwood, and E. M. Johansson, “Extended image reconstruction through horizontal path turbulence using bispectral speckle interferometry,” Opt. Eng. 31, 627–636 (1992).
[CrossRef]

Matson, C. L.

Morgan, J. S.

E. Horch, J. S. Morgan, G. Giaretta, and D. B. Kasle, “A new speckle interferometry system for the MAMA detector,” Pub. Astron. Soc. Pac. 104, 939–948 (1992).
[CrossRef]

Nakajima, T.

Northcott, M. J.

Sherwood, R. J.

T. W. Lawrence, J. P. Fitch, D.M. Goodman, N. A. Massie, R. J. Sherwood, and E. M. Johansson, “Extended image reconstruction through horizontal path turbulence using bispectral speckle interferometry,” Opt. Eng. 31, 627–636 (1992).
[CrossRef]

Strittmatter, P. A.

J. D. Drummond, W. J. Cocke, E.K. Hege, and P. A. Strittmatter, “Speckle interferometry of asteroids I. 433 Eros,” Icarus 61, 132–151 (1985).
[CrossRef]

Timothy, J. G.

J. G. Timothy, “Multianode microchannel array detector systems: performance characteristics,” Opt. Eng. 24, 1066–1071 (1985).
[CrossRef]

Weigelt, G.

Wirnitzer, B.

Appl. Opt.

Icarus

J. D. Drummond, A. Eckart, and E. K. Hege, “Speckle interferometry of asteroids,” Icarus 73, 1–14 (1988).
[CrossRef]

J. D. Drummond, W. J. Cocke, E.K. Hege, and P. A. Strittmatter, “Speckle interferometry of asteroids I. 433 Eros,” Icarus 61, 132–151 (1985).
[CrossRef]

J. D. Drummond, E. K. Hege, W. J. Cocke, J. D. Freeman, J. C. Christou, and R. P. Binzel, “Speckle interferometry of asteroids II. 532 Herculina,” Icarus 61, 232–240 (1985).
[CrossRef]

J. D. Drummond and E. K. Hege, “Speckle interferometry of asteroids III. 511 Davida and its photometry,” Icarus 67, 251–263 (1986).
[CrossRef]

IEEE Trans. Signal Proc.

C. L. Matson, “Fourier spectrum extrapolation and enhancement using support constraints,” IEEE Trans. Signal Proc. 42, 156–163 (1994).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Eng.

T. W. Lawrence, J. P. Fitch, D.M. Goodman, N. A. Massie, R. J. Sherwood, and E. M. Johansson, “Extended image reconstruction through horizontal path turbulence using bispectral speckle interferometry,” Opt. Eng. 31, 627–636 (1992).
[CrossRef]

J. G. Timothy, “Multianode microchannel array detector systems: performance characteristics,” Opt. Eng. 24, 1066–1071 (1985).
[CrossRef]

Opt. Lett.

Pub. Astron. Soc. Pac.

E. Horch, J. S. Morgan, G. Giaretta, and D. B. Kasle, “A new speckle interferometry system for the MAMA detector,” Pub. Astron. Soc. Pac. 104, 939–948 (1992).
[CrossRef]

Other

C. L. Matson, I. A. DeLarue, T. M. Gray, and I. E. Drunzer, “Optimal Fourier spectrum estimation from the bispectrum,” Comput. Elect. Eng. 18 (6), 485–497 (1992).
[CrossRef]

J. C. Dainty, “Stellar speckle interferometry,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984), pp. 255–320.

A. Wilson, ed., Jane’s Space Directory, 11th ed. (Jane’s Information Group Limited, Coulsdon, UK, 1995), pp. 329–330.

Aviat. Week Space Technol. 98 (25), 21 (18 June 1973").

N. L. Johnson, The Soviet Year in Space (Teledyne Brown Engineering, Colorado Springs, Colo., 1990), 40–42.

Interactive Data Language (Idl), Version 4.0 (Research Systems, Inc., Boulder, Colo., 1995).

D. Dayton, S. Sandven, J. Gonglewski, S. Rogers, and S. McDermott, “Hybrid blind deconvolution for high-resolution satellite imaging,” in Optics in Atmospheric Propagation and Adaptive Systems, A. Kohnle, ed., Proc. SPIE 2580, 268–274 (1995).
[CrossRef]

E. K. Hege, “Investigations of high resolution imaging through the earth’s atmosphere using speckle interferometry,” Air Force tech. rep. AFGL-TR-87–0097 (Hanscom Air Force Base, Mass., 1987), pp. 286–292.

J. G. Timothy and J. S. Morgan, “Imaging by time-tagging photons with the multi-anode microchannel array detector system,” in Instrumentation in Astronomy VI, D. L. Crawford, ed., Proc. SPIE 627, 654–659 (1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

View of a three-dimensional wire-frame model of a Molniya 3 satellite in the plane of the solar-panel array.

Fig. 2
Fig. 2

View of a three-dimensional wire-frame model of a Molniya 3 satellite rotated 90° about the vertical axis compared with the image in Fig. 1. The solar panels are perpendicular to the plane of the figure, while the body is parallel to this plane.

Fig. 3
Fig. 3

Long-exposure image of the Molniya satellite with a properly scaled wire-frame model of the Molniya superimposed.

Fig. 4
Fig. 4

Image reconstruction of the Molniya satellite. The image field of view is the same as that for the long-exposure image shown in Fig. 3.

Fig. 5
Fig. 5

Reconstructed Molniya image overlaid with a best-fit wire-frame model, under the assumption that the Molniya is operational. The body of the satellite is rendered by use of dashed lines to indicate that the body is pointing into the plane of the figure.

Fig. 6
Fig. 6

Reconstructed Molniya image overlaid with a best-fit wire-frame model, under the assumption that the Molniya is operational. This figure is the same as Fig. 5, except the body is removed because the body is not being illuminated by the Sun.

Fig. 7
Fig. 7

Reconstructed Molniya image overlaid with a best-fit wire-frame model without the assumption that the Molniya is operational. The body of the satellite is projecting out from the page.

Fig. 8
Fig. 8

Reconstructed Molniya image by use of the recursive approach to phase-spectrum estimation from the bispectrum. The wire frame overlying the image is at the optimal orientation, as shown in Fig. 7.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Bu, v=EInuInvIn*u+v,

Metrics