Abstract

We describe some basic optical image-processing operations with acousto-optic (AO) Bragg diffraction. Instead of using frequency-plane filters, we place an AO cell behind the object. We then realize experimentally one-dimensional edge enhancement, which utilizes a high-pass filtering effect in the undiffracted order from the AO cell. A numerical simulation compares well with the experimental results. With two AO cells oriented orthogonally to each other, a second-order mixed derivative operation, evident from the four-corner enhancement of a square, is also demonstrated.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Whitman, A. Korpel, and S. Lotsoff, “Application of acoustic Bragg diffraction to optical processing techniques,” in Proceedings of a Symposium on Modern Optics, J. Fox, ed. (Polytechnic, Brooklyn, N.Y. 1967), pp. 243–256.
  2. M. King, W. R. Bennett, L. B. Lambert, and M. Arm, “Real-time electrooptical signal processors with coherent detection,” Appl. Opt. 6, 1367–1375 (1967).
    [CrossRef] [PubMed]
  3. D. W. Prather and J. N. Mait, “Acousto-optic generation of two-dimensional spot arrays,” Opt. Lett. 16, 1720–1722 (1991).
    [CrossRef] [PubMed]
  4. J. N. Mait, D. W. Prather, and R. A. Athale, “Acousto-optic processing with electronic feedback for morphological filtering,” Appl. Opt. 31, 5688–5699 (1992).
    [CrossRef] [PubMed]
  5. R. A. Athale, J. Van Der Gracht, D. W. Prather, and J. W. Mait, “Incoherent optical image processing with acousto-optic pupil-plane filtering,” Appl. Opt. 34, 276–280 (1995).
    [CrossRef] [PubMed]
  6. V. I. Balakshy, “Scanning of Images,” Sov. J. Quantum Electron. 6, 965–971 (1979).
  7. A. Korpel, P. P. Banerjee, and C.-W. Tarn, “A unified treatment of spectral formalisms of light propagation and their application to acousto-optics,” Opt. Commun. 97, 250–258 (1993).
    [CrossRef]
  8. P. P. Banerjee and C.-W. Tarn, “A Fourier transform approach to acoustooptic interactions in the presence of propagational diffraction,” Acustica 74, 181–191 (1991).
  9. M. R. Chatterjee, T.-C. Poon, and D. N. Sitter, Jr., “Transfer function formalism for strong acousto-optic Bragg diffraction of light beams with arbitrary profiles,” Acustica 71, 81–92 (1990).
  10. M. D. McNeill and T.-C. Poon, “Gaussian-beam profile shaping by acousto-optic Bragg diffraction,” Appl. Opt. 33, 4508–4515 (1994).
    [CrossRef] [PubMed]
  11. A. Korpel, Acousto-Optics (Marcel Dekker, New York, 1988), pp. 43–93.
  12. V. I. Balakshy and A. G. Kukuskhn, “Visualization of phase objects in Bragg diffraction,” Sov. Opt. Spectrosc. 64, 99–103 (1988).
  13. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), pp. 4–27.

1995 (1)

1994 (1)

1993 (1)

A. Korpel, P. P. Banerjee, and C.-W. Tarn, “A unified treatment of spectral formalisms of light propagation and their application to acousto-optics,” Opt. Commun. 97, 250–258 (1993).
[CrossRef]

1992 (1)

1991 (2)

P. P. Banerjee and C.-W. Tarn, “A Fourier transform approach to acoustooptic interactions in the presence of propagational diffraction,” Acustica 74, 181–191 (1991).

D. W. Prather and J. N. Mait, “Acousto-optic generation of two-dimensional spot arrays,” Opt. Lett. 16, 1720–1722 (1991).
[CrossRef] [PubMed]

1990 (1)

M. R. Chatterjee, T.-C. Poon, and D. N. Sitter, Jr., “Transfer function formalism for strong acousto-optic Bragg diffraction of light beams with arbitrary profiles,” Acustica 71, 81–92 (1990).

1988 (1)

V. I. Balakshy and A. G. Kukuskhn, “Visualization of phase objects in Bragg diffraction,” Sov. Opt. Spectrosc. 64, 99–103 (1988).

1979 (1)

V. I. Balakshy, “Scanning of Images,” Sov. J. Quantum Electron. 6, 965–971 (1979).

1967 (1)

Arm, M.

Athale, R. A.

Balakshy, V. I.

V. I. Balakshy and A. G. Kukuskhn, “Visualization of phase objects in Bragg diffraction,” Sov. Opt. Spectrosc. 64, 99–103 (1988).

V. I. Balakshy, “Scanning of Images,” Sov. J. Quantum Electron. 6, 965–971 (1979).

Banerjee, P. P.

A. Korpel, P. P. Banerjee, and C.-W. Tarn, “A unified treatment of spectral formalisms of light propagation and their application to acousto-optics,” Opt. Commun. 97, 250–258 (1993).
[CrossRef]

P. P. Banerjee and C.-W. Tarn, “A Fourier transform approach to acoustooptic interactions in the presence of propagational diffraction,” Acustica 74, 181–191 (1991).

Bennett, W. R.

Chatterjee, M. R.

M. R. Chatterjee, T.-C. Poon, and D. N. Sitter, Jr., “Transfer function formalism for strong acousto-optic Bragg diffraction of light beams with arbitrary profiles,” Acustica 71, 81–92 (1990).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), pp. 4–27.

King, M.

Korpel, A.

A. Korpel, P. P. Banerjee, and C.-W. Tarn, “A unified treatment of spectral formalisms of light propagation and their application to acousto-optics,” Opt. Commun. 97, 250–258 (1993).
[CrossRef]

A. Korpel, Acousto-Optics (Marcel Dekker, New York, 1988), pp. 43–93.

Kukuskhn, A. G.

V. I. Balakshy and A. G. Kukuskhn, “Visualization of phase objects in Bragg diffraction,” Sov. Opt. Spectrosc. 64, 99–103 (1988).

Lambert, L. B.

Mait, J. N.

Mait, J. W.

McNeill, M. D.

Poon, T.-C.

M. D. McNeill and T.-C. Poon, “Gaussian-beam profile shaping by acousto-optic Bragg diffraction,” Appl. Opt. 33, 4508–4515 (1994).
[CrossRef] [PubMed]

M. R. Chatterjee, T.-C. Poon, and D. N. Sitter, Jr., “Transfer function formalism for strong acousto-optic Bragg diffraction of light beams with arbitrary profiles,” Acustica 71, 81–92 (1990).

Prather, D. W.

Sitter, Jr., D. N.

M. R. Chatterjee, T.-C. Poon, and D. N. Sitter, Jr., “Transfer function formalism for strong acousto-optic Bragg diffraction of light beams with arbitrary profiles,” Acustica 71, 81–92 (1990).

Tarn, C.-W.

A. Korpel, P. P. Banerjee, and C.-W. Tarn, “A unified treatment of spectral formalisms of light propagation and their application to acousto-optics,” Opt. Commun. 97, 250–258 (1993).
[CrossRef]

P. P. Banerjee and C.-W. Tarn, “A Fourier transform approach to acoustooptic interactions in the presence of propagational diffraction,” Acustica 74, 181–191 (1991).

Van Der Gracht, J.

Acustica (2)

P. P. Banerjee and C.-W. Tarn, “A Fourier transform approach to acoustooptic interactions in the presence of propagational diffraction,” Acustica 74, 181–191 (1991).

M. R. Chatterjee, T.-C. Poon, and D. N. Sitter, Jr., “Transfer function formalism for strong acousto-optic Bragg diffraction of light beams with arbitrary profiles,” Acustica 71, 81–92 (1990).

Appl. Opt. (4)

Opt. Commun. (1)

A. Korpel, P. P. Banerjee, and C.-W. Tarn, “A unified treatment of spectral formalisms of light propagation and their application to acousto-optics,” Opt. Commun. 97, 250–258 (1993).
[CrossRef]

Opt. Lett. (1)

Sov. J. Quantum Electron. (1)

V. I. Balakshy, “Scanning of Images,” Sov. J. Quantum Electron. 6, 965–971 (1979).

Sov. Opt. Spectrosc. (1)

V. I. Balakshy and A. G. Kukuskhn, “Visualization of phase objects in Bragg diffraction,” Sov. Opt. Spectrosc. 64, 99–103 (1988).

Other (3)

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), pp. 4–27.

R. Whitman, A. Korpel, and S. Lotsoff, “Application of acoustic Bragg diffraction to optical processing techniques,” in Proceedings of a Symposium on Modern Optics, J. Fox, ed. (Polytechnic, Brooklyn, N.Y. 1967), pp. 243–256.

A. Korpel, Acousto-Optics (Marcel Dekker, New York, 1988), pp. 43–93.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Transfer functions for various values of α and Q = 27: H 0 (α = 0.3π), zeroth-order transfer function for α = 0.3π (dotted curve); H 0 (α = 0.6π), zeroth-order transfer function for α = 0.6π (solid curve); H 1 (α = 0.3π), first-order transfer function for α = 0.3π (dotted curve); and H 1 (α = 0.6π), first-order transfer function for α = 0.6π (solid curve). The value of Q = 27 is chosen to correspond to experimental conditions.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

Experimental and numerical simulation results for Q = 27 and α = 0.6π with a circle pattern input object: (a) undiffracted image, experimental result; (b) diffracted image, experimental result; (c) zeroth-order intensity distribution from numerical simulations; (d) first-order intensity distribution from numerical simulations.

Fig. 4
Fig. 4

Experimental four-corner enhancement results: (a) image without any AO interaction, (b) image with only 1-D AO interaction, and (c) image with two orthogonally oriented 1-D AO cells.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

H0kx=expjkx2L2k0-kxQΛ04 πcoskxQΛ04π2+α221/2+jkxQΛ04πsinkxQΛ0/4π2+α/221/2kxQΛ0/4π2+α/221/2,
H1kx=expjkx2L2k0-kxQΛ04π×-jα2sinkxQΛ0/4π2+α/221/2kxQΛ0/4π2+α/221/2,
E1x, y=A1+B1/xtx, y,
E2x, y=A2+B2/yE1x,yB1B2 2/yxtx, y,

Metrics