Abstract

We extended the scale of a previously reported holographic switch [Appl. Opt. 34, 8137 (1995)] in which each input is assigned to one of the control light sources to control a large-scale switch with low power. The average losses of the four inputs were 28, 33, 35, and 36 dB. The average cross-talk-to-signal ratio of one of the inputs was -16 dB.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Herriau, A. Delboulbe, J. P. Huignard, G. Roosen, G. Pauliat, “Optical beam steering for a fiber array using dynamic holography,” in Digest of the European Conference on Optical Communication (Convention of the National Societies of Electrical Engineers of Western Europe, Venice, Italy, 1985), Vol. 1, pp. 419–422.
  2. E. Marom, N. Konforti, “Dynamic optical interconnections,” Opt. Lett. 12, 539–541 (1987).
    [CrossRef] [PubMed]
  3. H. Yamazaki, M. Yamaguchi, “Experiments on a multichannel holographic optical switch with the use of a liquid-crystal display,” Opt. Lett. 17, 1228–1230 (1992).
    [CrossRef] [PubMed]
  4. D. C. O’Brien, R. J. Mears, T. D. Wilkinson, W. A. Crossland, “Dynamic holographic interconnects that use ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 33, 2795–2803 (1994).
    [CrossRef] [PubMed]
  5. H. Yamazaki, S. Fukushima, “Holographic switch with a ferroelectric liquid-crystal spatial light modulator for a large-scale switch,” Appl. Opt. 34, 8137–8143 (1995).
    [CrossRef] [PubMed]
  6. H. Yamazaki, T. Matsunaga, S. Fukushima, “1 × 1104 holographic switching with a ferroelectric liquid-crystal spatial light modulator,” Opt. Lett. 20, 1430–1431 (1995).
    [CrossRef] [PubMed]
  7. S. Fukushima, T. Kurokawa, M. Ohno, “Real-time hologram construction and reconstruction using a high-resolution spatial light modulator,” Appl. Phys. Lett. 58, 787–789 (1991).
    [CrossRef]
  8. H. Dammann, K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
    [CrossRef]
  9. S. Fukushima, T. Kurokawa, “Diffraction characteristics of ferroelectric liquid crystal grating,” Jpn. J. Appl. Phys. 33, 5747–5754 (1994).
    [CrossRef]

1995 (2)

H. Yamazaki, S. Fukushima, “Holographic switch with a ferroelectric liquid-crystal spatial light modulator for a large-scale switch,” Appl. Opt. 34, 8137–8143 (1995).
[CrossRef] [PubMed]

H. Yamazaki, T. Matsunaga, S. Fukushima, “1 × 1104 holographic switching with a ferroelectric liquid-crystal spatial light modulator,” Opt. Lett. 20, 1430–1431 (1995).
[CrossRef] [PubMed]

1994 (2)

D. C. O’Brien, R. J. Mears, T. D. Wilkinson, W. A. Crossland, “Dynamic holographic interconnects that use ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 33, 2795–2803 (1994).
[CrossRef] [PubMed]

S. Fukushima, T. Kurokawa, “Diffraction characteristics of ferroelectric liquid crystal grating,” Jpn. J. Appl. Phys. 33, 5747–5754 (1994).
[CrossRef]

1992 (1)

H. Yamazaki, M. Yamaguchi, “Experiments on a multichannel holographic optical switch with the use of a liquid-crystal display,” Opt. Lett. 17, 1228–1230 (1992).
[CrossRef] [PubMed]

1991 (1)

S. Fukushima, T. Kurokawa, M. Ohno, “Real-time hologram construction and reconstruction using a high-resolution spatial light modulator,” Appl. Phys. Lett. 58, 787–789 (1991).
[CrossRef]

1987 (1)

E. Marom, N. Konforti, “Dynamic optical interconnections,” Opt. Lett. 12, 539–541 (1987).
[CrossRef] [PubMed]

1971 (1)

H. Dammann, K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

Crossland, W. A.

D. C. O’Brien, R. J. Mears, T. D. Wilkinson, W. A. Crossland, “Dynamic holographic interconnects that use ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 33, 2795–2803 (1994).
[CrossRef] [PubMed]

Dammann, H.

H. Dammann, K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

Delboulbe, A.

J. P. Herriau, A. Delboulbe, J. P. Huignard, G. Roosen, G. Pauliat, “Optical beam steering for a fiber array using dynamic holography,” in Digest of the European Conference on Optical Communication (Convention of the National Societies of Electrical Engineers of Western Europe, Venice, Italy, 1985), Vol. 1, pp. 419–422.

Fukushima, S.

H. Yamazaki, S. Fukushima, “Holographic switch with a ferroelectric liquid-crystal spatial light modulator for a large-scale switch,” Appl. Opt. 34, 8137–8143 (1995).
[CrossRef] [PubMed]

H. Yamazaki, T. Matsunaga, S. Fukushima, “1 × 1104 holographic switching with a ferroelectric liquid-crystal spatial light modulator,” Opt. Lett. 20, 1430–1431 (1995).
[CrossRef] [PubMed]

S. Fukushima, T. Kurokawa, “Diffraction characteristics of ferroelectric liquid crystal grating,” Jpn. J. Appl. Phys. 33, 5747–5754 (1994).
[CrossRef]

S. Fukushima, T. Kurokawa, M. Ohno, “Real-time hologram construction and reconstruction using a high-resolution spatial light modulator,” Appl. Phys. Lett. 58, 787–789 (1991).
[CrossRef]

Gortler, K.

H. Dammann, K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

Herriau, J. P.

J. P. Herriau, A. Delboulbe, J. P. Huignard, G. Roosen, G. Pauliat, “Optical beam steering for a fiber array using dynamic holography,” in Digest of the European Conference on Optical Communication (Convention of the National Societies of Electrical Engineers of Western Europe, Venice, Italy, 1985), Vol. 1, pp. 419–422.

Huignard, J. P.

J. P. Herriau, A. Delboulbe, J. P. Huignard, G. Roosen, G. Pauliat, “Optical beam steering for a fiber array using dynamic holography,” in Digest of the European Conference on Optical Communication (Convention of the National Societies of Electrical Engineers of Western Europe, Venice, Italy, 1985), Vol. 1, pp. 419–422.

Konforti, N.

E. Marom, N. Konforti, “Dynamic optical interconnections,” Opt. Lett. 12, 539–541 (1987).
[CrossRef] [PubMed]

Kurokawa, T.

S. Fukushima, T. Kurokawa, “Diffraction characteristics of ferroelectric liquid crystal grating,” Jpn. J. Appl. Phys. 33, 5747–5754 (1994).
[CrossRef]

S. Fukushima, T. Kurokawa, M. Ohno, “Real-time hologram construction and reconstruction using a high-resolution spatial light modulator,” Appl. Phys. Lett. 58, 787–789 (1991).
[CrossRef]

Marom, E.

E. Marom, N. Konforti, “Dynamic optical interconnections,” Opt. Lett. 12, 539–541 (1987).
[CrossRef] [PubMed]

Matsunaga, T.

H. Yamazaki, T. Matsunaga, S. Fukushima, “1 × 1104 holographic switching with a ferroelectric liquid-crystal spatial light modulator,” Opt. Lett. 20, 1430–1431 (1995).
[CrossRef] [PubMed]

Mears, R. J.

D. C. O’Brien, R. J. Mears, T. D. Wilkinson, W. A. Crossland, “Dynamic holographic interconnects that use ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 33, 2795–2803 (1994).
[CrossRef] [PubMed]

O’Brien, D. C.

D. C. O’Brien, R. J. Mears, T. D. Wilkinson, W. A. Crossland, “Dynamic holographic interconnects that use ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 33, 2795–2803 (1994).
[CrossRef] [PubMed]

Ohno, M.

S. Fukushima, T. Kurokawa, M. Ohno, “Real-time hologram construction and reconstruction using a high-resolution spatial light modulator,” Appl. Phys. Lett. 58, 787–789 (1991).
[CrossRef]

Pauliat, G.

J. P. Herriau, A. Delboulbe, J. P. Huignard, G. Roosen, G. Pauliat, “Optical beam steering for a fiber array using dynamic holography,” in Digest of the European Conference on Optical Communication (Convention of the National Societies of Electrical Engineers of Western Europe, Venice, Italy, 1985), Vol. 1, pp. 419–422.

Roosen, G.

J. P. Herriau, A. Delboulbe, J. P. Huignard, G. Roosen, G. Pauliat, “Optical beam steering for a fiber array using dynamic holography,” in Digest of the European Conference on Optical Communication (Convention of the National Societies of Electrical Engineers of Western Europe, Venice, Italy, 1985), Vol. 1, pp. 419–422.

Wilkinson, T. D.

D. C. O’Brien, R. J. Mears, T. D. Wilkinson, W. A. Crossland, “Dynamic holographic interconnects that use ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 33, 2795–2803 (1994).
[CrossRef] [PubMed]

Yamaguchi, M.

H. Yamazaki, M. Yamaguchi, “Experiments on a multichannel holographic optical switch with the use of a liquid-crystal display,” Opt. Lett. 17, 1228–1230 (1992).
[CrossRef] [PubMed]

Yamazaki, H.

H. Yamazaki, S. Fukushima, “Holographic switch with a ferroelectric liquid-crystal spatial light modulator for a large-scale switch,” Appl. Opt. 34, 8137–8143 (1995).
[CrossRef] [PubMed]

H. Yamazaki, T. Matsunaga, S. Fukushima, “1 × 1104 holographic switching with a ferroelectric liquid-crystal spatial light modulator,” Opt. Lett. 20, 1430–1431 (1995).
[CrossRef] [PubMed]

H. Yamazaki, M. Yamaguchi, “Experiments on a multichannel holographic optical switch with the use of a liquid-crystal display,” Opt. Lett. 17, 1228–1230 (1992).
[CrossRef] [PubMed]

Appl. Opt. (2)

D. C. O’Brien, R. J. Mears, T. D. Wilkinson, W. A. Crossland, “Dynamic holographic interconnects that use ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 33, 2795–2803 (1994).
[CrossRef] [PubMed]

H. Yamazaki, S. Fukushima, “Holographic switch with a ferroelectric liquid-crystal spatial light modulator for a large-scale switch,” Appl. Opt. 34, 8137–8143 (1995).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

S. Fukushima, T. Kurokawa, M. Ohno, “Real-time hologram construction and reconstruction using a high-resolution spatial light modulator,” Appl. Phys. Lett. 58, 787–789 (1991).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Fukushima, T. Kurokawa, “Diffraction characteristics of ferroelectric liquid crystal grating,” Jpn. J. Appl. Phys. 33, 5747–5754 (1994).
[CrossRef]

Opt. Commun. (1)

H. Dammann, K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

Opt. Lett. (3)

H. Yamazaki, T. Matsunaga, S. Fukushima, “1 × 1104 holographic switching with a ferroelectric liquid-crystal spatial light modulator,” Opt. Lett. 20, 1430–1431 (1995).
[CrossRef] [PubMed]

E. Marom, N. Konforti, “Dynamic optical interconnections,” Opt. Lett. 12, 539–541 (1987).
[CrossRef] [PubMed]

H. Yamazaki, M. Yamaguchi, “Experiments on a multichannel holographic optical switch with the use of a liquid-crystal display,” Opt. Lett. 17, 1228–1230 (1992).
[CrossRef] [PubMed]

Other (1)

J. P. Herriau, A. Delboulbe, J. P. Huignard, G. Roosen, G. Pauliat, “Optical beam steering for a fiber array using dynamic holography,” in Digest of the European Conference on Optical Communication (Convention of the National Societies of Electrical Engineers of Western Europe, Venice, Italy, 1985), Vol. 1, pp. 419–422.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Structure of the 4 × 1204 holographic switch.

Fig. 2
Fig. 2

Optical setup of the control system with three inputs for assigning each input to one of the control light sources.

Fig. 3
Fig. 3

Determination of the output positions when the control beam is divided into 7 × 7 beams: (a) Positions that the positive first-order light can reach. (b) Positive first-order positions after eliminating the positions where negative first-order light is superimposed. (c) First-order positions (black points) furthest from the zeroth-order position when the higher-order light appears at the positions shown in (b). Second-order positions (gray points) when the first-order light appears at the black points. (d) Output positions (=60).

Fig. 4
Fig. 4

Insertion loss of the 4 × 1204 holographic switch: (a) Input 1, (b) input 2, (c) input 3, and (d) input 4.

Fig. 5
Fig. 5

Insertion loss of input 2 at each output position.

Fig. 6
Fig. 6

Relation between the spatial frequency of the interference patterns recorded in the OASLM and the insertion loss when input 2 was switched to each of the 1204 output positions.

Fig. 7
Fig. 7

XSR of input 2.

Fig. 8
Fig. 8

Average XSR at each output position when input 2 was switched to each of the 1204 output positions.

Fig. 9
Fig. 9

Relation between the spatial frequencies of the interference patterns and the average XSR at each output position when input 2 was switched to each of the 1204 output positions.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Nout=M-13M-12.
XSR=10 logIBIA.

Metrics