Abstract

Our purpose is to compare two architectures when implemented with ferroelectric liquid-crystal technology: the conventional VanderLugt and joint transform correlators. The architectures are compared in the single-correlation and multichannel cases. The analysis covers both theoretical aspects and practical considerations regarding implementation. Specifications for a multichannel correlator design, including considerations of both spatial light modulators and architecture configurations, are discussed. Experimental results are presented for both architectures. Finally, the benefit resulting from extension to multichannel operation is discussed in terms of both multiplexing and algorithmic capabilities.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Pétillot, “Vers une implantation de corrélateurs optiques temps réels,” Ph.D. dissertation (Université de Bretagne Occidentale, France, March1996).
  2. S. A. Serati, T. K. Ewing, R. A. Serati, K. M. Johnson, D. M. Simon, “Programmable 128 × 128 ferroelectric-liquid-crystal spatial-light-modulator compact correlator,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. SPIE1959, 55–68 (1993).
  3. L. Guibert, G. Keryer, A. Servel, M. Attia, H. S. MacKenzie, P. Pellat-Finet, J. L. de Bougrenet de la Tocnaye, “On-board optical joint transform correlator for real-time road sign recognition,” Opt. Eng. 34, 135–143 (1995).
    [CrossRef]
  4. H. J. Caulfield, R. Haimes, “Generalized matched filtering,” in Optical Pattern Recognition, D. P. Casasent, ed., Proc. SPIE201, 115–119 (1979).
  5. B. V. K. Vijaya Kumar, “Tutorial survey of composite filter designs for optical correlators,” Appl. Opt. 31, 4773–4801 (1992).
    [CrossRef]
  6. Y. Pétillot, L. Guibert, J. L. de Bougrenet de la Tocnaye, “Fingerprint recognition using a partially rotation invariant composite filter in a FLC joint transform correlator,” Opt. Commun. 126, 213–219 (1996).
    [CrossRef]
  7. T. D. Wilkinson, Y. Pétillot, R. J. Mears, J. L. de Bougrenet de la Tocnaye, “Scale-invariant optical correlators using ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 34, 1885–1890 (1995).
    [CrossRef] [PubMed]
  8. R. Moignard, E. Daniel, P. Cambon, J. L. de Bougrenet de la Tocnaye, “Design of a silicon VLSI/FLC smart light valve for parallel optical information processing,” in Proceedings of the Eighth EOS Workshop on Optics in Computing (European Optical Society, Orsay, France, 1992), pp. 3–6.
  9. T. D. Wilkinson, “The binary phase only matched filter,” Ph.D. dissertation (Cambridge U. Engineering, Cambridge, 1995).
  10. B. Javidi, “Nonlinear joint power spectrum based optical correlation,” Appl. Opt. 28, 2358–2367 (1989).
    [CrossRef] [PubMed]
  11. A. Sneh, J. Y. Liu, K. M. Johnson, “High-speed analog refractive-index modulator that uses a chiral smectic liquid crystal,” Opt. Lett. 15, 305–307 (1994).
    [CrossRef]
  12. L. Le Bourhis, J. Angele, L. Dupont, “Gray scale optically addressed spatial light modulator using twisted ferroelectric liquid crystals,” Ferroelectrics 181, 1099–1108 (1996).
    [CrossRef]
  13. J. L. de Bougrenet de la Tocnaye, L. Dupont, “Complex amplitude modulation by use of liquid-crystal spatial light modulators,” Appl. Opt. 36, 1730–1741 (1997).
    [CrossRef] [PubMed]
  14. B. Javidi, C. J. Kuo, “Joint transform image correlator using a binary spatial light modulator in the Fourier plane,” Appl. Opt. 27, 663–665 (1988).
    [CrossRef] [PubMed]
  15. A. Kohler, B. Fracasso, P. Ambs, J. L. de Bougrenetde la Tocnaye, “Joint transform correlator using nonlinear ferroelectric crystal spatial light modulator,” in Optical Information Processing Systems and Architectures III, B. Javidi, ed., Proc. SPIE1564, 236–243 (1991).
    [CrossRef]
  16. G. Keryer, “Etude de corrélateurs optiques á corrélation jointe mono ou multicanaux: application á la reconnaissance des formes,” Ph.D. dissertation (University of Paris XI, Orsay, France, 1996).
  17. A. VanderLugt, Optical Signal Processing (Wiley, New York, 1992).
  18. D. Joyeux, S. Lowenthal, “Optical Fourier transform: what is the optimal setup?,” Appl. Opt. 21, 4368–4372 (1982).
    [CrossRef] [PubMed]
  19. H. R. Arsenault, “Conditions for space invariance in optical data processors used with coherent or noncoherent light,” Appl. Opt. 11, 2228–2233 (1972).
    [CrossRef] [PubMed]
  20. S. Sinzinger, M. Testorf, “Transition between diffractive and refractive micro-optical components,” Appl. Opt. 34, 5970–5976 (1995).
    [CrossRef] [PubMed]
  21. E. Hecht, Optics, 2nd ed. (Addison-Wesley, Reading, Mass., 1987).
  22. J. L. de Bougrenet de la Tocnaye, J. R. Brocklehurst, “Parallel access read/write memory using an optically addressed ferroelectric spatial light modulator,” Appl. Opt. 30, 179–180 (1991).
    [CrossRef] [PubMed]
  23. W. A. Crossland, M. J. Birch, A. B. Davey, D. G. Vass, “Active backplane spatial light modulator using chiral liquid crystal,” in Liquid Crystal Materials, Devices, and Applications, P. S. Drzaic, U. Efron, eds., Proc. SPIE1665, 114–127 (1992).
  24. P. D. Gianino, C. L. Woods, “Effects of SLM opaque dead zones on optical correlation,” Appl. Opt. 31, 4025–4033 (1992).
    [CrossRef] [PubMed]
  25. D. J. McKnight, K. M. Johnson, K. M. Johnson, R. A. Serati, “256 × 256 liquid-crystal-on-silicon spatial light modulator,” Appl. Opt. 39, 2775–2783 (1994).
    [CrossRef]
  26. D. C. Burns, I. Underwood, J. Gourlay, A. O’Hara, D. G. Vass, “A 256 × 256 SRAM-xor pixel ferroelectric liquid crystal over silicon spatial light modulator,” Opt. Commun. 119, 623–632 (1995).
    [CrossRef]
  27. J. L. Tribillon, “Calcul et réalisation de grilles de phase ou de transparence binaire destinées á la multiplication d’images,” Ph.D. dissertation (Université de Besançon, Faculté des Sciences et Techniques, Besançon, France, 1973).
  28. Q. Tang, B. Javidi, “Technique for reducing the redundant and self-correlation terms in joint transform correlators,” Appl. Opt. 32, 1911–1918 (1993).
    [CrossRef] [PubMed]
  29. J. Campos, M. Montes-Usategui, I. Juvells, M. J. Yzuel, “On the necessity of multiple filters in optical pattern recognition,” in Euro-American Workshop on Optical Pattern Recognition, B. Javidi, P. Refregier, eds. (SPIE Press, Bellingham, Wash., 1994), Vol. PM12, pp. 137–166.
  30. R. C. Chevallier, “Associative memory for image classification: new interleaved coding of 4-dimensional information in a plane,” Int. J. Opt. Comput. 1, 71–87 (1990).
  31. G. Keryer, J. L. de Bougrenet de la Tocnaye, “A multichannel joint transform correlator,” Opt. Commun. 118, 102–113 (1995).
    [CrossRef]
  32. X. Yang, D. A. Gregory, “Multichannel optical correlator based on a mutually incoherent microlaser array,” Opt. Lett. 20, 2405–2408 (1995).
    [CrossRef] [PubMed]
  33. J. H. Feng, G. F. Chin, M. X. Wu, S. H. Yan, Y. B. Yan, “Multiobject recognition in a multichannel joint-transform correlator,” Opt. Lett. 20, 82–84 (1995).
    [CrossRef] [PubMed]
  34. G. Keryer, L. Guibert, P. Pellat-Finet, J. L. de Bougrenet de la Tocnaye, “Corrélateur joint optique appliqué á la détection multicible,” in GRETSI’91: Treizième Colloque GRETSI sur la Traitement du Signal et des Images (sJuan-les-Pins, France, 1991). pp. 1193–1196.
  35. T. J. Grycewicz, “Applying time modulation to the joint transform correlator,” Opt. Eng. 33, 1813–1819 (1994).
    [CrossRef]
  36. H. J. Caulfield, “Parallel n4 weighted optical interconnects,” Appl. Opt. 26, 4039–4040 (1987).
    [CrossRef] [PubMed]
  37. B. Fracasso, J. L. de Bougrenet de la Tocnaye, “Node-based reconfigurable volume interconnections. 1. Principles and optical design,” Applied Opt. 33, 5348–5362 (1994).
    [CrossRef]
  38. M. Barge, H. Hamam, Y. Defosse, R. Chevallier, J. L. de Bougrenet de la Tocnaye, “Les illuminateurs de tableaux utilisant des éléments optiques diffractifs,” J. Opt., (Paris) 27, 151–170 (1996).
    [CrossRef]
  39. H. Dammann, K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
    [CrossRef]
  40. H. Dammann, E. Klotz, “Coherent optical generation and inspection of two-dimensional periodic structures,” Opt. Acta 24, 505–515 (1977).
    [CrossRef]
  41. M. Barge, “Etudes, réalisations et utilisations de composants diffractifs gravés pour les interconnexions optiques,” Ph.D. dissertation (Ecole Nationale Supérieure des Télécommunications de Paris, Paris, 1995).
  42. M. A. Seldowitz, J. P. Allebach, D. W. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt. 26, 2788–2798 (1987).
    [CrossRef] [PubMed]
  43. Y. Kobayashi, T. Takemori, N. Mukohzaka, N. Yoshida, S. Fukushima, “Real-time velocity measurement by use of a speckle-pattern correlation system that incorporates a ferroelectric liquid-crystal spatial light modulator,” Appl. Opt. 33, 2785–2794 (1994).
    [CrossRef] [PubMed]
  44. A. Alfalou, G. Keryer, J. L. de Bougrenet de la Tocnaye, “Comparison of the performances of single and multichannel binary phase-only matched filters,” in Optical Pattern Recognition VII, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE2752, 92–100 (1996).

1997 (1)

J. L. de Bougrenet de la Tocnaye, L. Dupont, “Complex amplitude modulation by use of liquid-crystal spatial light modulators,” Appl. Opt. 36, 1730–1741 (1997).
[CrossRef] [PubMed]

1996 (3)

Y. Pétillot, L. Guibert, J. L. de Bougrenet de la Tocnaye, “Fingerprint recognition using a partially rotation invariant composite filter in a FLC joint transform correlator,” Opt. Commun. 126, 213–219 (1996).
[CrossRef]

L. Le Bourhis, J. Angele, L. Dupont, “Gray scale optically addressed spatial light modulator using twisted ferroelectric liquid crystals,” Ferroelectrics 181, 1099–1108 (1996).
[CrossRef]

M. Barge, H. Hamam, Y. Defosse, R. Chevallier, J. L. de Bougrenet de la Tocnaye, “Les illuminateurs de tableaux utilisant des éléments optiques diffractifs,” J. Opt., (Paris) 27, 151–170 (1996).
[CrossRef]

1995 (7)

G. Keryer, J. L. de Bougrenet de la Tocnaye, “A multichannel joint transform correlator,” Opt. Commun. 118, 102–113 (1995).
[CrossRef]

X. Yang, D. A. Gregory, “Multichannel optical correlator based on a mutually incoherent microlaser array,” Opt. Lett. 20, 2405–2408 (1995).
[CrossRef] [PubMed]

J. H. Feng, G. F. Chin, M. X. Wu, S. H. Yan, Y. B. Yan, “Multiobject recognition in a multichannel joint-transform correlator,” Opt. Lett. 20, 82–84 (1995).
[CrossRef] [PubMed]

S. Sinzinger, M. Testorf, “Transition between diffractive and refractive micro-optical components,” Appl. Opt. 34, 5970–5976 (1995).
[CrossRef] [PubMed]

D. C. Burns, I. Underwood, J. Gourlay, A. O’Hara, D. G. Vass, “A 256 × 256 SRAM-xor pixel ferroelectric liquid crystal over silicon spatial light modulator,” Opt. Commun. 119, 623–632 (1995).
[CrossRef]

T. D. Wilkinson, Y. Pétillot, R. J. Mears, J. L. de Bougrenet de la Tocnaye, “Scale-invariant optical correlators using ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 34, 1885–1890 (1995).
[CrossRef] [PubMed]

L. Guibert, G. Keryer, A. Servel, M. Attia, H. S. MacKenzie, P. Pellat-Finet, J. L. de Bougrenet de la Tocnaye, “On-board optical joint transform correlator for real-time road sign recognition,” Opt. Eng. 34, 135–143 (1995).
[CrossRef]

1994 (5)

D. J. McKnight, K. M. Johnson, K. M. Johnson, R. A. Serati, “256 × 256 liquid-crystal-on-silicon spatial light modulator,” Appl. Opt. 39, 2775–2783 (1994).
[CrossRef]

A. Sneh, J. Y. Liu, K. M. Johnson, “High-speed analog refractive-index modulator that uses a chiral smectic liquid crystal,” Opt. Lett. 15, 305–307 (1994).
[CrossRef]

T. J. Grycewicz, “Applying time modulation to the joint transform correlator,” Opt. Eng. 33, 1813–1819 (1994).
[CrossRef]

B. Fracasso, J. L. de Bougrenet de la Tocnaye, “Node-based reconfigurable volume interconnections. 1. Principles and optical design,” Applied Opt. 33, 5348–5362 (1994).
[CrossRef]

Y. Kobayashi, T. Takemori, N. Mukohzaka, N. Yoshida, S. Fukushima, “Real-time velocity measurement by use of a speckle-pattern correlation system that incorporates a ferroelectric liquid-crystal spatial light modulator,” Appl. Opt. 33, 2785–2794 (1994).
[CrossRef] [PubMed]

1993 (1)

Q. Tang, B. Javidi, “Technique for reducing the redundant and self-correlation terms in joint transform correlators,” Appl. Opt. 32, 1911–1918 (1993).
[CrossRef] [PubMed]

1992 (2)

P. D. Gianino, C. L. Woods, “Effects of SLM opaque dead zones on optical correlation,” Appl. Opt. 31, 4025–4033 (1992).
[CrossRef] [PubMed]

B. V. K. Vijaya Kumar, “Tutorial survey of composite filter designs for optical correlators,” Appl. Opt. 31, 4773–4801 (1992).
[CrossRef]

1991 (1)

J. L. de Bougrenet de la Tocnaye, J. R. Brocklehurst, “Parallel access read/write memory using an optically addressed ferroelectric spatial light modulator,” Appl. Opt. 30, 179–180 (1991).
[CrossRef] [PubMed]

1990 (1)

R. C. Chevallier, “Associative memory for image classification: new interleaved coding of 4-dimensional information in a plane,” Int. J. Opt. Comput. 1, 71–87 (1990).

1989 (1)

B. Javidi, “Nonlinear joint power spectrum based optical correlation,” Appl. Opt. 28, 2358–2367 (1989).
[CrossRef] [PubMed]

1988 (1)

B. Javidi, C. J. Kuo, “Joint transform image correlator using a binary spatial light modulator in the Fourier plane,” Appl. Opt. 27, 663–665 (1988).
[CrossRef] [PubMed]

1987 (2)

M. A. Seldowitz, J. P. Allebach, D. W. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt. 26, 2788–2798 (1987).
[CrossRef] [PubMed]

H. J. Caulfield, “Parallel n4 weighted optical interconnects,” Appl. Opt. 26, 4039–4040 (1987).
[CrossRef] [PubMed]

1982 (1)

D. Joyeux, S. Lowenthal, “Optical Fourier transform: what is the optimal setup?,” Appl. Opt. 21, 4368–4372 (1982).
[CrossRef] [PubMed]

1977 (1)

H. Dammann, E. Klotz, “Coherent optical generation and inspection of two-dimensional periodic structures,” Opt. Acta 24, 505–515 (1977).
[CrossRef]

1972 (1)

H. R. Arsenault, “Conditions for space invariance in optical data processors used with coherent or noncoherent light,” Appl. Opt. 11, 2228–2233 (1972).
[CrossRef] [PubMed]

1971 (1)

H. Dammann, K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

Alfalou, A.

A. Alfalou, G. Keryer, J. L. de Bougrenet de la Tocnaye, “Comparison of the performances of single and multichannel binary phase-only matched filters,” in Optical Pattern Recognition VII, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE2752, 92–100 (1996).

Allebach, J. P.

M. A. Seldowitz, J. P. Allebach, D. W. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt. 26, 2788–2798 (1987).
[CrossRef] [PubMed]

Ambs, P.

A. Kohler, B. Fracasso, P. Ambs, J. L. de Bougrenetde la Tocnaye, “Joint transform correlator using nonlinear ferroelectric crystal spatial light modulator,” in Optical Information Processing Systems and Architectures III, B. Javidi, ed., Proc. SPIE1564, 236–243 (1991).
[CrossRef]

Angele, J.

L. Le Bourhis, J. Angele, L. Dupont, “Gray scale optically addressed spatial light modulator using twisted ferroelectric liquid crystals,” Ferroelectrics 181, 1099–1108 (1996).
[CrossRef]

Arsenault, H. R.

H. R. Arsenault, “Conditions for space invariance in optical data processors used with coherent or noncoherent light,” Appl. Opt. 11, 2228–2233 (1972).
[CrossRef] [PubMed]

Attia, M.

L. Guibert, G. Keryer, A. Servel, M. Attia, H. S. MacKenzie, P. Pellat-Finet, J. L. de Bougrenet de la Tocnaye, “On-board optical joint transform correlator for real-time road sign recognition,” Opt. Eng. 34, 135–143 (1995).
[CrossRef]

Barge, M.

M. Barge, H. Hamam, Y. Defosse, R. Chevallier, J. L. de Bougrenet de la Tocnaye, “Les illuminateurs de tableaux utilisant des éléments optiques diffractifs,” J. Opt., (Paris) 27, 151–170 (1996).
[CrossRef]

M. Barge, “Etudes, réalisations et utilisations de composants diffractifs gravés pour les interconnexions optiques,” Ph.D. dissertation (Ecole Nationale Supérieure des Télécommunications de Paris, Paris, 1995).

Birch, M. J.

W. A. Crossland, M. J. Birch, A. B. Davey, D. G. Vass, “Active backplane spatial light modulator using chiral liquid crystal,” in Liquid Crystal Materials, Devices, and Applications, P. S. Drzaic, U. Efron, eds., Proc. SPIE1665, 114–127 (1992).

Brocklehurst, J. R.

J. L. de Bougrenet de la Tocnaye, J. R. Brocklehurst, “Parallel access read/write memory using an optically addressed ferroelectric spatial light modulator,” Appl. Opt. 30, 179–180 (1991).
[CrossRef] [PubMed]

Burns, D. C.

D. C. Burns, I. Underwood, J. Gourlay, A. O’Hara, D. G. Vass, “A 256 × 256 SRAM-xor pixel ferroelectric liquid crystal over silicon spatial light modulator,” Opt. Commun. 119, 623–632 (1995).
[CrossRef]

Cambon, P.

R. Moignard, E. Daniel, P. Cambon, J. L. de Bougrenet de la Tocnaye, “Design of a silicon VLSI/FLC smart light valve for parallel optical information processing,” in Proceedings of the Eighth EOS Workshop on Optics in Computing (European Optical Society, Orsay, France, 1992), pp. 3–6.

Campos, J.

J. Campos, M. Montes-Usategui, I. Juvells, M. J. Yzuel, “On the necessity of multiple filters in optical pattern recognition,” in Euro-American Workshop on Optical Pattern Recognition, B. Javidi, P. Refregier, eds. (SPIE Press, Bellingham, Wash., 1994), Vol. PM12, pp. 137–166.

Caulfield, H. J.

H. J. Caulfield, “Parallel n4 weighted optical interconnects,” Appl. Opt. 26, 4039–4040 (1987).
[CrossRef] [PubMed]

H. J. Caulfield, R. Haimes, “Generalized matched filtering,” in Optical Pattern Recognition, D. P. Casasent, ed., Proc. SPIE201, 115–119 (1979).

Chevallier, R.

M. Barge, H. Hamam, Y. Defosse, R. Chevallier, J. L. de Bougrenet de la Tocnaye, “Les illuminateurs de tableaux utilisant des éléments optiques diffractifs,” J. Opt., (Paris) 27, 151–170 (1996).
[CrossRef]

Chevallier, R. C.

R. C. Chevallier, “Associative memory for image classification: new interleaved coding of 4-dimensional information in a plane,” Int. J. Opt. Comput. 1, 71–87 (1990).

Chin, G. F.

J. H. Feng, G. F. Chin, M. X. Wu, S. H. Yan, Y. B. Yan, “Multiobject recognition in a multichannel joint-transform correlator,” Opt. Lett. 20, 82–84 (1995).
[CrossRef] [PubMed]

Crossland, W. A.

W. A. Crossland, M. J. Birch, A. B. Davey, D. G. Vass, “Active backplane spatial light modulator using chiral liquid crystal,” in Liquid Crystal Materials, Devices, and Applications, P. S. Drzaic, U. Efron, eds., Proc. SPIE1665, 114–127 (1992).

Dammann, H.

H. Dammann, E. Klotz, “Coherent optical generation and inspection of two-dimensional periodic structures,” Opt. Acta 24, 505–515 (1977).
[CrossRef]

H. Dammann, K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

Daniel, E.

R. Moignard, E. Daniel, P. Cambon, J. L. de Bougrenet de la Tocnaye, “Design of a silicon VLSI/FLC smart light valve for parallel optical information processing,” in Proceedings of the Eighth EOS Workshop on Optics in Computing (European Optical Society, Orsay, France, 1992), pp. 3–6.

Davey, A. B.

W. A. Crossland, M. J. Birch, A. B. Davey, D. G. Vass, “Active backplane spatial light modulator using chiral liquid crystal,” in Liquid Crystal Materials, Devices, and Applications, P. S. Drzaic, U. Efron, eds., Proc. SPIE1665, 114–127 (1992).

de Bougrenet de la Tocnaye, J. L.

J. L. de Bougrenet de la Tocnaye, L. Dupont, “Complex amplitude modulation by use of liquid-crystal spatial light modulators,” Appl. Opt. 36, 1730–1741 (1997).
[CrossRef] [PubMed]

M. Barge, H. Hamam, Y. Defosse, R. Chevallier, J. L. de Bougrenet de la Tocnaye, “Les illuminateurs de tableaux utilisant des éléments optiques diffractifs,” J. Opt., (Paris) 27, 151–170 (1996).
[CrossRef]

Y. Pétillot, L. Guibert, J. L. de Bougrenet de la Tocnaye, “Fingerprint recognition using a partially rotation invariant composite filter in a FLC joint transform correlator,” Opt. Commun. 126, 213–219 (1996).
[CrossRef]

T. D. Wilkinson, Y. Pétillot, R. J. Mears, J. L. de Bougrenet de la Tocnaye, “Scale-invariant optical correlators using ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 34, 1885–1890 (1995).
[CrossRef] [PubMed]

L. Guibert, G. Keryer, A. Servel, M. Attia, H. S. MacKenzie, P. Pellat-Finet, J. L. de Bougrenet de la Tocnaye, “On-board optical joint transform correlator for real-time road sign recognition,” Opt. Eng. 34, 135–143 (1995).
[CrossRef]

G. Keryer, J. L. de Bougrenet de la Tocnaye, “A multichannel joint transform correlator,” Opt. Commun. 118, 102–113 (1995).
[CrossRef]

B. Fracasso, J. L. de Bougrenet de la Tocnaye, “Node-based reconfigurable volume interconnections. 1. Principles and optical design,” Applied Opt. 33, 5348–5362 (1994).
[CrossRef]

J. L. de Bougrenet de la Tocnaye, J. R. Brocklehurst, “Parallel access read/write memory using an optically addressed ferroelectric spatial light modulator,” Appl. Opt. 30, 179–180 (1991).
[CrossRef] [PubMed]

A. Alfalou, G. Keryer, J. L. de Bougrenet de la Tocnaye, “Comparison of the performances of single and multichannel binary phase-only matched filters,” in Optical Pattern Recognition VII, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE2752, 92–100 (1996).

R. Moignard, E. Daniel, P. Cambon, J. L. de Bougrenet de la Tocnaye, “Design of a silicon VLSI/FLC smart light valve for parallel optical information processing,” in Proceedings of the Eighth EOS Workshop on Optics in Computing (European Optical Society, Orsay, France, 1992), pp. 3–6.

G. Keryer, L. Guibert, P. Pellat-Finet, J. L. de Bougrenet de la Tocnaye, “Corrélateur joint optique appliqué á la détection multicible,” in GRETSI’91: Treizième Colloque GRETSI sur la Traitement du Signal et des Images (sJuan-les-Pins, France, 1991). pp. 1193–1196.

de Bougrenetde la Tocnaye, J. L.

A. Kohler, B. Fracasso, P. Ambs, J. L. de Bougrenetde la Tocnaye, “Joint transform correlator using nonlinear ferroelectric crystal spatial light modulator,” in Optical Information Processing Systems and Architectures III, B. Javidi, ed., Proc. SPIE1564, 236–243 (1991).
[CrossRef]

Defosse, Y.

M. Barge, H. Hamam, Y. Defosse, R. Chevallier, J. L. de Bougrenet de la Tocnaye, “Les illuminateurs de tableaux utilisant des éléments optiques diffractifs,” J. Opt., (Paris) 27, 151–170 (1996).
[CrossRef]

Dupont, L.

J. L. de Bougrenet de la Tocnaye, L. Dupont, “Complex amplitude modulation by use of liquid-crystal spatial light modulators,” Appl. Opt. 36, 1730–1741 (1997).
[CrossRef] [PubMed]

L. Le Bourhis, J. Angele, L. Dupont, “Gray scale optically addressed spatial light modulator using twisted ferroelectric liquid crystals,” Ferroelectrics 181, 1099–1108 (1996).
[CrossRef]

Ewing, T. K.

S. A. Serati, T. K. Ewing, R. A. Serati, K. M. Johnson, D. M. Simon, “Programmable 128 × 128 ferroelectric-liquid-crystal spatial-light-modulator compact correlator,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. SPIE1959, 55–68 (1993).

Feng, J. H.

J. H. Feng, G. F. Chin, M. X. Wu, S. H. Yan, Y. B. Yan, “Multiobject recognition in a multichannel joint-transform correlator,” Opt. Lett. 20, 82–84 (1995).
[CrossRef] [PubMed]

Fracasso, B.

B. Fracasso, J. L. de Bougrenet de la Tocnaye, “Node-based reconfigurable volume interconnections. 1. Principles and optical design,” Applied Opt. 33, 5348–5362 (1994).
[CrossRef]

A. Kohler, B. Fracasso, P. Ambs, J. L. de Bougrenetde la Tocnaye, “Joint transform correlator using nonlinear ferroelectric crystal spatial light modulator,” in Optical Information Processing Systems and Architectures III, B. Javidi, ed., Proc. SPIE1564, 236–243 (1991).
[CrossRef]

Fukushima, S.

Y. Kobayashi, T. Takemori, N. Mukohzaka, N. Yoshida, S. Fukushima, “Real-time velocity measurement by use of a speckle-pattern correlation system that incorporates a ferroelectric liquid-crystal spatial light modulator,” Appl. Opt. 33, 2785–2794 (1994).
[CrossRef] [PubMed]

Gianino, P. D.

P. D. Gianino, C. L. Woods, “Effects of SLM opaque dead zones on optical correlation,” Appl. Opt. 31, 4025–4033 (1992).
[CrossRef] [PubMed]

Gortler, K.

H. Dammann, K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

Gourlay, J.

D. C. Burns, I. Underwood, J. Gourlay, A. O’Hara, D. G. Vass, “A 256 × 256 SRAM-xor pixel ferroelectric liquid crystal over silicon spatial light modulator,” Opt. Commun. 119, 623–632 (1995).
[CrossRef]

Gregory, D. A.

X. Yang, D. A. Gregory, “Multichannel optical correlator based on a mutually incoherent microlaser array,” Opt. Lett. 20, 2405–2408 (1995).
[CrossRef] [PubMed]

Grycewicz, T. J.

T. J. Grycewicz, “Applying time modulation to the joint transform correlator,” Opt. Eng. 33, 1813–1819 (1994).
[CrossRef]

Guibert, L.

Y. Pétillot, L. Guibert, J. L. de Bougrenet de la Tocnaye, “Fingerprint recognition using a partially rotation invariant composite filter in a FLC joint transform correlator,” Opt. Commun. 126, 213–219 (1996).
[CrossRef]

L. Guibert, G. Keryer, A. Servel, M. Attia, H. S. MacKenzie, P. Pellat-Finet, J. L. de Bougrenet de la Tocnaye, “On-board optical joint transform correlator for real-time road sign recognition,” Opt. Eng. 34, 135–143 (1995).
[CrossRef]

G. Keryer, L. Guibert, P. Pellat-Finet, J. L. de Bougrenet de la Tocnaye, “Corrélateur joint optique appliqué á la détection multicible,” in GRETSI’91: Treizième Colloque GRETSI sur la Traitement du Signal et des Images (sJuan-les-Pins, France, 1991). pp. 1193–1196.

Haimes, R.

H. J. Caulfield, R. Haimes, “Generalized matched filtering,” in Optical Pattern Recognition, D. P. Casasent, ed., Proc. SPIE201, 115–119 (1979).

Hamam, H.

M. Barge, H. Hamam, Y. Defosse, R. Chevallier, J. L. de Bougrenet de la Tocnaye, “Les illuminateurs de tableaux utilisant des éléments optiques diffractifs,” J. Opt., (Paris) 27, 151–170 (1996).
[CrossRef]

Hecht, E.

E. Hecht, Optics, 2nd ed. (Addison-Wesley, Reading, Mass., 1987).

Javidi, B.

Q. Tang, B. Javidi, “Technique for reducing the redundant and self-correlation terms in joint transform correlators,” Appl. Opt. 32, 1911–1918 (1993).
[CrossRef] [PubMed]

B. Javidi, “Nonlinear joint power spectrum based optical correlation,” Appl. Opt. 28, 2358–2367 (1989).
[CrossRef] [PubMed]

B. Javidi, C. J. Kuo, “Joint transform image correlator using a binary spatial light modulator in the Fourier plane,” Appl. Opt. 27, 663–665 (1988).
[CrossRef] [PubMed]

A. Kohler, B. Fracasso, P. Ambs, J. L. de Bougrenetde la Tocnaye, “Joint transform correlator using nonlinear ferroelectric crystal spatial light modulator,” in Optical Information Processing Systems and Architectures III, B. Javidi, ed., Proc. SPIE1564, 236–243 (1991).
[CrossRef]

Johnson, K. M.

A. Sneh, J. Y. Liu, K. M. Johnson, “High-speed analog refractive-index modulator that uses a chiral smectic liquid crystal,” Opt. Lett. 15, 305–307 (1994).
[CrossRef]

D. J. McKnight, K. M. Johnson, K. M. Johnson, R. A. Serati, “256 × 256 liquid-crystal-on-silicon spatial light modulator,” Appl. Opt. 39, 2775–2783 (1994).
[CrossRef]

D. J. McKnight, K. M. Johnson, K. M. Johnson, R. A. Serati, “256 × 256 liquid-crystal-on-silicon spatial light modulator,” Appl. Opt. 39, 2775–2783 (1994).
[CrossRef]

S. A. Serati, T. K. Ewing, R. A. Serati, K. M. Johnson, D. M. Simon, “Programmable 128 × 128 ferroelectric-liquid-crystal spatial-light-modulator compact correlator,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. SPIE1959, 55–68 (1993).

Joyeux, D.

D. Joyeux, S. Lowenthal, “Optical Fourier transform: what is the optimal setup?,” Appl. Opt. 21, 4368–4372 (1982).
[CrossRef] [PubMed]

Juvells, I.

J. Campos, M. Montes-Usategui, I. Juvells, M. J. Yzuel, “On the necessity of multiple filters in optical pattern recognition,” in Euro-American Workshop on Optical Pattern Recognition, B. Javidi, P. Refregier, eds. (SPIE Press, Bellingham, Wash., 1994), Vol. PM12, pp. 137–166.

Keryer, G.

G. Keryer, J. L. de Bougrenet de la Tocnaye, “A multichannel joint transform correlator,” Opt. Commun. 118, 102–113 (1995).
[CrossRef]

L. Guibert, G. Keryer, A. Servel, M. Attia, H. S. MacKenzie, P. Pellat-Finet, J. L. de Bougrenet de la Tocnaye, “On-board optical joint transform correlator for real-time road sign recognition,” Opt. Eng. 34, 135–143 (1995).
[CrossRef]

G. Keryer, L. Guibert, P. Pellat-Finet, J. L. de Bougrenet de la Tocnaye, “Corrélateur joint optique appliqué á la détection multicible,” in GRETSI’91: Treizième Colloque GRETSI sur la Traitement du Signal et des Images (sJuan-les-Pins, France, 1991). pp. 1193–1196.

G. Keryer, “Etude de corrélateurs optiques á corrélation jointe mono ou multicanaux: application á la reconnaissance des formes,” Ph.D. dissertation (University of Paris XI, Orsay, France, 1996).

A. Alfalou, G. Keryer, J. L. de Bougrenet de la Tocnaye, “Comparison of the performances of single and multichannel binary phase-only matched filters,” in Optical Pattern Recognition VII, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE2752, 92–100 (1996).

Klotz, E.

H. Dammann, E. Klotz, “Coherent optical generation and inspection of two-dimensional periodic structures,” Opt. Acta 24, 505–515 (1977).
[CrossRef]

Kobayashi, Y.

Y. Kobayashi, T. Takemori, N. Mukohzaka, N. Yoshida, S. Fukushima, “Real-time velocity measurement by use of a speckle-pattern correlation system that incorporates a ferroelectric liquid-crystal spatial light modulator,” Appl. Opt. 33, 2785–2794 (1994).
[CrossRef] [PubMed]

Kohler, A.

A. Kohler, B. Fracasso, P. Ambs, J. L. de Bougrenetde la Tocnaye, “Joint transform correlator using nonlinear ferroelectric crystal spatial light modulator,” in Optical Information Processing Systems and Architectures III, B. Javidi, ed., Proc. SPIE1564, 236–243 (1991).
[CrossRef]

Kuo, C. J.

B. Javidi, C. J. Kuo, “Joint transform image correlator using a binary spatial light modulator in the Fourier plane,” Appl. Opt. 27, 663–665 (1988).
[CrossRef] [PubMed]

Le Bourhis, L.

L. Le Bourhis, J. Angele, L. Dupont, “Gray scale optically addressed spatial light modulator using twisted ferroelectric liquid crystals,” Ferroelectrics 181, 1099–1108 (1996).
[CrossRef]

Liu, J. Y.

A. Sneh, J. Y. Liu, K. M. Johnson, “High-speed analog refractive-index modulator that uses a chiral smectic liquid crystal,” Opt. Lett. 15, 305–307 (1994).
[CrossRef]

Lowenthal, S.

D. Joyeux, S. Lowenthal, “Optical Fourier transform: what is the optimal setup?,” Appl. Opt. 21, 4368–4372 (1982).
[CrossRef] [PubMed]

MacKenzie, H. S.

L. Guibert, G. Keryer, A. Servel, M. Attia, H. S. MacKenzie, P. Pellat-Finet, J. L. de Bougrenet de la Tocnaye, “On-board optical joint transform correlator for real-time road sign recognition,” Opt. Eng. 34, 135–143 (1995).
[CrossRef]

McKnight, D. J.

D. J. McKnight, K. M. Johnson, K. M. Johnson, R. A. Serati, “256 × 256 liquid-crystal-on-silicon spatial light modulator,” Appl. Opt. 39, 2775–2783 (1994).
[CrossRef]

Mears, R. J.

T. D. Wilkinson, Y. Pétillot, R. J. Mears, J. L. de Bougrenet de la Tocnaye, “Scale-invariant optical correlators using ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 34, 1885–1890 (1995).
[CrossRef] [PubMed]

Moignard, R.

R. Moignard, E. Daniel, P. Cambon, J. L. de Bougrenet de la Tocnaye, “Design of a silicon VLSI/FLC smart light valve for parallel optical information processing,” in Proceedings of the Eighth EOS Workshop on Optics in Computing (European Optical Society, Orsay, France, 1992), pp. 3–6.

Montes-Usategui, M.

J. Campos, M. Montes-Usategui, I. Juvells, M. J. Yzuel, “On the necessity of multiple filters in optical pattern recognition,” in Euro-American Workshop on Optical Pattern Recognition, B. Javidi, P. Refregier, eds. (SPIE Press, Bellingham, Wash., 1994), Vol. PM12, pp. 137–166.

Mukohzaka, N.

Y. Kobayashi, T. Takemori, N. Mukohzaka, N. Yoshida, S. Fukushima, “Real-time velocity measurement by use of a speckle-pattern correlation system that incorporates a ferroelectric liquid-crystal spatial light modulator,” Appl. Opt. 33, 2785–2794 (1994).
[CrossRef] [PubMed]

O’Hara, A.

D. C. Burns, I. Underwood, J. Gourlay, A. O’Hara, D. G. Vass, “A 256 × 256 SRAM-xor pixel ferroelectric liquid crystal over silicon spatial light modulator,” Opt. Commun. 119, 623–632 (1995).
[CrossRef]

Pellat-Finet, P.

L. Guibert, G. Keryer, A. Servel, M. Attia, H. S. MacKenzie, P. Pellat-Finet, J. L. de Bougrenet de la Tocnaye, “On-board optical joint transform correlator for real-time road sign recognition,” Opt. Eng. 34, 135–143 (1995).
[CrossRef]

G. Keryer, L. Guibert, P. Pellat-Finet, J. L. de Bougrenet de la Tocnaye, “Corrélateur joint optique appliqué á la détection multicible,” in GRETSI’91: Treizième Colloque GRETSI sur la Traitement du Signal et des Images (sJuan-les-Pins, France, 1991). pp. 1193–1196.

Pétillot, Y.

Y. Pétillot, L. Guibert, J. L. de Bougrenet de la Tocnaye, “Fingerprint recognition using a partially rotation invariant composite filter in a FLC joint transform correlator,” Opt. Commun. 126, 213–219 (1996).
[CrossRef]

T. D. Wilkinson, Y. Pétillot, R. J. Mears, J. L. de Bougrenet de la Tocnaye, “Scale-invariant optical correlators using ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 34, 1885–1890 (1995).
[CrossRef] [PubMed]

Y. Pétillot, “Vers une implantation de corrélateurs optiques temps réels,” Ph.D. dissertation (Université de Bretagne Occidentale, France, March1996).

Seldowitz, M. A.

M. A. Seldowitz, J. P. Allebach, D. W. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt. 26, 2788–2798 (1987).
[CrossRef] [PubMed]

Serati, R. A.

D. J. McKnight, K. M. Johnson, K. M. Johnson, R. A. Serati, “256 × 256 liquid-crystal-on-silicon spatial light modulator,” Appl. Opt. 39, 2775–2783 (1994).
[CrossRef]

S. A. Serati, T. K. Ewing, R. A. Serati, K. M. Johnson, D. M. Simon, “Programmable 128 × 128 ferroelectric-liquid-crystal spatial-light-modulator compact correlator,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. SPIE1959, 55–68 (1993).

Serati, S. A.

S. A. Serati, T. K. Ewing, R. A. Serati, K. M. Johnson, D. M. Simon, “Programmable 128 × 128 ferroelectric-liquid-crystal spatial-light-modulator compact correlator,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. SPIE1959, 55–68 (1993).

Servel, A.

L. Guibert, G. Keryer, A. Servel, M. Attia, H. S. MacKenzie, P. Pellat-Finet, J. L. de Bougrenet de la Tocnaye, “On-board optical joint transform correlator for real-time road sign recognition,” Opt. Eng. 34, 135–143 (1995).
[CrossRef]

Simon, D. M.

S. A. Serati, T. K. Ewing, R. A. Serati, K. M. Johnson, D. M. Simon, “Programmable 128 × 128 ferroelectric-liquid-crystal spatial-light-modulator compact correlator,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. SPIE1959, 55–68 (1993).

Sinzinger, S.

S. Sinzinger, M. Testorf, “Transition between diffractive and refractive micro-optical components,” Appl. Opt. 34, 5970–5976 (1995).
[CrossRef] [PubMed]

Sneh, A.

A. Sneh, J. Y. Liu, K. M. Johnson, “High-speed analog refractive-index modulator that uses a chiral smectic liquid crystal,” Opt. Lett. 15, 305–307 (1994).
[CrossRef]

Sweeney, D. W.

M. A. Seldowitz, J. P. Allebach, D. W. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt. 26, 2788–2798 (1987).
[CrossRef] [PubMed]

Takemori, T.

Y. Kobayashi, T. Takemori, N. Mukohzaka, N. Yoshida, S. Fukushima, “Real-time velocity measurement by use of a speckle-pattern correlation system that incorporates a ferroelectric liquid-crystal spatial light modulator,” Appl. Opt. 33, 2785–2794 (1994).
[CrossRef] [PubMed]

Tang, Q.

Q. Tang, B. Javidi, “Technique for reducing the redundant and self-correlation terms in joint transform correlators,” Appl. Opt. 32, 1911–1918 (1993).
[CrossRef] [PubMed]

Testorf, M.

S. Sinzinger, M. Testorf, “Transition between diffractive and refractive micro-optical components,” Appl. Opt. 34, 5970–5976 (1995).
[CrossRef] [PubMed]

Tribillon, J. L.

J. L. Tribillon, “Calcul et réalisation de grilles de phase ou de transparence binaire destinées á la multiplication d’images,” Ph.D. dissertation (Université de Besançon, Faculté des Sciences et Techniques, Besançon, France, 1973).

Underwood, I.

D. C. Burns, I. Underwood, J. Gourlay, A. O’Hara, D. G. Vass, “A 256 × 256 SRAM-xor pixel ferroelectric liquid crystal over silicon spatial light modulator,” Opt. Commun. 119, 623–632 (1995).
[CrossRef]

VanderLugt, A.

A. VanderLugt, Optical Signal Processing (Wiley, New York, 1992).

Vass, D. G.

D. C. Burns, I. Underwood, J. Gourlay, A. O’Hara, D. G. Vass, “A 256 × 256 SRAM-xor pixel ferroelectric liquid crystal over silicon spatial light modulator,” Opt. Commun. 119, 623–632 (1995).
[CrossRef]

W. A. Crossland, M. J. Birch, A. B. Davey, D. G. Vass, “Active backplane spatial light modulator using chiral liquid crystal,” in Liquid Crystal Materials, Devices, and Applications, P. S. Drzaic, U. Efron, eds., Proc. SPIE1665, 114–127 (1992).

Vijaya Kumar, B. V. K.

B. V. K. Vijaya Kumar, “Tutorial survey of composite filter designs for optical correlators,” Appl. Opt. 31, 4773–4801 (1992).
[CrossRef]

Wilkinson, T. D.

T. D. Wilkinson, Y. Pétillot, R. J. Mears, J. L. de Bougrenet de la Tocnaye, “Scale-invariant optical correlators using ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 34, 1885–1890 (1995).
[CrossRef] [PubMed]

T. D. Wilkinson, “The binary phase only matched filter,” Ph.D. dissertation (Cambridge U. Engineering, Cambridge, 1995).

Woods, C. L.

P. D. Gianino, C. L. Woods, “Effects of SLM opaque dead zones on optical correlation,” Appl. Opt. 31, 4025–4033 (1992).
[CrossRef] [PubMed]

Wu, M. X.

J. H. Feng, G. F. Chin, M. X. Wu, S. H. Yan, Y. B. Yan, “Multiobject recognition in a multichannel joint-transform correlator,” Opt. Lett. 20, 82–84 (1995).
[CrossRef] [PubMed]

Yan, S. H.

J. H. Feng, G. F. Chin, M. X. Wu, S. H. Yan, Y. B. Yan, “Multiobject recognition in a multichannel joint-transform correlator,” Opt. Lett. 20, 82–84 (1995).
[CrossRef] [PubMed]

Yan, Y. B.

J. H. Feng, G. F. Chin, M. X. Wu, S. H. Yan, Y. B. Yan, “Multiobject recognition in a multichannel joint-transform correlator,” Opt. Lett. 20, 82–84 (1995).
[CrossRef] [PubMed]

Yang, X.

X. Yang, D. A. Gregory, “Multichannel optical correlator based on a mutually incoherent microlaser array,” Opt. Lett. 20, 2405–2408 (1995).
[CrossRef] [PubMed]

Yoshida, N.

Y. Kobayashi, T. Takemori, N. Mukohzaka, N. Yoshida, S. Fukushima, “Real-time velocity measurement by use of a speckle-pattern correlation system that incorporates a ferroelectric liquid-crystal spatial light modulator,” Appl. Opt. 33, 2785–2794 (1994).
[CrossRef] [PubMed]

Yzuel, M. J.

J. Campos, M. Montes-Usategui, I. Juvells, M. J. Yzuel, “On the necessity of multiple filters in optical pattern recognition,” in Euro-American Workshop on Optical Pattern Recognition, B. Javidi, P. Refregier, eds. (SPIE Press, Bellingham, Wash., 1994), Vol. PM12, pp. 137–166.

Appl. Opt. (15)

B. V. K. Vijaya Kumar, “Tutorial survey of composite filter designs for optical correlators,” Appl. Opt. 31, 4773–4801 (1992).
[CrossRef]

T. D. Wilkinson, Y. Pétillot, R. J. Mears, J. L. de Bougrenet de la Tocnaye, “Scale-invariant optical correlators using ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 34, 1885–1890 (1995).
[CrossRef] [PubMed]

J. L. de Bougrenet de la Tocnaye, L. Dupont, “Complex amplitude modulation by use of liquid-crystal spatial light modulators,” Appl. Opt. 36, 1730–1741 (1997).
[CrossRef] [PubMed]

B. Javidi, C. J. Kuo, “Joint transform image correlator using a binary spatial light modulator in the Fourier plane,” Appl. Opt. 27, 663–665 (1988).
[CrossRef] [PubMed]

D. Joyeux, S. Lowenthal, “Optical Fourier transform: what is the optimal setup?,” Appl. Opt. 21, 4368–4372 (1982).
[CrossRef] [PubMed]

H. R. Arsenault, “Conditions for space invariance in optical data processors used with coherent or noncoherent light,” Appl. Opt. 11, 2228–2233 (1972).
[CrossRef] [PubMed]

S. Sinzinger, M. Testorf, “Transition between diffractive and refractive micro-optical components,” Appl. Opt. 34, 5970–5976 (1995).
[CrossRef] [PubMed]

B. Javidi, “Nonlinear joint power spectrum based optical correlation,” Appl. Opt. 28, 2358–2367 (1989).
[CrossRef] [PubMed]

J. L. de Bougrenet de la Tocnaye, J. R. Brocklehurst, “Parallel access read/write memory using an optically addressed ferroelectric spatial light modulator,” Appl. Opt. 30, 179–180 (1991).
[CrossRef] [PubMed]

P. D. Gianino, C. L. Woods, “Effects of SLM opaque dead zones on optical correlation,” Appl. Opt. 31, 4025–4033 (1992).
[CrossRef] [PubMed]

D. J. McKnight, K. M. Johnson, K. M. Johnson, R. A. Serati, “256 × 256 liquid-crystal-on-silicon spatial light modulator,” Appl. Opt. 39, 2775–2783 (1994).
[CrossRef]

Q. Tang, B. Javidi, “Technique for reducing the redundant and self-correlation terms in joint transform correlators,” Appl. Opt. 32, 1911–1918 (1993).
[CrossRef] [PubMed]

H. J. Caulfield, “Parallel n4 weighted optical interconnects,” Appl. Opt. 26, 4039–4040 (1987).
[CrossRef] [PubMed]

M. A. Seldowitz, J. P. Allebach, D. W. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt. 26, 2788–2798 (1987).
[CrossRef] [PubMed]

Y. Kobayashi, T. Takemori, N. Mukohzaka, N. Yoshida, S. Fukushima, “Real-time velocity measurement by use of a speckle-pattern correlation system that incorporates a ferroelectric liquid-crystal spatial light modulator,” Appl. Opt. 33, 2785–2794 (1994).
[CrossRef] [PubMed]

Applied Opt. (1)

B. Fracasso, J. L. de Bougrenet de la Tocnaye, “Node-based reconfigurable volume interconnections. 1. Principles and optical design,” Applied Opt. 33, 5348–5362 (1994).
[CrossRef]

Ferroelectrics (1)

L. Le Bourhis, J. Angele, L. Dupont, “Gray scale optically addressed spatial light modulator using twisted ferroelectric liquid crystals,” Ferroelectrics 181, 1099–1108 (1996).
[CrossRef]

Int. J. Opt. Comput. (1)

R. C. Chevallier, “Associative memory for image classification: new interleaved coding of 4-dimensional information in a plane,” Int. J. Opt. Comput. 1, 71–87 (1990).

J. Opt., (Paris) (1)

M. Barge, H. Hamam, Y. Defosse, R. Chevallier, J. L. de Bougrenet de la Tocnaye, “Les illuminateurs de tableaux utilisant des éléments optiques diffractifs,” J. Opt., (Paris) 27, 151–170 (1996).
[CrossRef]

Opt. Acta (1)

H. Dammann, E. Klotz, “Coherent optical generation and inspection of two-dimensional periodic structures,” Opt. Acta 24, 505–515 (1977).
[CrossRef]

Opt. Commun. (4)

H. Dammann, K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
[CrossRef]

G. Keryer, J. L. de Bougrenet de la Tocnaye, “A multichannel joint transform correlator,” Opt. Commun. 118, 102–113 (1995).
[CrossRef]

D. C. Burns, I. Underwood, J. Gourlay, A. O’Hara, D. G. Vass, “A 256 × 256 SRAM-xor pixel ferroelectric liquid crystal over silicon spatial light modulator,” Opt. Commun. 119, 623–632 (1995).
[CrossRef]

Y. Pétillot, L. Guibert, J. L. de Bougrenet de la Tocnaye, “Fingerprint recognition using a partially rotation invariant composite filter in a FLC joint transform correlator,” Opt. Commun. 126, 213–219 (1996).
[CrossRef]

Opt. Eng. (2)

L. Guibert, G. Keryer, A. Servel, M. Attia, H. S. MacKenzie, P. Pellat-Finet, J. L. de Bougrenet de la Tocnaye, “On-board optical joint transform correlator for real-time road sign recognition,” Opt. Eng. 34, 135–143 (1995).
[CrossRef]

T. J. Grycewicz, “Applying time modulation to the joint transform correlator,” Opt. Eng. 33, 1813–1819 (1994).
[CrossRef]

Opt. Lett. (3)

X. Yang, D. A. Gregory, “Multichannel optical correlator based on a mutually incoherent microlaser array,” Opt. Lett. 20, 2405–2408 (1995).
[CrossRef] [PubMed]

J. H. Feng, G. F. Chin, M. X. Wu, S. H. Yan, Y. B. Yan, “Multiobject recognition in a multichannel joint-transform correlator,” Opt. Lett. 20, 82–84 (1995).
[CrossRef] [PubMed]

A. Sneh, J. Y. Liu, K. M. Johnson, “High-speed analog refractive-index modulator that uses a chiral smectic liquid crystal,” Opt. Lett. 15, 305–307 (1994).
[CrossRef]

Other (15)

W. A. Crossland, M. J. Birch, A. B. Davey, D. G. Vass, “Active backplane spatial light modulator using chiral liquid crystal,” in Liquid Crystal Materials, Devices, and Applications, P. S. Drzaic, U. Efron, eds., Proc. SPIE1665, 114–127 (1992).

J. L. Tribillon, “Calcul et réalisation de grilles de phase ou de transparence binaire destinées á la multiplication d’images,” Ph.D. dissertation (Université de Besançon, Faculté des Sciences et Techniques, Besançon, France, 1973).

G. Keryer, L. Guibert, P. Pellat-Finet, J. L. de Bougrenet de la Tocnaye, “Corrélateur joint optique appliqué á la détection multicible,” in GRETSI’91: Treizième Colloque GRETSI sur la Traitement du Signal et des Images (sJuan-les-Pins, France, 1991). pp. 1193–1196.

J. Campos, M. Montes-Usategui, I. Juvells, M. J. Yzuel, “On the necessity of multiple filters in optical pattern recognition,” in Euro-American Workshop on Optical Pattern Recognition, B. Javidi, P. Refregier, eds. (SPIE Press, Bellingham, Wash., 1994), Vol. PM12, pp. 137–166.

H. J. Caulfield, R. Haimes, “Generalized matched filtering,” in Optical Pattern Recognition, D. P. Casasent, ed., Proc. SPIE201, 115–119 (1979).

Y. Pétillot, “Vers une implantation de corrélateurs optiques temps réels,” Ph.D. dissertation (Université de Bretagne Occidentale, France, March1996).

S. A. Serati, T. K. Ewing, R. A. Serati, K. M. Johnson, D. M. Simon, “Programmable 128 × 128 ferroelectric-liquid-crystal spatial-light-modulator compact correlator,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. SPIE1959, 55–68 (1993).

R. Moignard, E. Daniel, P. Cambon, J. L. de Bougrenet de la Tocnaye, “Design of a silicon VLSI/FLC smart light valve for parallel optical information processing,” in Proceedings of the Eighth EOS Workshop on Optics in Computing (European Optical Society, Orsay, France, 1992), pp. 3–6.

T. D. Wilkinson, “The binary phase only matched filter,” Ph.D. dissertation (Cambridge U. Engineering, Cambridge, 1995).

E. Hecht, Optics, 2nd ed. (Addison-Wesley, Reading, Mass., 1987).

A. Kohler, B. Fracasso, P. Ambs, J. L. de Bougrenetde la Tocnaye, “Joint transform correlator using nonlinear ferroelectric crystal spatial light modulator,” in Optical Information Processing Systems and Architectures III, B. Javidi, ed., Proc. SPIE1564, 236–243 (1991).
[CrossRef]

G. Keryer, “Etude de corrélateurs optiques á corrélation jointe mono ou multicanaux: application á la reconnaissance des formes,” Ph.D. dissertation (University of Paris XI, Orsay, France, 1996).

A. VanderLugt, Optical Signal Processing (Wiley, New York, 1992).

M. Barge, “Etudes, réalisations et utilisations de composants diffractifs gravés pour les interconnexions optiques,” Ph.D. dissertation (Ecole Nationale Supérieure des Télécommunications de Paris, Paris, 1995).

A. Alfalou, G. Keryer, J. L. de Bougrenet de la Tocnaye, “Comparison of the performances of single and multichannel binary phase-only matched filters,” in Optical Pattern Recognition VII, D. P. Casasent, T.-H. Chao, eds., Proc. SPIE2752, 92–100 (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Single-channel BPOF architecture. FT1, FT2: Fourier transform lenses.

Fig. 2
Fig. 2

Single-channel NLJTC architecture.

Fig. 3
Fig. 3

Fourier lens aperture limitation: (a) a 2f setup and (b) a convergent setup.

Fig. 4
Fig. 4

Number of pixels N i versus 1/d i and 1/d i versus f. Three limitation regimes are shown: (1) is from the input aperture, (2) is from the resolution and size of the Fourier plane, and (3) is from the input resolution. The dashed line represents the optimal case.

Fig. 5
Fig. 5

Number of pixels versus 1/d i and 1/ d i versus f for (a) the BPOF and (b) the JTC.

Fig. 6
Fig. 6

(a) JTC input plane. (b) Input SBWP and (c) spatial-multiplexing ratio versus N r , for the JTC and the BPOF.

Fig. 7
Fig. 7

Multichannel JTC input-plane organization or scene-to-reference distribution.

Fig. 8
Fig. 8

Inequality system solution versus p = N s /N r (a) without and (b) with spatial multiplexing (k = 3). The solid curves show the solutions of relation (20) for various shell numbers q, and dashed curves illustrate the solutions of relation (21).

Fig. 9
Fig. 9

Four-channel BPOF architecture.

Fig. 10
Fig. 10

(a) BPOF input plane. (b) The corresponding fiter.

Fig. 11
Fig. 11

Single-channel BPOF correlation plane and its peak line profile.

Fig. 12
Fig. 12

Correlations in the four-channel BPOF architecture and the peak line profiles.

Fig. 13
Fig. 13

Five-channell JTC architecture.

Fig. 14
Fig. 14

Multichannel JTC: (a) input plane, (b) gratings set, and (c) Fourier plane.

Fig. 15
Fig. 15

Correlations in the five-channel JTC architecture and their peak line profiles.

Tables (3)

Tables Icon

Table 1 JTC Channel Count n versus the Reference Size N r

Tables Icon

Table 2 Two-Dimensional DBS Array Illuminator Reconstruction-Plane Intensity Distribution

Tables Icon

Table 3 Five-Channel JTC: Autocorrelation Peak Values in the Different Channelsa

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

dF=λfPi,
di=λfPF.
Pidi=PiPFλf.
Pidi=PFdF.
RPi+2α0λff,
Pi=2λfα0=PF.
PiMinPSLM, λfrF,
NiMinPSLMdi, λfrFdi.
diri.
1diMin1ri,PSLMλf.
NiMinPSLM2λf, PSLMrF.
PiDi=NF.
Ni=NFn.
NiMinPSLMri, λ frFri,
1diMin1i, PFλf,
PpnpDi=PinpDi=NFnp=NFn,
np=n, PpNp=npDi=ri.
nNFNs.
nNs+2qNr=PiDiNF,
n21+2qp2=4qp+q1+2 qp2=PiDiNs2NFNs2.
1+2qpPSLMriNs.
n2k1+2 qp2=4k qp+q1+2 qp2=PiDiNs2NFNs2.

Metrics