Abstract

Image recognition by use of coherent optical processors and light diffusely scattered from the surface of an optically rough object is reported. A theoretical description is presented and shows that the image speckles are carriers for the Fourier spectra of the object at the matched spatial-filter plane. Experimental results of optical autocorrelation and cross correlation are given. The change in the intensity of the correlation peak that arises from the translation and the rotation of objects and from the lateral and axial movements of the matched filter are examined. The system is shown to be tolerant to misalignments in the positions of the object and matched filter. It is also shown that, when diffuse light is input into the coherent optical processor, the position of the Fourier plane is no longer precisely defined and spatial multiplexing would be possible.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Indebetouw, “Application of optical processing techniques to the quality control of micromechanics,” Appl. Opt. 16, 1944–1955 (1977).
    [CrossRef] [PubMed]
  2. G. Indebetouw, T. Tschudi, J. Steffen, “Optical processing techniques in the quality control of micromechanics,” Appl. Opt. 17, 911–916 (1978).
    [CrossRef] [PubMed]
  3. P. N. Espy, “Testing of printed circuit board solder joints by optical correlator,” (NASA, Greenbelt, Md., 1975).
  4. R. Owen, H. Liu, “Optical correlation of surface displacement,” Opt. Eng. 18, 266–273 (1979).
    [CrossRef]
  5. M. Francon, Laser Speckle and Applications in Optics (translated by H. H. Arsenault) (Academic, London, 1979), Chap. 4.
  6. J. S. Lim, H. Nawab, “Techniques for speckle noise removal,” Opt. Eng. 20, 472–480 (1981).
    [CrossRef]
  7. M. Tur, K. C. Chin, J. W. Goodman, “When is speckle noise multiplicative,” Appl. Opt. 21, 1157–1159 (1982).
    [CrossRef] [PubMed]
  8. M. Francon, Laser Speckle and Applications in Optics (translated by H. H. Arsenault) (Academic, London, 1979), Chap. 2.
  9. J. W. Goodman, “Laser speckle and related phenomena,” in Topics in Applied Physics Series (Springer-Verlag, Berlin, 1984), Vol. 9, Chap. 2.
  10. A. E. Ennos, “Laser speckle and related phenomena,” in Topics in Applied Physics Series (Springer-Verlag, Berlin, 1984), Vol. 9, Chap. 6.
  11. G. Parry, “Laser speckle and related phenomena,” in Topics in Applied Physics Series (Springer-Verlag, Berlin, 1984), Vol. 9, Chap. 3.
  12. X. Y. Cai, S. Christie, F. Kvasnik, “Micro-pattern recognition using a microscope coherent optical processor,” paper presented at the Conference on Holographic Systems, Components and Applications, Edinburgh, Scotland, 16–18 September 1991.
  13. S. Christie, “Real time applications of coherent optical processors,” Ph.D. dissertation (Department of Instrumentation and Analytical Science, University of Manchester Institute of Science and Technology, Manchester, England, 1992).
  14. D. Casasent, A. Furman, “Sources of correlation degradation,” Appl. Opt. 16, 1652–1660 (1977).
    [CrossRef] [PubMed]

1982 (1)

M. Tur, K. C. Chin, J. W. Goodman, “When is speckle noise multiplicative,” Appl. Opt. 21, 1157–1159 (1982).
[CrossRef] [PubMed]

1981 (1)

J. S. Lim, H. Nawab, “Techniques for speckle noise removal,” Opt. Eng. 20, 472–480 (1981).
[CrossRef]

1979 (1)

R. Owen, H. Liu, “Optical correlation of surface displacement,” Opt. Eng. 18, 266–273 (1979).
[CrossRef]

1978 (1)

G. Indebetouw, T. Tschudi, J. Steffen, “Optical processing techniques in the quality control of micromechanics,” Appl. Opt. 17, 911–916 (1978).
[CrossRef] [PubMed]

1977 (2)

G. Indebetouw, “Application of optical processing techniques to the quality control of micromechanics,” Appl. Opt. 16, 1944–1955 (1977).
[CrossRef] [PubMed]

D. Casasent, A. Furman, “Sources of correlation degradation,” Appl. Opt. 16, 1652–1660 (1977).
[CrossRef] [PubMed]

Cai, X. Y.

X. Y. Cai, S. Christie, F. Kvasnik, “Micro-pattern recognition using a microscope coherent optical processor,” paper presented at the Conference on Holographic Systems, Components and Applications, Edinburgh, Scotland, 16–18 September 1991.

Casasent, D.

D. Casasent, A. Furman, “Sources of correlation degradation,” Appl. Opt. 16, 1652–1660 (1977).
[CrossRef] [PubMed]

Chin, K. C.

M. Tur, K. C. Chin, J. W. Goodman, “When is speckle noise multiplicative,” Appl. Opt. 21, 1157–1159 (1982).
[CrossRef] [PubMed]

Christie, S.

X. Y. Cai, S. Christie, F. Kvasnik, “Micro-pattern recognition using a microscope coherent optical processor,” paper presented at the Conference on Holographic Systems, Components and Applications, Edinburgh, Scotland, 16–18 September 1991.

S. Christie, “Real time applications of coherent optical processors,” Ph.D. dissertation (Department of Instrumentation and Analytical Science, University of Manchester Institute of Science and Technology, Manchester, England, 1992).

Ennos, A. E.

A. E. Ennos, “Laser speckle and related phenomena,” in Topics in Applied Physics Series (Springer-Verlag, Berlin, 1984), Vol. 9, Chap. 6.

Espy, P. N.

P. N. Espy, “Testing of printed circuit board solder joints by optical correlator,” (NASA, Greenbelt, Md., 1975).

Francon, M.

M. Francon, Laser Speckle and Applications in Optics (translated by H. H. Arsenault) (Academic, London, 1979), Chap. 2.

M. Francon, Laser Speckle and Applications in Optics (translated by H. H. Arsenault) (Academic, London, 1979), Chap. 4.

Furman, A.

D. Casasent, A. Furman, “Sources of correlation degradation,” Appl. Opt. 16, 1652–1660 (1977).
[CrossRef] [PubMed]

Goodman, J. W.

M. Tur, K. C. Chin, J. W. Goodman, “When is speckle noise multiplicative,” Appl. Opt. 21, 1157–1159 (1982).
[CrossRef] [PubMed]

J. W. Goodman, “Laser speckle and related phenomena,” in Topics in Applied Physics Series (Springer-Verlag, Berlin, 1984), Vol. 9, Chap. 2.

Indebetouw, G.

G. Indebetouw, T. Tschudi, J. Steffen, “Optical processing techniques in the quality control of micromechanics,” Appl. Opt. 17, 911–916 (1978).
[CrossRef] [PubMed]

G. Indebetouw, “Application of optical processing techniques to the quality control of micromechanics,” Appl. Opt. 16, 1944–1955 (1977).
[CrossRef] [PubMed]

Kvasnik, F.

X. Y. Cai, S. Christie, F. Kvasnik, “Micro-pattern recognition using a microscope coherent optical processor,” paper presented at the Conference on Holographic Systems, Components and Applications, Edinburgh, Scotland, 16–18 September 1991.

Lim, J. S.

J. S. Lim, H. Nawab, “Techniques for speckle noise removal,” Opt. Eng. 20, 472–480 (1981).
[CrossRef]

Liu, H.

R. Owen, H. Liu, “Optical correlation of surface displacement,” Opt. Eng. 18, 266–273 (1979).
[CrossRef]

Nawab, H.

J. S. Lim, H. Nawab, “Techniques for speckle noise removal,” Opt. Eng. 20, 472–480 (1981).
[CrossRef]

Owen, R.

R. Owen, H. Liu, “Optical correlation of surface displacement,” Opt. Eng. 18, 266–273 (1979).
[CrossRef]

Parry, G.

G. Parry, “Laser speckle and related phenomena,” in Topics in Applied Physics Series (Springer-Verlag, Berlin, 1984), Vol. 9, Chap. 3.

Steffen, J.

G. Indebetouw, T. Tschudi, J. Steffen, “Optical processing techniques in the quality control of micromechanics,” Appl. Opt. 17, 911–916 (1978).
[CrossRef] [PubMed]

Tschudi, T.

G. Indebetouw, T. Tschudi, J. Steffen, “Optical processing techniques in the quality control of micromechanics,” Appl. Opt. 17, 911–916 (1978).
[CrossRef] [PubMed]

Tur, M.

M. Tur, K. C. Chin, J. W. Goodman, “When is speckle noise multiplicative,” Appl. Opt. 21, 1157–1159 (1982).
[CrossRef] [PubMed]

Appl. Opt. (4)

G. Indebetouw, “Application of optical processing techniques to the quality control of micromechanics,” Appl. Opt. 16, 1944–1955 (1977).
[CrossRef] [PubMed]

G. Indebetouw, T. Tschudi, J. Steffen, “Optical processing techniques in the quality control of micromechanics,” Appl. Opt. 17, 911–916 (1978).
[CrossRef] [PubMed]

M. Tur, K. C. Chin, J. W. Goodman, “When is speckle noise multiplicative,” Appl. Opt. 21, 1157–1159 (1982).
[CrossRef] [PubMed]

D. Casasent, A. Furman, “Sources of correlation degradation,” Appl. Opt. 16, 1652–1660 (1977).
[CrossRef] [PubMed]

Opt. Eng. (2)

J. S. Lim, H. Nawab, “Techniques for speckle noise removal,” Opt. Eng. 20, 472–480 (1981).
[CrossRef]

R. Owen, H. Liu, “Optical correlation of surface displacement,” Opt. Eng. 18, 266–273 (1979).
[CrossRef]

Other (8)

M. Francon, Laser Speckle and Applications in Optics (translated by H. H. Arsenault) (Academic, London, 1979), Chap. 4.

P. N. Espy, “Testing of printed circuit board solder joints by optical correlator,” (NASA, Greenbelt, Md., 1975).

M. Francon, Laser Speckle and Applications in Optics (translated by H. H. Arsenault) (Academic, London, 1979), Chap. 2.

J. W. Goodman, “Laser speckle and related phenomena,” in Topics in Applied Physics Series (Springer-Verlag, Berlin, 1984), Vol. 9, Chap. 2.

A. E. Ennos, “Laser speckle and related phenomena,” in Topics in Applied Physics Series (Springer-Verlag, Berlin, 1984), Vol. 9, Chap. 6.

G. Parry, “Laser speckle and related phenomena,” in Topics in Applied Physics Series (Springer-Verlag, Berlin, 1984), Vol. 9, Chap. 3.

X. Y. Cai, S. Christie, F. Kvasnik, “Micro-pattern recognition using a microscope coherent optical processor,” paper presented at the Conference on Holographic Systems, Components and Applications, Edinburgh, Scotland, 16–18 September 1991.

S. Christie, “Real time applications of coherent optical processors,” Ph.D. dissertation (Department of Instrumentation and Analytical Science, University of Manchester Institute of Science and Technology, Manchester, England, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup for correlation with surface-scattered light. MSF, matched spatial filter; L1–L4, lenses; M1–M3, mirrors; BS, beam splitter; BE1, BE2, beam expanders; P1–P3, planes.

Fig. 2
Fig. 2

Photographs of the two coins used as input objects (top, “ONE PENNY” coin; bottom, “NEW PENNY” coin).

Fig. 3
Fig. 3

(a) Light distribution in the correlation plane of the COP. (b) A line profile through the center of the autocorrelation peak for the “ONE PENNY” coin.

Fig. 4
Fig. 4

Variation of the correlation-peak intensity with the lateral translation of the object in a single direction.

Fig. 5
Fig. 5

Variation of the correlation-peak intensity with the object’s rotation about the axis orthogonal to the axis of the input lens. The insert shows a typical line profile through the autocorrelation peak at an object rotation of 2.2°.

Fig. 6
Fig. 6

Typical line profiles through the cross-correlation peaks (a) and (b) with different but nominally identical “ONE PENNY ” coins at the input, and (c) and (d) with “NEW PENNY” coins at the input.

Fig. 7
Fig. 7

Variation of the intensity of the autocorrelation peak with the axial displacement of the matched filter. Negative numbers indicate displacements toward the first Fourier lens. MSF, matched spatial filter.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ISIx, y=IIx, yISx, y.
δL8λL/d2,
δθ=1+cos i/cos rδΦ.
Fu, v=Ou, v  Su, v,
sx=n=1Nanδx-xnexpiϕn,
Su= bn expi2πuxnexpiϕn.
I=R2+O  S2+O  SR*+RO  S*,
RO  S*O  S,
RO*OS*S.
δ  o   os   s,
Cklx=δxkexpiϕ  δx1expiθ,
Cx=k=1N Ckkx+klN Cklx,
ICSx=CxC*x=k=1NCkkx2+klN CkkxCll*x.

Metrics