Abstract

The behavior of a Faraday-active turbid medium under ultrafast optical excitation is investigated. As the degree of polarization of early arriving photons is mostly preserved during the first 100 ps after the arrival of the ballistic component, the possibility of using the magneto-optical rotation of the light polarization as a new tool for tissue characterization is addressed. A technique is proposed for determining photon-scattering statistics in turbid biological media. The analysis is performed on the basis that photons trapped in multiple-scattering events leave the medium with larger induced rotation angles. A measurement of the magneto-optical rotatory power of turbid biological samples is possible if only the early arriving unscattered photons are probed.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. A. Erbacher, R. Lenke, G. Maret, “Multiple light scattering in magneto-optically active media,” Europhys. Lett. 21, 551–556 (1993).
    [CrossRef]
  2. J. C. Hebden, “Imaging through scattering media using characteristics of the temporal distribution of transmitted laser pulses,” Opt. Laser Technol. 27, 263–268 (1995).
    [CrossRef]
  3. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
    [CrossRef] [PubMed]
  4. D. G. Papaioannou, G. W. ’t Hooft, J. J. M. Baselmans, M. J. C. van Gemert, “Image quality in time-resolved transillumination of highly scattering media,” Appl. Opt. 34, 6144–6157 (1995).
    [CrossRef] [PubMed]
  5. F. Liu, K. M. Yoo, R. R. Alfano, “Ultrafast laser-pulse transmission and imaging through biological tissues,” Appl. Opt. 32, 554–558 (1993).
    [CrossRef] [PubMed]
  6. R. Berg, O. Jarlman, S. Svanberg, “Medical transillumination imaging using short-pulse diode lasers,” Appl. Opt. 32, 574–579 (1993).
    [CrossRef] [PubMed]
  7. J. C. Hebden, K. S. Wong, “Time-resolved optical tomography,” Appl. Opt. 32, 372–380 (1993).
    [CrossRef] [PubMed]
  8. S. G. Demos, R. R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Appl. Opt. 21, 161–163 (1996).
  9. E. Munin, “Magnetooptical materials: organic and inorganic liquids,” in Handbook of Laser Science and Technology, Supplement 2 of Optical Materials, M. J. Weber, ed. (CRC, Boca Raton, Fl., 1995), pp. 403–411.
  10. E. Munin, C. B. Pedroso, A. B. Villaverde, “Magnetooptical constants of fluoride optical crystals and other AB2 and A2B type compounds,” J. Chem. Soc. Faraday Trans. 92, 2753–2757 (1996).
    [CrossRef]
  11. E. Munin, “Analysis of a tunable bandpass filter based on Faraday rotators,” IEEE Trans. Magn. 32, 316–319 (1996).
    [CrossRef]
  12. P. A. Schulz, “Wavelength independent Faraday isolator,” Appl. Opt. 28, 4458–4464 (1989).
    [CrossRef] [PubMed]
  13. J. A. Wunderlich, L. G. DeShazer, “Visible optical isolator using ZnSe,” Appl. Opt. 16, 1584–1587 (1977).
    [CrossRef] [PubMed]
  14. D. J. Gauthier, P. Narum, R. W. Boyd, “Simple, compact, high performance, permanent magnet Faraday isolator,” Opt. Lett. 11, 623–625 (1986).
    [CrossRef] [PubMed]
  15. M. N. Deeter, A. H. Rose, G. W. Day, “Fast, sensitive magnetic field sensor based on the Faraday effect in YIG,” J. Lightwave Technol. 8, 1838–1842 (1990).
    [CrossRef]
  16. A. H. Rose, M. N. Deeter, G. W. Day, “Submicroampere-per-root-hertz current sensor based on the Faraday effect in Ga:YIG,” Opt. Lett. 18, 1471–1473 (1993).
    [CrossRef] [PubMed]
  17. Y. N. Ning, D. A. Jackson, “Faraday effect optical current clamp using a bulk glass sensing element,” Opt. Lett. 18, 835–837 (1993).
    [CrossRef] [PubMed]
  18. R. Vreeker, M. P. Van Albada, R. Sprik, A. Lagendijk, “Femtosecond time-resolved measurements of weak localization of light,” Phys. Lett. A 132, 51–54 (1988).
    [CrossRef]
  19. Y. Kuga, L. Tsang, A. Ishimaru, “Depolarization effects of the enhanced retroreflectance from a dense distribution of spherical particles,” J. Opt. Soc. Am. A 4, 616–618 (1985).
    [CrossRef]

1996 (3)

S. G. Demos, R. R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Appl. Opt. 21, 161–163 (1996).

E. Munin, C. B. Pedroso, A. B. Villaverde, “Magnetooptical constants of fluoride optical crystals and other AB2 and A2B type compounds,” J. Chem. Soc. Faraday Trans. 92, 2753–2757 (1996).
[CrossRef]

E. Munin, “Analysis of a tunable bandpass filter based on Faraday rotators,” IEEE Trans. Magn. 32, 316–319 (1996).
[CrossRef]

1995 (3)

1993 (6)

1990 (1)

M. N. Deeter, A. H. Rose, G. W. Day, “Fast, sensitive magnetic field sensor based on the Faraday effect in YIG,” J. Lightwave Technol. 8, 1838–1842 (1990).
[CrossRef]

1989 (1)

1988 (1)

R. Vreeker, M. P. Van Albada, R. Sprik, A. Lagendijk, “Femtosecond time-resolved measurements of weak localization of light,” Phys. Lett. A 132, 51–54 (1988).
[CrossRef]

1986 (1)

1985 (1)

Y. Kuga, L. Tsang, A. Ishimaru, “Depolarization effects of the enhanced retroreflectance from a dense distribution of spherical particles,” J. Opt. Soc. Am. A 4, 616–618 (1985).
[CrossRef]

1977 (1)

’t Hooft, G. W.

Alfano, R. R.

S. G. Demos, R. R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Appl. Opt. 21, 161–163 (1996).

F. Liu, K. M. Yoo, R. R. Alfano, “Ultrafast laser-pulse transmission and imaging through biological tissues,” Appl. Opt. 32, 554–558 (1993).
[CrossRef] [PubMed]

Baselmans, J. J. M.

Berg, R.

Boas, D. A.

Boyd, R. W.

Chance, B.

Day, G. W.

A. H. Rose, M. N. Deeter, G. W. Day, “Submicroampere-per-root-hertz current sensor based on the Faraday effect in Ga:YIG,” Opt. Lett. 18, 1471–1473 (1993).
[CrossRef] [PubMed]

M. N. Deeter, A. H. Rose, G. W. Day, “Fast, sensitive magnetic field sensor based on the Faraday effect in YIG,” J. Lightwave Technol. 8, 1838–1842 (1990).
[CrossRef]

Deeter, M. N.

A. H. Rose, M. N. Deeter, G. W. Day, “Submicroampere-per-root-hertz current sensor based on the Faraday effect in Ga:YIG,” Opt. Lett. 18, 1471–1473 (1993).
[CrossRef] [PubMed]

M. N. Deeter, A. H. Rose, G. W. Day, “Fast, sensitive magnetic field sensor based on the Faraday effect in YIG,” J. Lightwave Technol. 8, 1838–1842 (1990).
[CrossRef]

Demos, S. G.

S. G. Demos, R. R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Appl. Opt. 21, 161–163 (1996).

DeShazer, L. G.

Erbacher, F. A.

F. A. Erbacher, R. Lenke, G. Maret, “Multiple light scattering in magneto-optically active media,” Europhys. Lett. 21, 551–556 (1993).
[CrossRef]

Gauthier, D. J.

Hebden, J. C.

J. C. Hebden, “Imaging through scattering media using characteristics of the temporal distribution of transmitted laser pulses,” Opt. Laser Technol. 27, 263–268 (1995).
[CrossRef]

J. C. Hebden, K. S. Wong, “Time-resolved optical tomography,” Appl. Opt. 32, 372–380 (1993).
[CrossRef] [PubMed]

Ishimaru, A.

Y. Kuga, L. Tsang, A. Ishimaru, “Depolarization effects of the enhanced retroreflectance from a dense distribution of spherical particles,” J. Opt. Soc. Am. A 4, 616–618 (1985).
[CrossRef]

Jackson, D. A.

Jarlman, O.

Kuga, Y.

Y. Kuga, L. Tsang, A. Ishimaru, “Depolarization effects of the enhanced retroreflectance from a dense distribution of spherical particles,” J. Opt. Soc. Am. A 4, 616–618 (1985).
[CrossRef]

Lagendijk, A.

R. Vreeker, M. P. Van Albada, R. Sprik, A. Lagendijk, “Femtosecond time-resolved measurements of weak localization of light,” Phys. Lett. A 132, 51–54 (1988).
[CrossRef]

Lenke, R.

F. A. Erbacher, R. Lenke, G. Maret, “Multiple light scattering in magneto-optically active media,” Europhys. Lett. 21, 551–556 (1993).
[CrossRef]

Liu, F.

Maret, G.

F. A. Erbacher, R. Lenke, G. Maret, “Multiple light scattering in magneto-optically active media,” Europhys. Lett. 21, 551–556 (1993).
[CrossRef]

Munin, E.

E. Munin, C. B. Pedroso, A. B. Villaverde, “Magnetooptical constants of fluoride optical crystals and other AB2 and A2B type compounds,” J. Chem. Soc. Faraday Trans. 92, 2753–2757 (1996).
[CrossRef]

E. Munin, “Analysis of a tunable bandpass filter based on Faraday rotators,” IEEE Trans. Magn. 32, 316–319 (1996).
[CrossRef]

E. Munin, “Magnetooptical materials: organic and inorganic liquids,” in Handbook of Laser Science and Technology, Supplement 2 of Optical Materials, M. J. Weber, ed. (CRC, Boca Raton, Fl., 1995), pp. 403–411.

Narum, P.

Ning, Y. N.

O’Leary, M. A.

Papaioannou, D. G.

Pedroso, C. B.

E. Munin, C. B. Pedroso, A. B. Villaverde, “Magnetooptical constants of fluoride optical crystals and other AB2 and A2B type compounds,” J. Chem. Soc. Faraday Trans. 92, 2753–2757 (1996).
[CrossRef]

Rose, A. H.

A. H. Rose, M. N. Deeter, G. W. Day, “Submicroampere-per-root-hertz current sensor based on the Faraday effect in Ga:YIG,” Opt. Lett. 18, 1471–1473 (1993).
[CrossRef] [PubMed]

M. N. Deeter, A. H. Rose, G. W. Day, “Fast, sensitive magnetic field sensor based on the Faraday effect in YIG,” J. Lightwave Technol. 8, 1838–1842 (1990).
[CrossRef]

Schulz, P. A.

Sprik, R.

R. Vreeker, M. P. Van Albada, R. Sprik, A. Lagendijk, “Femtosecond time-resolved measurements of weak localization of light,” Phys. Lett. A 132, 51–54 (1988).
[CrossRef]

Svanberg, S.

Tsang, L.

Y. Kuga, L. Tsang, A. Ishimaru, “Depolarization effects of the enhanced retroreflectance from a dense distribution of spherical particles,” J. Opt. Soc. Am. A 4, 616–618 (1985).
[CrossRef]

Van Albada, M. P.

R. Vreeker, M. P. Van Albada, R. Sprik, A. Lagendijk, “Femtosecond time-resolved measurements of weak localization of light,” Phys. Lett. A 132, 51–54 (1988).
[CrossRef]

van Gemert, M. J. C.

Villaverde, A. B.

E. Munin, C. B. Pedroso, A. B. Villaverde, “Magnetooptical constants of fluoride optical crystals and other AB2 and A2B type compounds,” J. Chem. Soc. Faraday Trans. 92, 2753–2757 (1996).
[CrossRef]

Vreeker, R.

R. Vreeker, M. P. Van Albada, R. Sprik, A. Lagendijk, “Femtosecond time-resolved measurements of weak localization of light,” Phys. Lett. A 132, 51–54 (1988).
[CrossRef]

Wong, K. S.

Wunderlich, J. A.

Yodh, A. G.

Yoo, K. M.

Appl. Opt. (7)

Europhys. Lett. (1)

F. A. Erbacher, R. Lenke, G. Maret, “Multiple light scattering in magneto-optically active media,” Europhys. Lett. 21, 551–556 (1993).
[CrossRef]

IEEE Trans. Magn. (1)

E. Munin, “Analysis of a tunable bandpass filter based on Faraday rotators,” IEEE Trans. Magn. 32, 316–319 (1996).
[CrossRef]

J. Chem. Soc. Faraday Trans. (1)

E. Munin, C. B. Pedroso, A. B. Villaverde, “Magnetooptical constants of fluoride optical crystals and other AB2 and A2B type compounds,” J. Chem. Soc. Faraday Trans. 92, 2753–2757 (1996).
[CrossRef]

J. Lightwave Technol. (1)

M. N. Deeter, A. H. Rose, G. W. Day, “Fast, sensitive magnetic field sensor based on the Faraday effect in YIG,” J. Lightwave Technol. 8, 1838–1842 (1990).
[CrossRef]

J. Opt. Soc. Am. A (1)

Y. Kuga, L. Tsang, A. Ishimaru, “Depolarization effects of the enhanced retroreflectance from a dense distribution of spherical particles,” J. Opt. Soc. Am. A 4, 616–618 (1985).
[CrossRef]

Opt. Laser Technol. (1)

J. C. Hebden, “Imaging through scattering media using characteristics of the temporal distribution of transmitted laser pulses,” Opt. Laser Technol. 27, 263–268 (1995).
[CrossRef]

Opt. Lett. (4)

Phys. Lett. A (1)

R. Vreeker, M. P. Van Albada, R. Sprik, A. Lagendijk, “Femtosecond time-resolved measurements of weak localization of light,” Phys. Lett. A 132, 51–54 (1988).
[CrossRef]

Other (1)

E. Munin, “Magnetooptical materials: organic and inorganic liquids,” in Handbook of Laser Science and Technology, Supplement 2 of Optical Materials, M. J. Weber, ed. (CRC, Boca Raton, Fl., 1995), pp. 403–411.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Two-dimensional sketch of two possible photon paths in a scattering medium, chosen in such a way that the traveled distances are nearly the same (figure not to scale).

Fig. 2
Fig. 2

Single exponential decay of the degree of polarization D(t) of an ultrafast optical pulse transmitted through a turbid medium; ●, experimental data8 taken with a phantom made of a latex microsphere solution (microsphere diameter of 0.09 µm and a mean-free path of 2 mm).

Fig. 3
Fig. 3

Typical temporal intensity profile of an ultrafast light pulse transmitted through a turbid medium. The inset shows a statistical distribution around a mean value 〈l x 〉 of the cumulative projection onto the x axis of the distances traveled by those photons arriving within time window dt.

Fig. 4
Fig. 4

Time-dependent transmission in the absence of depolarization effects for an ultrafast light pulse transmitted through a magneto-optically active turbid medium placed between two polarizers. Photon displacement was restricted to the x axis, parallel to H (in the limit σ x → 0). The magnetic field intensities were 15 kG (solid curve) and 75 kG (dashed curve). The medium was considered to hold a magneto-optical constant V = 0.0167 min G-1 cm-1. The analyzer axis was aligned parallel to the polarization direction of photons arriving at t = 0.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

θ=πλn+-n-l.
θ=VH·dl,
Dt=It-ItIt+It.
T=cos2θ,

Metrics