Abstract

The use of the polarization of light as a parameter to discriminate against multiple-scattered light for transillumination imaging through random scattering media is examined. Time-resolved two-dimensional images of submillimeter test bars immersed in 5-cm-thick Intralipid solutions with different micelle dilutions were measured for two orthogonal polarizations (parallel and perpendicular) of light emerging from the turbid medium by using a picosecond Kerr–Fourier (KF) imaging system. The measured contrast and intensity of parallel-polarized KF shadowgrams decreased as the concentration of the scattering medium was increased, whereas the behavior of the perpendicular-polarized KF shadowgrams varied in an opposite matter to the micelle concentration.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
    [CrossRef] [PubMed]
  2. R. Alfano, X. Liang, L. Wang, P. Ho, “Time-resolved imaging of translucent droplets in highly scattering turbid medium,” Science 264, 1913–1915 (1994).
    [CrossRef] [PubMed]
  3. S. Zhao, M. A. O’Leary, S. Nioka, B. Chance, “Breast tumor detection using continuous wave light detection,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. Alfano, eds., Proc. SPIE2389, 809–813 (1995).
    [CrossRef]
  4. D. Benaron, D. Stevenson, “Optical time of flight absorbance imaging of biomedical media,” Science 259, 1463–1466 (1993).
    [CrossRef] [PubMed]
  5. B. Das, K. Yoo, R. Alfano, “Ultrafast time gated imaging,” Opt. Lett. 18, 1092–1094 (1993).
    [CrossRef]
  6. J. Izatt, M. Hee, D. Huang, E. Swanson, C. Lin, J. Schuman, C. Puliafito, J. Fujimoto, “Micronresolution biomedical imaging,” Opt. Photon. News 4, 14–19 (1993).
    [CrossRef]
  7. H. Chen, Y. Chen, D. Dillworth, E. Leith, J. Lopez, J. Valdmanis, “Two dimensional imaging through diffusive media using fs gated holographic technique,” Opt. Lett. 16, 487–489 (1991).
    [CrossRef] [PubMed]
  8. J. A. Moon, R. Mahon, M. Duncan, J. Reintjes, “Spectral & temporal characteristics in the transient regime,” Opt. Lett. 19, 1234–1236 (1994).
    [CrossRef] [PubMed]
  9. L. Wang, X. Liang, P. Ho, R. R. Alfano, “Kerr-Fourier imaging of hidden objects in thick turbid media,” Opt. Lett. 18, 241–243 (1993).
    [CrossRef]
  10. S. Fantini, M. A. Franceschini, J. Maier, S. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–34 (1995).
    [CrossRef]
  11. H. Horinaka, K. Hashimoto, K. Wada, Y. Cho, M. Osawa, “Extraction of quasi-straight forward-propagating photons from diffused light transmitting through a scattering medium by polarization modulation,” Opt. Lett. 20, 1501–1503 (1995).
    [CrossRef] [PubMed]
  12. E. M. Sevick, J. R. Lokowicz, H. Szmarcinski, K. Nowaczyk, M. L. Johnson, “Frequency domain imaging of absorbers obscured by scattering,” J. Photochem. Photobiol. 16, 169–185 (1992).
    [CrossRef]
  13. S. Demos, R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, 161–163 (1996).
    [CrossRef] [PubMed]
  14. S. Demos, H. Savage, A. Heerdt, S. Schantz, R. Alfano, “Polarization imaging and characterization of human breast tissues,” in Advances in Optical Imaging and Photon Migration, Trends in Optics and Photonics, Vol. 2 (Optical Society of America, Washington D.C., 1996), pp. 113–115.
  15. X. Liang, L. Wang, P. Ho, R. R. Alfano, “Time-resolved shadowgrams in turbid media,” in Advances in Optical Imaging and Photon Migration, Trends in Optics and Photonics, Vol. 2 (Optical Society of America, Washington D.C., 1996), pp. 84–86.
  16. X. Liang, L. Wang, P. Ho, R. R. Alfano, “True scattering coefficients of turbid media,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. Alfano, eds., Proc. SPIE2389, 571–574 (1995).
    [CrossRef]
  17. L. Wang, X. Liang, P. Galland, P. Ho, R. R. Alfano, “True scattering coefficients of turbid media measured by early-time gating,” Opt. Lett. 20, 913–915 (1995).
    [CrossRef] [PubMed]
  18. C. J. M. Mose, C. Van Germert, J. Van Marle, W. M. Star, J. Marilnissen, S. A. Prahl, “Measurement and calculations of the energy fluence rate in a scattering and absorbing phantom at 633 nm,” Appl. Opt. 28, 2292–2296 (1989).
    [CrossRef]

1996 (1)

1995 (3)

1994 (2)

J. A. Moon, R. Mahon, M. Duncan, J. Reintjes, “Spectral & temporal characteristics in the transient regime,” Opt. Lett. 19, 1234–1236 (1994).
[CrossRef] [PubMed]

R. Alfano, X. Liang, L. Wang, P. Ho, “Time-resolved imaging of translucent droplets in highly scattering turbid medium,” Science 264, 1913–1915 (1994).
[CrossRef] [PubMed]

1993 (4)

D. Benaron, D. Stevenson, “Optical time of flight absorbance imaging of biomedical media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

B. Das, K. Yoo, R. Alfano, “Ultrafast time gated imaging,” Opt. Lett. 18, 1092–1094 (1993).
[CrossRef]

J. Izatt, M. Hee, D. Huang, E. Swanson, C. Lin, J. Schuman, C. Puliafito, J. Fujimoto, “Micronresolution biomedical imaging,” Opt. Photon. News 4, 14–19 (1993).
[CrossRef]

L. Wang, X. Liang, P. Ho, R. R. Alfano, “Kerr-Fourier imaging of hidden objects in thick turbid media,” Opt. Lett. 18, 241–243 (1993).
[CrossRef]

1992 (1)

E. M. Sevick, J. R. Lokowicz, H. Szmarcinski, K. Nowaczyk, M. L. Johnson, “Frequency domain imaging of absorbers obscured by scattering,” J. Photochem. Photobiol. 16, 169–185 (1992).
[CrossRef]

1991 (2)

H. Chen, Y. Chen, D. Dillworth, E. Leith, J. Lopez, J. Valdmanis, “Two dimensional imaging through diffusive media using fs gated holographic technique,” Opt. Lett. 16, 487–489 (1991).
[CrossRef] [PubMed]

L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

1989 (1)

Alfano, R.

S. Demos, R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, 161–163 (1996).
[CrossRef] [PubMed]

R. Alfano, X. Liang, L. Wang, P. Ho, “Time-resolved imaging of translucent droplets in highly scattering turbid medium,” Science 264, 1913–1915 (1994).
[CrossRef] [PubMed]

B. Das, K. Yoo, R. Alfano, “Ultrafast time gated imaging,” Opt. Lett. 18, 1092–1094 (1993).
[CrossRef]

S. Demos, H. Savage, A. Heerdt, S. Schantz, R. Alfano, “Polarization imaging and characterization of human breast tissues,” in Advances in Optical Imaging and Photon Migration, Trends in Optics and Photonics, Vol. 2 (Optical Society of America, Washington D.C., 1996), pp. 113–115.

Alfano, R. R.

L. Wang, X. Liang, P. Galland, P. Ho, R. R. Alfano, “True scattering coefficients of turbid media measured by early-time gating,” Opt. Lett. 20, 913–915 (1995).
[CrossRef] [PubMed]

L. Wang, X. Liang, P. Ho, R. R. Alfano, “Kerr-Fourier imaging of hidden objects in thick turbid media,” Opt. Lett. 18, 241–243 (1993).
[CrossRef]

L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

X. Liang, L. Wang, P. Ho, R. R. Alfano, “Time-resolved shadowgrams in turbid media,” in Advances in Optical Imaging and Photon Migration, Trends in Optics and Photonics, Vol. 2 (Optical Society of America, Washington D.C., 1996), pp. 84–86.

X. Liang, L. Wang, P. Ho, R. R. Alfano, “True scattering coefficients of turbid media,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. Alfano, eds., Proc. SPIE2389, 571–574 (1995).
[CrossRef]

Barbieri, B.

S. Fantini, M. A. Franceschini, J. Maier, S. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–34 (1995).
[CrossRef]

Benaron, D.

D. Benaron, D. Stevenson, “Optical time of flight absorbance imaging of biomedical media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

Chance, B.

S. Zhao, M. A. O’Leary, S. Nioka, B. Chance, “Breast tumor detection using continuous wave light detection,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. Alfano, eds., Proc. SPIE2389, 809–813 (1995).
[CrossRef]

Chen, H.

Chen, Y.

Cho, Y.

Das, B.

Demos, S.

S. Demos, R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, 161–163 (1996).
[CrossRef] [PubMed]

S. Demos, H. Savage, A. Heerdt, S. Schantz, R. Alfano, “Polarization imaging and characterization of human breast tissues,” in Advances in Optical Imaging and Photon Migration, Trends in Optics and Photonics, Vol. 2 (Optical Society of America, Washington D.C., 1996), pp. 113–115.

Dillworth, D.

Duncan, M.

Fantini, S.

S. Fantini, M. A. Franceschini, J. Maier, S. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–34 (1995).
[CrossRef]

Franceschini, M. A.

S. Fantini, M. A. Franceschini, J. Maier, S. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–34 (1995).
[CrossRef]

Fujimoto, J.

J. Izatt, M. Hee, D. Huang, E. Swanson, C. Lin, J. Schuman, C. Puliafito, J. Fujimoto, “Micronresolution biomedical imaging,” Opt. Photon. News 4, 14–19 (1993).
[CrossRef]

Galland, P.

Gratton, E.

S. Fantini, M. A. Franceschini, J. Maier, S. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–34 (1995).
[CrossRef]

Hashimoto, K.

Hee, M.

J. Izatt, M. Hee, D. Huang, E. Swanson, C. Lin, J. Schuman, C. Puliafito, J. Fujimoto, “Micronresolution biomedical imaging,” Opt. Photon. News 4, 14–19 (1993).
[CrossRef]

Heerdt, A.

S. Demos, H. Savage, A. Heerdt, S. Schantz, R. Alfano, “Polarization imaging and characterization of human breast tissues,” in Advances in Optical Imaging and Photon Migration, Trends in Optics and Photonics, Vol. 2 (Optical Society of America, Washington D.C., 1996), pp. 113–115.

Ho, P.

L. Wang, X. Liang, P. Galland, P. Ho, R. R. Alfano, “True scattering coefficients of turbid media measured by early-time gating,” Opt. Lett. 20, 913–915 (1995).
[CrossRef] [PubMed]

R. Alfano, X. Liang, L. Wang, P. Ho, “Time-resolved imaging of translucent droplets in highly scattering turbid medium,” Science 264, 1913–1915 (1994).
[CrossRef] [PubMed]

L. Wang, X. Liang, P. Ho, R. R. Alfano, “Kerr-Fourier imaging of hidden objects in thick turbid media,” Opt. Lett. 18, 241–243 (1993).
[CrossRef]

L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

X. Liang, L. Wang, P. Ho, R. R. Alfano, “Time-resolved shadowgrams in turbid media,” in Advances in Optical Imaging and Photon Migration, Trends in Optics and Photonics, Vol. 2 (Optical Society of America, Washington D.C., 1996), pp. 84–86.

X. Liang, L. Wang, P. Ho, R. R. Alfano, “True scattering coefficients of turbid media,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. Alfano, eds., Proc. SPIE2389, 571–574 (1995).
[CrossRef]

Horinaka, H.

Huang, D.

J. Izatt, M. Hee, D. Huang, E. Swanson, C. Lin, J. Schuman, C. Puliafito, J. Fujimoto, “Micronresolution biomedical imaging,” Opt. Photon. News 4, 14–19 (1993).
[CrossRef]

Izatt, J.

J. Izatt, M. Hee, D. Huang, E. Swanson, C. Lin, J. Schuman, C. Puliafito, J. Fujimoto, “Micronresolution biomedical imaging,” Opt. Photon. News 4, 14–19 (1993).
[CrossRef]

Johnson, M. L.

E. M. Sevick, J. R. Lokowicz, H. Szmarcinski, K. Nowaczyk, M. L. Johnson, “Frequency domain imaging of absorbers obscured by scattering,” J. Photochem. Photobiol. 16, 169–185 (1992).
[CrossRef]

Leith, E.

Liang, X.

L. Wang, X. Liang, P. Galland, P. Ho, R. R. Alfano, “True scattering coefficients of turbid media measured by early-time gating,” Opt. Lett. 20, 913–915 (1995).
[CrossRef] [PubMed]

R. Alfano, X. Liang, L. Wang, P. Ho, “Time-resolved imaging of translucent droplets in highly scattering turbid medium,” Science 264, 1913–1915 (1994).
[CrossRef] [PubMed]

L. Wang, X. Liang, P. Ho, R. R. Alfano, “Kerr-Fourier imaging of hidden objects in thick turbid media,” Opt. Lett. 18, 241–243 (1993).
[CrossRef]

X. Liang, L. Wang, P. Ho, R. R. Alfano, “True scattering coefficients of turbid media,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. Alfano, eds., Proc. SPIE2389, 571–574 (1995).
[CrossRef]

X. Liang, L. Wang, P. Ho, R. R. Alfano, “Time-resolved shadowgrams in turbid media,” in Advances in Optical Imaging and Photon Migration, Trends in Optics and Photonics, Vol. 2 (Optical Society of America, Washington D.C., 1996), pp. 84–86.

Lin, C.

J. Izatt, M. Hee, D. Huang, E. Swanson, C. Lin, J. Schuman, C. Puliafito, J. Fujimoto, “Micronresolution biomedical imaging,” Opt. Photon. News 4, 14–19 (1993).
[CrossRef]

Liu, C.

L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Lokowicz, J. R.

E. M. Sevick, J. R. Lokowicz, H. Szmarcinski, K. Nowaczyk, M. L. Johnson, “Frequency domain imaging of absorbers obscured by scattering,” J. Photochem. Photobiol. 16, 169–185 (1992).
[CrossRef]

Lopez, J.

Mahon, R.

Maier, J.

S. Fantini, M. A. Franceschini, J. Maier, S. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–34 (1995).
[CrossRef]

Marilnissen, J.

Moon, J. A.

Mose, C. J. M.

Nioka, S.

S. Zhao, M. A. O’Leary, S. Nioka, B. Chance, “Breast tumor detection using continuous wave light detection,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. Alfano, eds., Proc. SPIE2389, 809–813 (1995).
[CrossRef]

Nowaczyk, K.

E. M. Sevick, J. R. Lokowicz, H. Szmarcinski, K. Nowaczyk, M. L. Johnson, “Frequency domain imaging of absorbers obscured by scattering,” J. Photochem. Photobiol. 16, 169–185 (1992).
[CrossRef]

O’Leary, M. A.

S. Zhao, M. A. O’Leary, S. Nioka, B. Chance, “Breast tumor detection using continuous wave light detection,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. Alfano, eds., Proc. SPIE2389, 809–813 (1995).
[CrossRef]

Osawa, M.

Prahl, S. A.

Puliafito, C.

J. Izatt, M. Hee, D. Huang, E. Swanson, C. Lin, J. Schuman, C. Puliafito, J. Fujimoto, “Micronresolution biomedical imaging,” Opt. Photon. News 4, 14–19 (1993).
[CrossRef]

Reintjes, J.

Savage, H.

S. Demos, H. Savage, A. Heerdt, S. Schantz, R. Alfano, “Polarization imaging and characterization of human breast tissues,” in Advances in Optical Imaging and Photon Migration, Trends in Optics and Photonics, Vol. 2 (Optical Society of America, Washington D.C., 1996), pp. 113–115.

Schantz, S.

S. Demos, H. Savage, A. Heerdt, S. Schantz, R. Alfano, “Polarization imaging and characterization of human breast tissues,” in Advances in Optical Imaging and Photon Migration, Trends in Optics and Photonics, Vol. 2 (Optical Society of America, Washington D.C., 1996), pp. 113–115.

Schuman, J.

J. Izatt, M. Hee, D. Huang, E. Swanson, C. Lin, J. Schuman, C. Puliafito, J. Fujimoto, “Micronresolution biomedical imaging,” Opt. Photon. News 4, 14–19 (1993).
[CrossRef]

Sevick, E. M.

E. M. Sevick, J. R. Lokowicz, H. Szmarcinski, K. Nowaczyk, M. L. Johnson, “Frequency domain imaging of absorbers obscured by scattering,” J. Photochem. Photobiol. 16, 169–185 (1992).
[CrossRef]

Star, W. M.

Stevenson, D.

D. Benaron, D. Stevenson, “Optical time of flight absorbance imaging of biomedical media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

Swanson, E.

J. Izatt, M. Hee, D. Huang, E. Swanson, C. Lin, J. Schuman, C. Puliafito, J. Fujimoto, “Micronresolution biomedical imaging,” Opt. Photon. News 4, 14–19 (1993).
[CrossRef]

Szmarcinski, H.

E. M. Sevick, J. R. Lokowicz, H. Szmarcinski, K. Nowaczyk, M. L. Johnson, “Frequency domain imaging of absorbers obscured by scattering,” J. Photochem. Photobiol. 16, 169–185 (1992).
[CrossRef]

Valdmanis, J.

Van Germert, C.

Van Marle, J.

Wada, K.

Walker, S.

S. Fantini, M. A. Franceschini, J. Maier, S. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–34 (1995).
[CrossRef]

Wang, L.

L. Wang, X. Liang, P. Galland, P. Ho, R. R. Alfano, “True scattering coefficients of turbid media measured by early-time gating,” Opt. Lett. 20, 913–915 (1995).
[CrossRef] [PubMed]

R. Alfano, X. Liang, L. Wang, P. Ho, “Time-resolved imaging of translucent droplets in highly scattering turbid medium,” Science 264, 1913–1915 (1994).
[CrossRef] [PubMed]

L. Wang, X. Liang, P. Ho, R. R. Alfano, “Kerr-Fourier imaging of hidden objects in thick turbid media,” Opt. Lett. 18, 241–243 (1993).
[CrossRef]

L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

X. Liang, L. Wang, P. Ho, R. R. Alfano, “Time-resolved shadowgrams in turbid media,” in Advances in Optical Imaging and Photon Migration, Trends in Optics and Photonics, Vol. 2 (Optical Society of America, Washington D.C., 1996), pp. 84–86.

X. Liang, L. Wang, P. Ho, R. R. Alfano, “True scattering coefficients of turbid media,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. Alfano, eds., Proc. SPIE2389, 571–574 (1995).
[CrossRef]

Yoo, K.

Zhang, G.

L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Zhao, S.

S. Zhao, M. A. O’Leary, S. Nioka, B. Chance, “Breast tumor detection using continuous wave light detection,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. Alfano, eds., Proc. SPIE2389, 809–813 (1995).
[CrossRef]

Appl. Opt. (1)

J. Photochem. Photobiol. (1)

E. M. Sevick, J. R. Lokowicz, H. Szmarcinski, K. Nowaczyk, M. L. Johnson, “Frequency domain imaging of absorbers obscured by scattering,” J. Photochem. Photobiol. 16, 169–185 (1992).
[CrossRef]

Opt. Eng. (1)

S. Fantini, M. A. Franceschini, J. Maier, S. Walker, B. Barbieri, E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–34 (1995).
[CrossRef]

Opt. Lett. (7)

Opt. Photon. News (1)

J. Izatt, M. Hee, D. Huang, E. Swanson, C. Lin, J. Schuman, C. Puliafito, J. Fujimoto, “Micronresolution biomedical imaging,” Opt. Photon. News 4, 14–19 (1993).
[CrossRef]

Science (3)

L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

R. Alfano, X. Liang, L. Wang, P. Ho, “Time-resolved imaging of translucent droplets in highly scattering turbid medium,” Science 264, 1913–1915 (1994).
[CrossRef] [PubMed]

D. Benaron, D. Stevenson, “Optical time of flight absorbance imaging of biomedical media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

Other (4)

S. Demos, H. Savage, A. Heerdt, S. Schantz, R. Alfano, “Polarization imaging and characterization of human breast tissues,” in Advances in Optical Imaging and Photon Migration, Trends in Optics and Photonics, Vol. 2 (Optical Society of America, Washington D.C., 1996), pp. 113–115.

X. Liang, L. Wang, P. Ho, R. R. Alfano, “Time-resolved shadowgrams in turbid media,” in Advances in Optical Imaging and Photon Migration, Trends in Optics and Photonics, Vol. 2 (Optical Society of America, Washington D.C., 1996), pp. 84–86.

X. Liang, L. Wang, P. Ho, R. R. Alfano, “True scattering coefficients of turbid media,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. Alfano, eds., Proc. SPIE2389, 571–574 (1995).
[CrossRef]

S. Zhao, M. A. O’Leary, S. Nioka, B. Chance, “Breast tumor detection using continuous wave light detection,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. Alfano, eds., Proc. SPIE2389, 809–813 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental arrangement of polarization-controlled KF imaging. F is the focal length used for the Fourier gate.

Fig. 2
Fig. 2

Two-dimensional shadowgrams of an AFTP immersed in a 50-mm-thick cell filled with clear water; cw (P 1 and P 2 were set in the parallel direction) Fourier imaging with a 2-mm-diameter aperture was used. Coded numerical characters 4, 5, and 6 correspond to the line pair numbers of 2.83, 3.17, and 3.56 lp/mm of the AFTP. The widths of these black bars are approximately 0.177, 0.158, and 0.14 mm, respectively. The reduction of image sharpness was due to the 2-mm aperture placed in the Fourier plane, which removed higher spatial frequency components. The measured contrast for 0.14-mm width bars was 0.92. The contrast is defined to be [I (bright bar) - I (dark bar) ]/[I (bright bar) + I (dark bar)] × 100%. Both values of I (bright bar) and I (dark bar) were obtained from average digitized values of the bright bar and the dark bar of the image, respectively, then subtracted from the dark current of the CCD camera by using the IPLab package.

Fig. 3
Fig. 3

KF shadowgrams of an AFTP immersed in 50-mm-thick diluted Intralipid solutions measured at the 0-ps gate delay time. The dilutions of the Intralipid solutions were 0.5%, 1.5%, and 2% dilutions of a 10% Intralipid stock solution. The final Intralipid concentrations were 0.05%, 0.15%, and 0.2% (scattering paths of 5.4, 16.2, and 21.5 l s , respectively, from a 50-mm-thick sample). Probing wavelength: 1054 nm. P L and P 1 were polarization directions of the probe laser and the first polarizer of the Kerr gate, respectively.

Fig. 4
Fig. 4

Time-dependent KF shadowgrams of an AFTP immersed in a 0.2% Intralipid solution at gate delay times of 0, 26.6, and 33.3 ps. The measured three phantom bar sets were 2.83, 3.17, and 3.56 lp/mm. The polarization direction of the incident probe pulse P L was parallel to P 1.

Fig. 5
Fig. 5

Contrast and spatial resolution of KF polarization shadowgrams measured at T D = 0 of an AFTP in diluted Intralipid solutions: □, 0%; ○, 0.05%; ▲, 0.1%; ●, 0.15%; ■, 0.2%. The solid and dashed curves were eye-guided curves for the parallel- and perpendicular-polarized shadowgrams, respectively.

Fig. 6
Fig. 6

Contrast of KF polarization shadowgrams with phantom bars at 2.83 lp/mm measured at T D = 0 ps. Solid and dashed curves were eye-guided curves for the parallel- and perpendicular-polarized shadowgrams, respectively.

Fig. 7
Fig. 7

Depolarization ratio, I /I //, as a function of the Intralipid concentration measured at T D = 0 ps KF gate. The solid curve is a fitted curve: y = 0.01 + 0.05 x, where x is the concentration of Intralipid in a 0.1% unit.

Fig. 8
Fig. 8

Contrast of KF polarization shadowgrams of an AFTP in a 0.2% Intralipid solution as a function of gate delay time. Solid and dashed curves are eye-guided curves for the parallel- and perpendicular-polarized shadowgrams, respectively.

Metrics