Abstract

A new method for simple and sensitive detection of photothermal strain caused by laser irradiation of plastic plates has been proposed. In-plane strain of the surface is detected directly by optoelectronic detection of speckle displacements at two symmetrical positions about a probe beam. The initial bending of the plate owing to the temperature gradient along the plate thickness is measured and shows good agreement with one-dimensional calculations.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rose, R. Vyas, R. Gupta, “Pulsed photothermal deflection spectroscopy in a flowing medium: a quantitative investigation,” Appl. Opt. 25, 4626–4643 (1986).
    [CrossRef] [PubMed]
  2. G. Rousset, P. Cielo, L. Bertrand, “A pulsed thermoelastic analysis of photothermal surface displacement in layered materials,” J. Appl. Phys. 57, 4396–4405 (1985).
    [CrossRef]
  3. G. Rousset, F. Lepoutre, “Influence of thermoelastic bending on photoacoustic experiments related to measurements of thermal diffusivity of metals,” J. Appl. Phys. 54, 2383–2391 (1983).
    [CrossRef]
  4. W. Jackson, N. Amer, “Piezoelectric photoacoustic detection: theory and experiment,” J. Appl. Phys. 51, 3343–3353 (1980).
    [CrossRef]
  5. G. Busse, “Optoacoustic and photothermal material inspection techniques,” Appl. Opt. 21, 107–110 (1982).
    [CrossRef] [PubMed]
  6. K. Hane, T. Kanie, S. Hattori, “Photothermoelastic probing for a clamped plate sample,” Appl. Opt. 27, 386–392 (1988).
    [CrossRef] [PubMed]
  7. A. Boccara, D. Fournier, J. Badoz, “Thermo-optical spectroscopy: detection by the ‘mirage effect’,” Appl. Phys. Lett. 36, 130–132 (1980).
    [CrossRef]
  8. I. Yamaguchi, T. Takemori, K. Kobasyashi, “Stabilized and accelerated speckle strain gauge,” Opt. Eng. 32, 618–625 (1993).
    [CrossRef]
  9. I. Yamaguchi, K. Kobayashi, “Material testing by the laser speckle strain gauge,” in Second International Conference on Photomechanics and Speckle Metrology: Speckle Techniques, Birefringence Methods, and Applications to Solid Mechanics, F.-P. Chiang, ed., Proc. SPIE1554A, 240–249 (1991).
  10. P. Charpentier, F. Lepoutre, “Photoacoustic measurements of thermal diffusivity description of the ‘drum effect’,” J. Appl. Phys. 53, 608–614 (1982).
    [CrossRef]
  11. H. Grober, S. Erk, Fundamentals of Heat Transfer (McGraw-Hill, New York, 1961), Chap. 3, p. 44.

1993 (1)

I. Yamaguchi, T. Takemori, K. Kobasyashi, “Stabilized and accelerated speckle strain gauge,” Opt. Eng. 32, 618–625 (1993).
[CrossRef]

1988 (1)

1986 (1)

1985 (1)

G. Rousset, P. Cielo, L. Bertrand, “A pulsed thermoelastic analysis of photothermal surface displacement in layered materials,” J. Appl. Phys. 57, 4396–4405 (1985).
[CrossRef]

1983 (1)

G. Rousset, F. Lepoutre, “Influence of thermoelastic bending on photoacoustic experiments related to measurements of thermal diffusivity of metals,” J. Appl. Phys. 54, 2383–2391 (1983).
[CrossRef]

1982 (2)

P. Charpentier, F. Lepoutre, “Photoacoustic measurements of thermal diffusivity description of the ‘drum effect’,” J. Appl. Phys. 53, 608–614 (1982).
[CrossRef]

G. Busse, “Optoacoustic and photothermal material inspection techniques,” Appl. Opt. 21, 107–110 (1982).
[CrossRef] [PubMed]

1980 (2)

W. Jackson, N. Amer, “Piezoelectric photoacoustic detection: theory and experiment,” J. Appl. Phys. 51, 3343–3353 (1980).
[CrossRef]

A. Boccara, D. Fournier, J. Badoz, “Thermo-optical spectroscopy: detection by the ‘mirage effect’,” Appl. Phys. Lett. 36, 130–132 (1980).
[CrossRef]

Amer, N.

W. Jackson, N. Amer, “Piezoelectric photoacoustic detection: theory and experiment,” J. Appl. Phys. 51, 3343–3353 (1980).
[CrossRef]

Badoz, J.

A. Boccara, D. Fournier, J. Badoz, “Thermo-optical spectroscopy: detection by the ‘mirage effect’,” Appl. Phys. Lett. 36, 130–132 (1980).
[CrossRef]

Bertrand, L.

G. Rousset, P. Cielo, L. Bertrand, “A pulsed thermoelastic analysis of photothermal surface displacement in layered materials,” J. Appl. Phys. 57, 4396–4405 (1985).
[CrossRef]

Boccara, A.

A. Boccara, D. Fournier, J. Badoz, “Thermo-optical spectroscopy: detection by the ‘mirage effect’,” Appl. Phys. Lett. 36, 130–132 (1980).
[CrossRef]

Busse, G.

Charpentier, P.

P. Charpentier, F. Lepoutre, “Photoacoustic measurements of thermal diffusivity description of the ‘drum effect’,” J. Appl. Phys. 53, 608–614 (1982).
[CrossRef]

Cielo, P.

G. Rousset, P. Cielo, L. Bertrand, “A pulsed thermoelastic analysis of photothermal surface displacement in layered materials,” J. Appl. Phys. 57, 4396–4405 (1985).
[CrossRef]

Erk, S.

H. Grober, S. Erk, Fundamentals of Heat Transfer (McGraw-Hill, New York, 1961), Chap. 3, p. 44.

Fournier, D.

A. Boccara, D. Fournier, J. Badoz, “Thermo-optical spectroscopy: detection by the ‘mirage effect’,” Appl. Phys. Lett. 36, 130–132 (1980).
[CrossRef]

Grober, H.

H. Grober, S. Erk, Fundamentals of Heat Transfer (McGraw-Hill, New York, 1961), Chap. 3, p. 44.

Gupta, R.

Hane, K.

Hattori, S.

Jackson, W.

W. Jackson, N. Amer, “Piezoelectric photoacoustic detection: theory and experiment,” J. Appl. Phys. 51, 3343–3353 (1980).
[CrossRef]

Kanie, T.

Kobasyashi, K.

I. Yamaguchi, T. Takemori, K. Kobasyashi, “Stabilized and accelerated speckle strain gauge,” Opt. Eng. 32, 618–625 (1993).
[CrossRef]

Kobayashi, K.

I. Yamaguchi, K. Kobayashi, “Material testing by the laser speckle strain gauge,” in Second International Conference on Photomechanics and Speckle Metrology: Speckle Techniques, Birefringence Methods, and Applications to Solid Mechanics, F.-P. Chiang, ed., Proc. SPIE1554A, 240–249 (1991).

Lepoutre, F.

G. Rousset, F. Lepoutre, “Influence of thermoelastic bending on photoacoustic experiments related to measurements of thermal diffusivity of metals,” J. Appl. Phys. 54, 2383–2391 (1983).
[CrossRef]

P. Charpentier, F. Lepoutre, “Photoacoustic measurements of thermal diffusivity description of the ‘drum effect’,” J. Appl. Phys. 53, 608–614 (1982).
[CrossRef]

Rose, A.

Rousset, G.

G. Rousset, P. Cielo, L. Bertrand, “A pulsed thermoelastic analysis of photothermal surface displacement in layered materials,” J. Appl. Phys. 57, 4396–4405 (1985).
[CrossRef]

G. Rousset, F. Lepoutre, “Influence of thermoelastic bending on photoacoustic experiments related to measurements of thermal diffusivity of metals,” J. Appl. Phys. 54, 2383–2391 (1983).
[CrossRef]

Takemori, T.

I. Yamaguchi, T. Takemori, K. Kobasyashi, “Stabilized and accelerated speckle strain gauge,” Opt. Eng. 32, 618–625 (1993).
[CrossRef]

Vyas, R.

Yamaguchi, I.

I. Yamaguchi, T. Takemori, K. Kobasyashi, “Stabilized and accelerated speckle strain gauge,” Opt. Eng. 32, 618–625 (1993).
[CrossRef]

I. Yamaguchi, K. Kobayashi, “Material testing by the laser speckle strain gauge,” in Second International Conference on Photomechanics and Speckle Metrology: Speckle Techniques, Birefringence Methods, and Applications to Solid Mechanics, F.-P. Chiang, ed., Proc. SPIE1554A, 240–249 (1991).

Appl. Opt. (3)

Appl. Phys. Lett. (1)

A. Boccara, D. Fournier, J. Badoz, “Thermo-optical spectroscopy: detection by the ‘mirage effect’,” Appl. Phys. Lett. 36, 130–132 (1980).
[CrossRef]

J. Appl. Phys. (4)

G. Rousset, P. Cielo, L. Bertrand, “A pulsed thermoelastic analysis of photothermal surface displacement in layered materials,” J. Appl. Phys. 57, 4396–4405 (1985).
[CrossRef]

G. Rousset, F. Lepoutre, “Influence of thermoelastic bending on photoacoustic experiments related to measurements of thermal diffusivity of metals,” J. Appl. Phys. 54, 2383–2391 (1983).
[CrossRef]

W. Jackson, N. Amer, “Piezoelectric photoacoustic detection: theory and experiment,” J. Appl. Phys. 51, 3343–3353 (1980).
[CrossRef]

P. Charpentier, F. Lepoutre, “Photoacoustic measurements of thermal diffusivity description of the ‘drum effect’,” J. Appl. Phys. 53, 608–614 (1982).
[CrossRef]

Opt. Eng. (1)

I. Yamaguchi, T. Takemori, K. Kobasyashi, “Stabilized and accelerated speckle strain gauge,” Opt. Eng. 32, 618–625 (1993).
[CrossRef]

Other (2)

I. Yamaguchi, K. Kobayashi, “Material testing by the laser speckle strain gauge,” in Second International Conference on Photomechanics and Speckle Metrology: Speckle Techniques, Birefringence Methods, and Applications to Solid Mechanics, F.-P. Chiang, ed., Proc. SPIE1554A, 240–249 (1991).

H. Grober, S. Erk, Fundamentals of Heat Transfer (McGraw-Hill, New York, 1961), Chap. 3, p. 44.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

History of photothermal strain and temperature after laser irradiation.

Fig. 3
Fig. 3

Dependence on incident power.

Fig. 4
Fig. 4

Dependence on plate thickness.

Fig. 5
Fig. 5

Coordinate system for theoretical analysis.

Fig. 6
Fig. 6

Theoretical results for various incident powers.

Fig. 7
Fig. 7

Theoretical results for various plate thicknesses.

Tables (1)

Tables Icon

Table 1 Values of Elastic and Thermal Constants Used in Experiments and Calculations

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

εx=-AXθ-AX-θ2L tan θ.
Tz, tt=D2Tz, tz2,
KTz=qav  at z=d2,
Tz=0  at z=-d2,
Tz, t=qavdK1-n=12 sin δnsin δn cos δn+δn×exp-δn2Dd2tcosδndd2+z,
δ tan δ=qavdK.
εrt=αd-d/2d/2 Tz, tdz-6αd2-d/2d/2 zTz, tdz,

Metrics