Abstract

This structured light projection technique has been developed for the inspection of holes and tubes. In contrast to others, the triangulation base is parallel to the line of sight. The features of systems using this measurement method are the following: high accuracy in the wide-angle region, minimal diameter, symmetry of the measurements to the line of sight, and simplified coordinate calculation. The prototype application is the optics of the sewer pipe inspection robot KARO. Application fields are medical or technical wide-angle inspection systems (e.g., endoscopes).

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H.-B. Kuntze, D. Schmidt, H. Haffner, “Inspektion von Abwasserkanäalen mit einem mobilen Roboter,” Spektrum Wissenschaft, Mäarz, 100–107 (1995).
  2. “A System for Three-Dimensional Measurement of Inaccessible Hollow Spaces,” (29July1994).
  3. “Process for Detecting Totally or Partially Hidden Nonhomogeneities by Means of Microwave Radiation,” (23November1994).

Haffner, H.

H.-B. Kuntze, D. Schmidt, H. Haffner, “Inspektion von Abwasserkanäalen mit einem mobilen Roboter,” Spektrum Wissenschaft, Mäarz, 100–107 (1995).

Kuntze, H.-B.

H.-B. Kuntze, D. Schmidt, H. Haffner, “Inspektion von Abwasserkanäalen mit einem mobilen Roboter,” Spektrum Wissenschaft, Mäarz, 100–107 (1995).

Schmidt, D.

H.-B. Kuntze, D. Schmidt, H. Haffner, “Inspektion von Abwasserkanäalen mit einem mobilen Roboter,” Spektrum Wissenschaft, Mäarz, 100–107 (1995).

Other

H.-B. Kuntze, D. Schmidt, H. Haffner, “Inspektion von Abwasserkanäalen mit einem mobilen Roboter,” Spektrum Wissenschaft, Mäarz, 100–107 (1995).

“A System for Three-Dimensional Measurement of Inaccessible Hollow Spaces,” (29July1994).

“Process for Detecting Totally or Partially Hidden Nonhomogeneities by Means of Microwave Radiation,” (23November1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Basic principle of 3D measurement by structured light projection.

Fig. 2
Fig. 2

Principle of operation of optical 3D measurements by radially symmetric structured light projection.

Fig. 3
Fig. 3

Typical pattern of the light intersection of a system using a radially symmetric structured light projection; a rectangular solid is observed lying on a plane.

Fig. 4
Fig. 4

Relative measurement accuracy of an optical 3D measurement system using radially symmetric structured light projection: The radial coordinate is shown.

Fig. 5
Fig. 5

Relative measurement accuracy of an optical 3D measurement system using radially symmetric structured light projection: The Z coordinate is shown.

Fig. 6
Fig. 6

Example of a standard arrangement for an optical 3D measurement system by structured light projection.

Fig. 7
Fig. 7

Comparison of the measurement accuracies of the standard arrangement of Fig. 6 (solid curve) with that of the proposed system (see Fig. 2) (dotted curve): The accuracy of measurements of the X coordinate is shown.

Fig. 8
Fig. 8

Comparison of the measurement accuracies of the standard arrangement with Fig. 6 and with that of the proposed system (see Fig. 2) (dotted curve): The accuracy of the Z-coordinate measurements is shown.

Fig. 9
Fig. 9

Minimal configuration of a system using radially symmetric structured light projection.

Fig. 10
Fig. 10

Sewer pipe inspection robot1 KARO was developed for the inspection of pipes with diameters in the 20–50-cm range. In front of the robot is the pan and tilt head, bearing the color TV camera for visual inspection and the optical 3D measurement system.2 In addition to the optics, KARO provides ultrasonic sensors and a microwave sensor.3

Fig. 11
Fig. 11

Schematic diagram of the optics of the sewer pipe inspection robot KARO.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

X=xZf-1.
X=Z tanw-b.
X=Z-atanw.
X=x f tanw-bx-f tanw,
Z=f x-bx-f tanw
X=x f-atanwx-f tanw,
Z=f x-a tanwx-f tanw,
R=r tanwf-ar-f tanw,
Z=fr-a tanwr-f tanw.
σR=a-ff tan2wr-f tanw2 σr,
σZ=a-ff tanwr-f tanw2σr.
X=b2+f tanwx+bx-f tanw,
Z=f x+bx-f tanw.
σX=f tanwb+f tanwx-f tanw2σx.
σZ=fb+f tanwx-f tanw2 σx.
X=xxb+tan2w f2±tan2w f2y2+x+b2-y2b2y2+x2-tan2w-b2,
Y=yxb+tan2w f2±tan2w f2y2+x+b2-y2b21/2x2+y2-tan2w,
Z=fx2+xb+y2±tan2w f2y2+x+b2-y2b21/2x2+y2-tan2w.

Metrics