Abstract

The variation in properties of a fluorocarbon polymer (FCP) film during a drying–curing process is investigated for fabricating FCP-coated silver (FCP/Ag) hollow glass waveguides. A dynamic liquid-phase coating procedure is used. Through the analyses of the loss spectra of hollow waveguides made in various conditions, a relationship between the thickness of the FCP film and the coating velocity is obtained. The optimum fabrication condition is also established for producing FCP/Ag hollow glass waveguides for the mid-IR.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Miyagi, A. Hongo, S. Kawakami, “An infrared waveguide for 10.6 µm wave transmission—metallic hollow waveguide with inner dielectric layers,” in Technical Digest of the Institute of Electronics and Communications Engineers (IECE, Japan, 1981), paper OQE80-128. (in Japanese)
  2. M. E. Marhic, “Mode-coupling analysis of bending losses in IR metallic waveguides,” Appl. Opt. 20, 3436–3441 (1981).
    [CrossRef] [PubMed]
  3. M. Miyagi, A. Hongo, S. Kawakami, “Transmission characteristics of dielectric-coated metallic waveguides for infrared transmission: Slab waveguide model,” IEEE J. Quantum Electron. QE-19, 136–145 (1983).
    [CrossRef]
  4. J. A. Harrington, Y. Matsuura, “Review of hollow waveguide technology,” in Biomedical Optical Instrumentation, A. Katzier, A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 4–14 (1995).
    [CrossRef]
  5. A. Hongo, K. Morosawa, K. Matsumoto, T. Shiota, T. Hashimoto, “Transmission of kilowatt-class CO2 laser light through dielectric-coated metallic hollow waveguides for material processing,” Appl. Opt. 31, 5114–5120 (1992).
    [CrossRef] [PubMed]
  6. Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
    [CrossRef] [PubMed]
  7. C. E. Morrow, G. Gu, “Fiberlase: a monolithic hollow waveguide,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 18–27 (1994).
    [CrossRef]
  8. I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Croitoru, “Flexible waveguides for Er:YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
    [CrossRef] [PubMed]
  9. Y. Matsuura, J. A. Harrington, “Infrared hollow waveguides fabricated by chemical vapor deposition,” Opt. Lett. 20, 2078–2080 (1995).
    [CrossRef] [PubMed]
  10. R. K. Nubling, J. A. Harrington, “Hollow waveguide delivery systems for high-power, industrial CO2 lasers,” Appl. Opt. 35, 372–380 (1996).
    [CrossRef] [PubMed]
  11. Y. Kato, M. Miyagi, “Fabrication of nontoxic and durable fluorocarbon-coated silver waveguides for the infrared: a new approach,” in Biomedical Optoelectronic Devices and Systems, N. L. Croitoru, R. Pratesi, eds., Proc. SPIE2084, 27–37 (1994).
    [CrossRef]
  12. Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
    [CrossRef]
  13. M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow glass waveguides for the infrared by the liquid-phase coating method,” Opt. Lasers Technol. 27, 393–396 (1995).
    [CrossRef]
  14. T. Abel, J. Hirsch, J. A. Harrington, “Hollow waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994).
    [CrossRef] [PubMed]
  15. J. H. Lowry, J. S. Mendlowitz, N. S. Subramanian, “Optical characteristics of Teflon AF fluoroplastic materials,” Opt. Eng. 31, 1982–1986 (1992).
    [CrossRef]
  16. M. Saito, T. Gojo, Y. Kato, M. Miyagi, “Optical constants of polymer coating in the infrared,” Infrared Phys. Technol. 36, 1125–1129 (1995).
    [CrossRef]
  17. M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
    [CrossRef]
  18. Y. Matsuura, T. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
    [CrossRef] [PubMed]
  19. Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
    [CrossRef]
  20. A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, T. Shimomura, “Fabrication of dielectric-coated silver hollow waveguides for the infrared by liquid-flow coating method,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 55–63 (1996).
    [CrossRef]
  21. E. D. Palik, Handbook of Optical Constants of Solids, 1st ed. (Academic, Orlando, Fla., 1985), Part 2, pp. 350–351.
  22. M. Bass, Handbook of Optics, Vol. 1 (McGraw-Hill, New York, 1995), Part 11, p. 42.12.
  23. S. Tomotika, “On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid,” Proc. R. Soc. London Ser. A 150, 322–337 (1935).
    [CrossRef]
  24. R. N. Marchessault, S. G. Mason, “Flow of entrapped bubbles through a capillary,” Ind. Eng. Chem. 52, 79–84 (1960).
    [CrossRef]
  25. M. Novotny, K. D. Bartle, L. Blomberg, “Dependence of film thickness on column radius and coating rate in preparation of capillary columns for gas chromatography,” J. Chromatogr. 45, 469–471 (1969).
    [CrossRef]
  26. K. D. Bartle, “Film thickness of dynamically coated open-tubular glass columns for gas chromatography,” Anal. Chem. 45, 1831–1836 (1973).
    [CrossRef]
  27. F. Fairbrother, A. E. Stubbs, “Studies in electro-endosmosis. Part VI. The ‘bubble-tube’ method of measurement,” J. Chem. Soc. 1, 527–529 (1935).
    [CrossRef]
  28. L. W. Beerstecher, Fachgebiet Instrumente, Siemens, Fabrikstrasse 31, D-64625, Bensheim, Germany.

1996

1995

Y. Matsuura, T. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
[CrossRef] [PubMed]

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Croitoru, “Flexible waveguides for Er:YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

M. Saito, T. Gojo, Y. Kato, M. Miyagi, “Optical constants of polymer coating in the infrared,” Infrared Phys. Technol. 36, 1125–1129 (1995).
[CrossRef]

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[CrossRef]

M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow glass waveguides for the infrared by the liquid-phase coating method,” Opt. Lasers Technol. 27, 393–396 (1995).
[CrossRef]

Y. Matsuura, J. A. Harrington, “Infrared hollow waveguides fabricated by chemical vapor deposition,” Opt. Lett. 20, 2078–2080 (1995).
[CrossRef] [PubMed]

1994

1993

1992

1989

1984

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

1983

M. Miyagi, A. Hongo, S. Kawakami, “Transmission characteristics of dielectric-coated metallic waveguides for infrared transmission: Slab waveguide model,” IEEE J. Quantum Electron. QE-19, 136–145 (1983).
[CrossRef]

1981

1973

K. D. Bartle, “Film thickness of dynamically coated open-tubular glass columns for gas chromatography,” Anal. Chem. 45, 1831–1836 (1973).
[CrossRef]

1969

M. Novotny, K. D. Bartle, L. Blomberg, “Dependence of film thickness on column radius and coating rate in preparation of capillary columns for gas chromatography,” J. Chromatogr. 45, 469–471 (1969).
[CrossRef]

1960

R. N. Marchessault, S. G. Mason, “Flow of entrapped bubbles through a capillary,” Ind. Eng. Chem. 52, 79–84 (1960).
[CrossRef]

1935

S. Tomotika, “On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid,” Proc. R. Soc. London Ser. A 150, 322–337 (1935).
[CrossRef]

F. Fairbrother, A. E. Stubbs, “Studies in electro-endosmosis. Part VI. The ‘bubble-tube’ method of measurement,” J. Chem. Soc. 1, 527–529 (1935).
[CrossRef]

Abe, S.

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[CrossRef]

M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow glass waveguides for the infrared by the liquid-phase coating method,” Opt. Lasers Technol. 27, 393–396 (1995).
[CrossRef]

Abel, T.

Aizawa, M.

M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow glass waveguides for the infrared by the liquid-phase coating method,” Opt. Lasers Technol. 27, 393–396 (1995).
[CrossRef]

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[CrossRef]

Bartle, K. D.

K. D. Bartle, “Film thickness of dynamically coated open-tubular glass columns for gas chromatography,” Anal. Chem. 45, 1831–1836 (1973).
[CrossRef]

M. Novotny, K. D. Bartle, L. Blomberg, “Dependence of film thickness on column radius and coating rate in preparation of capillary columns for gas chromatography,” J. Chromatogr. 45, 469–471 (1969).
[CrossRef]

Bass, M.

M. Bass, Handbook of Optics, Vol. 1 (McGraw-Hill, New York, 1995), Part 11, p. 42.12.

Blomberg, L.

M. Novotny, K. D. Bartle, L. Blomberg, “Dependence of film thickness on column radius and coating rate in preparation of capillary columns for gas chromatography,” J. Chromatogr. 45, 469–471 (1969).
[CrossRef]

Croitoru, N.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Croitoru, “Flexible waveguides for Er:YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Dror, J.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Croitoru, “Flexible waveguides for Er:YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Ertl, T.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Croitoru, “Flexible waveguides for Er:YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Fairbrother, F.

F. Fairbrother, A. E. Stubbs, “Studies in electro-endosmosis. Part VI. The ‘bubble-tube’ method of measurement,” J. Chem. Soc. 1, 527–529 (1935).
[CrossRef]

Gannot, I.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Croitoru, “Flexible waveguides for Er:YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Gojo, T.

M. Saito, T. Gojo, Y. Kato, M. Miyagi, “Optical constants of polymer coating in the infrared,” Infrared Phys. Technol. 36, 1125–1129 (1995).
[CrossRef]

Gu, G.

C. E. Morrow, G. Gu, “Fiberlase: a monolithic hollow waveguide,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 18–27 (1994).
[CrossRef]

Harrington, J. A.

Hashimoto, T.

Hirsch, J.

Hongo, A.

A. Hongo, K. Morosawa, K. Matsumoto, T. Shiota, T. Hashimoto, “Transmission of kilowatt-class CO2 laser light through dielectric-coated metallic hollow waveguides for material processing,” Appl. Opt. 31, 5114–5120 (1992).
[CrossRef] [PubMed]

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

M. Miyagi, A. Hongo, S. Kawakami, “Transmission characteristics of dielectric-coated metallic waveguides for infrared transmission: Slab waveguide model,” IEEE J. Quantum Electron. QE-19, 136–145 (1983).
[CrossRef]

M. Miyagi, A. Hongo, S. Kawakami, “An infrared waveguide for 10.6 µm wave transmission—metallic hollow waveguide with inner dielectric layers,” in Technical Digest of the Institute of Electronics and Communications Engineers (IECE, Japan, 1981), paper OQE80-128. (in Japanese)

A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, T. Shimomura, “Fabrication of dielectric-coated silver hollow waveguides for the infrared by liquid-flow coating method,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 55–63 (1996).
[CrossRef]

Inberg, A.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Croitoru, “Flexible waveguides for Er:YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Kato, Y.

M. Saito, T. Gojo, Y. Kato, M. Miyagi, “Optical constants of polymer coating in the infrared,” Infrared Phys. Technol. 36, 1125–1129 (1995).
[CrossRef]

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[CrossRef]

M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow glass waveguides for the infrared by the liquid-phase coating method,” Opt. Lasers Technol. 27, 393–396 (1995).
[CrossRef]

A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, T. Shimomura, “Fabrication of dielectric-coated silver hollow waveguides for the infrared by liquid-flow coating method,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 55–63 (1996).
[CrossRef]

Y. Kato, M. Miyagi, “Fabrication of nontoxic and durable fluorocarbon-coated silver waveguides for the infrared: a new approach,” in Biomedical Optoelectronic Devices and Systems, N. L. Croitoru, R. Pratesi, eds., Proc. SPIE2084, 27–37 (1994).
[CrossRef]

Kawakami, S.

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

M. Miyagi, A. Hongo, S. Kawakami, “Transmission characteristics of dielectric-coated metallic waveguides for infrared transmission: Slab waveguide model,” IEEE J. Quantum Electron. QE-19, 136–145 (1983).
[CrossRef]

M. Miyagi, A. Hongo, S. Kawakami, “An infrared waveguide for 10.6 µm wave transmission—metallic hollow waveguide with inner dielectric layers,” in Technical Digest of the Institute of Electronics and Communications Engineers (IECE, Japan, 1981), paper OQE80-128. (in Japanese)

Kubota, S.

A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, T. Shimomura, “Fabrication of dielectric-coated silver hollow waveguides for the infrared by liquid-flow coating method,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 55–63 (1996).
[CrossRef]

Lowry, J. H.

J. H. Lowry, J. S. Mendlowitz, N. S. Subramanian, “Optical characteristics of Teflon AF fluoroplastic materials,” Opt. Eng. 31, 1982–1986 (1992).
[CrossRef]

Marchessault, R. N.

R. N. Marchessault, S. G. Mason, “Flow of entrapped bubbles through a capillary,” Ind. Eng. Chem. 52, 79–84 (1960).
[CrossRef]

Marhic, M. E.

Mason, S. G.

R. N. Marchessault, S. G. Mason, “Flow of entrapped bubbles through a capillary,” Ind. Eng. Chem. 52, 79–84 (1960).
[CrossRef]

Matsumoto, K.

Matsuura, Y.

Mendlowitz, J. S.

J. H. Lowry, J. S. Mendlowitz, N. S. Subramanian, “Optical characteristics of Teflon AF fluoroplastic materials,” Opt. Eng. 31, 1982–1986 (1992).
[CrossRef]

Miyagi, M.

M. Saito, T. Gojo, Y. Kato, M. Miyagi, “Optical constants of polymer coating in the infrared,” Infrared Phys. Technol. 36, 1125–1129 (1995).
[CrossRef]

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[CrossRef]

M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow glass waveguides for the infrared by the liquid-phase coating method,” Opt. Lasers Technol. 27, 393–396 (1995).
[CrossRef]

Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
[CrossRef] [PubMed]

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

M. Miyagi, A. Hongo, S. Kawakami, “Transmission characteristics of dielectric-coated metallic waveguides for infrared transmission: Slab waveguide model,” IEEE J. Quantum Electron. QE-19, 136–145 (1983).
[CrossRef]

M. Miyagi, A. Hongo, S. Kawakami, “An infrared waveguide for 10.6 µm wave transmission—metallic hollow waveguide with inner dielectric layers,” in Technical Digest of the Institute of Electronics and Communications Engineers (IECE, Japan, 1981), paper OQE80-128. (in Japanese)

A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, T. Shimomura, “Fabrication of dielectric-coated silver hollow waveguides for the infrared by liquid-flow coating method,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 55–63 (1996).
[CrossRef]

Y. Kato, M. Miyagi, “Fabrication of nontoxic and durable fluorocarbon-coated silver waveguides for the infrared: a new approach,” in Biomedical Optoelectronic Devices and Systems, N. L. Croitoru, R. Pratesi, eds., Proc. SPIE2084, 27–37 (1994).
[CrossRef]

Morosawa, K.

Morrow, C. E.

C. E. Morrow, G. Gu, “Fiberlase: a monolithic hollow waveguide,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 18–27 (1994).
[CrossRef]

Muller, G. J.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Croitoru, “Flexible waveguides for Er:YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Novotny, M.

M. Novotny, K. D. Bartle, L. Blomberg, “Dependence of film thickness on column radius and coating rate in preparation of capillary columns for gas chromatography,” J. Chromatogr. 45, 469–471 (1969).
[CrossRef]

Nubling, R. K.

Onodera, S.

M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow glass waveguides for the infrared by the liquid-phase coating method,” Opt. Lasers Technol. 27, 393–396 (1995).
[CrossRef]

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[CrossRef]

Osawa, M.

M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow glass waveguides for the infrared by the liquid-phase coating method,” Opt. Lasers Technol. 27, 393–396 (1995).
[CrossRef]

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids, 1st ed. (Academic, Orlando, Fla., 1985), Part 2, pp. 350–351.

Saito, M.

M. Saito, T. Gojo, Y. Kato, M. Miyagi, “Optical constants of polymer coating in the infrared,” Infrared Phys. Technol. 36, 1125–1129 (1995).
[CrossRef]

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

Schrunder, S.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Croitoru, “Flexible waveguides for Er:YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Shimomura, T.

A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, T. Shimomura, “Fabrication of dielectric-coated silver hollow waveguides for the infrared by liquid-flow coating method,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 55–63 (1996).
[CrossRef]

Shiota, T.

Stubbs, A. E.

F. Fairbrother, A. E. Stubbs, “Studies in electro-endosmosis. Part VI. The ‘bubble-tube’ method of measurement,” J. Chem. Soc. 1, 527–529 (1935).
[CrossRef]

Subramanian, N. S.

J. H. Lowry, J. S. Mendlowitz, N. S. Subramanian, “Optical characteristics of Teflon AF fluoroplastic materials,” Opt. Eng. 31, 1982–1986 (1992).
[CrossRef]

Suzumura, M.

A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, T. Shimomura, “Fabrication of dielectric-coated silver hollow waveguides for the infrared by liquid-flow coating method,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 55–63 (1996).
[CrossRef]

Tomotika, S.

S. Tomotika, “On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid,” Proc. R. Soc. London Ser. A 150, 322–337 (1935).
[CrossRef]

Tschepe, J.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Croitoru, “Flexible waveguides for Er:YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Wang, Y.

A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, T. Shimomura, “Fabrication of dielectric-coated silver hollow waveguides for the infrared by liquid-flow coating method,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 55–63 (1996).
[CrossRef]

Watanabe, T.

M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow glass waveguides for the infrared by the liquid-phase coating method,” Opt. Lasers Technol. 27, 393–396 (1995).
[CrossRef]

Anal. Chem.

K. D. Bartle, “Film thickness of dynamically coated open-tubular glass columns for gas chromatography,” Anal. Chem. 45, 1831–1836 (1973).
[CrossRef]

Appl. Opt.

Electron. Lett.

Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
[CrossRef]

IEEE J. Quantum Electron.

M. Miyagi, A. Hongo, S. Kawakami, “Transmission characteristics of dielectric-coated metallic waveguides for infrared transmission: Slab waveguide model,” IEEE J. Quantum Electron. QE-19, 136–145 (1983).
[CrossRef]

IEEE Trans. Biomed. Eng.

I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, N. Croitoru, “Flexible waveguides for Er:YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
[CrossRef] [PubMed]

Ind. Eng. Chem.

R. N. Marchessault, S. G. Mason, “Flow of entrapped bubbles through a capillary,” Ind. Eng. Chem. 52, 79–84 (1960).
[CrossRef]

Infrared Phys. Technol.

M. Saito, T. Gojo, Y. Kato, M. Miyagi, “Optical constants of polymer coating in the infrared,” Infrared Phys. Technol. 36, 1125–1129 (1995).
[CrossRef]

J. Chem. Soc.

F. Fairbrother, A. E. Stubbs, “Studies in electro-endosmosis. Part VI. The ‘bubble-tube’ method of measurement,” J. Chem. Soc. 1, 527–529 (1935).
[CrossRef]

J. Chromatogr.

M. Novotny, K. D. Bartle, L. Blomberg, “Dependence of film thickness on column radius and coating rate in preparation of capillary columns for gas chromatography,” J. Chromatogr. 45, 469–471 (1969).
[CrossRef]

J. Lightwave Technol.

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Eng.

J. H. Lowry, J. S. Mendlowitz, N. S. Subramanian, “Optical characteristics of Teflon AF fluoroplastic materials,” Opt. Eng. 31, 1982–1986 (1992).
[CrossRef]

Opt. Lasers Technol.

M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow glass waveguides for the infrared by the liquid-phase coating method,” Opt. Lasers Technol. 27, 393–396 (1995).
[CrossRef]

Opt. Lett.

Proc. R. Soc. London Ser. A

S. Tomotika, “On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid,” Proc. R. Soc. London Ser. A 150, 322–337 (1935).
[CrossRef]

Other

L. W. Beerstecher, Fachgebiet Instrumente, Siemens, Fabrikstrasse 31, D-64625, Bensheim, Germany.

M. Miyagi, A. Hongo, S. Kawakami, “An infrared waveguide for 10.6 µm wave transmission—metallic hollow waveguide with inner dielectric layers,” in Technical Digest of the Institute of Electronics and Communications Engineers (IECE, Japan, 1981), paper OQE80-128. (in Japanese)

A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, T. Shimomura, “Fabrication of dielectric-coated silver hollow waveguides for the infrared by liquid-flow coating method,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 55–63 (1996).
[CrossRef]

E. D. Palik, Handbook of Optical Constants of Solids, 1st ed. (Academic, Orlando, Fla., 1985), Part 2, pp. 350–351.

M. Bass, Handbook of Optics, Vol. 1 (McGraw-Hill, New York, 1995), Part 11, p. 42.12.

Y. Kato, M. Miyagi, “Fabrication of nontoxic and durable fluorocarbon-coated silver waveguides for the infrared: a new approach,” in Biomedical Optoelectronic Devices and Systems, N. L. Croitoru, R. Pratesi, eds., Proc. SPIE2084, 27–37 (1994).
[CrossRef]

J. A. Harrington, Y. Matsuura, “Review of hollow waveguide technology,” in Biomedical Optical Instrumentation, A. Katzier, A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 4–14 (1995).
[CrossRef]

C. E. Morrow, G. Gu, “Fiberlase: a monolithic hollow waveguide,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, F. P. Milanovich, eds., Proc. SPIE2131, 18–27 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic structure of the polymer-coated silver hollow glass waveguide.

Fig. 2
Fig. 2

Chemical structure of (a) FCP CYTOP and (b) Teflon AF, where a = 0, 1; b = 1, 2; c = 0, 1.

Fig. 3
Fig. 3

Thickness and roughness of a FCP film coated on the planar Ag/glass plate during the fabrication process. The upward dipping velocity is 3 cm/min, and the concentration of FCP is 5 wt.%.

Fig. 4
Fig. 4

Roughnesses of FCP films coated on Ag/glass plates versus dip-coating velocities for the FCP solution with various concentrations.

Fig. 5
Fig. 5

Schematic view of the fabrication setup for the dynamic coating of a FCP film inside a Ag/glass tube.

Fig. 6
Fig. 6

Flux of N2 gas flown inside the hollow tube during the drying-curing process, where 1–6 indicate the fabrication stages with the baking conditions shown in Table 1.

Fig. 7
Fig. 7

Variation in the length of a FCP solution column (a) before (with L 1) and (b) after (with L 2) being dynamically coated.

Fig. 8
Fig. 8

Variation in the thickness of an FCP film coated inside the Ag/glass tube (a) before and (b) after the drying–curing process.

Fig. 9
Fig. 9

Theoretical relationship between the peak wavelength and the film thickness, where m represents the order of loss peaks.

Fig. 10
Fig. 10

Variation of loss spectra in (a) the visible and the near-IR and (b) the mid-IR wavelength regions for a FCP/Ag hollow glass waveguide (700 µmϕ × 1 m), which was fabricated by a 7-wt.% solution with a coating velocity of 1.94 cm/min. Numbers 2–6 indicate the loss spectra of the waveguide measured just after fabrication stage 2–6. The waveguide is excited by a Gaussian beam with a FWHM of 10.7° for (a) and 10.5° for (b).

Fig. 11
Fig. 11

Variation of the thickness of a FCP film of the same hollow waveguide as in Fig. 9 during the fabrication process.

Fig. 12
Fig. 12

Thicknesses of FCP films coated inside the silver hollow glass waveguides (700 µmϕ × 20 cm) as a function of the coating velocity for different solution concentrations. The solid lines are least-squares-fitting curves approximated by curves predicted by the Fairbrother–Stubbs equation.27

Fig. 13
Fig. 13

Optimum coating condition for fabricating FCP/Ag hollow glass waveguides with appropriate FCP films. The region marked by △ indicates that the thickness of the FCP layer is less than 0.12 µm. The region marked by × indicates that the FCP layer is inhomogeneous and is very rough. In the region surrounded by the dashed curve, waveguides with small losses can be realized with a smooth layer of FCP.

Fig. 14
Fig. 14

Loss spectrum of a FCP/Ag hollow glass waveguide (700 µmϕ × 1 m) fabricated by a 5-wt.% solution with a coating velocity of 3 cm/min. For comparison, the spectrum of a Ag hollow glass waveguide (700 µmϕ × 1 m) is also shown. The waveguides are excited by a Gaussian beam with a FWHM of 10.5°.

Tables (1)

Tables Icon

Table 1 Baking Conditions in the Drying–Curing Process for Fabricating FCP/Ag Planar Glass Plates

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

D=aL1-L22L1+LAg,
d=Dρ2Cρ2C+ρ1100-C,
d=λmmπ+ϕ4πnc2-11/2,
nc=1.329+4.8×10-3λ-2-1.7×10-4λ-4.
ϕ=arctan2vn2-1n2-1-u2-v2;m=1, 3, 5 arctan2n2-1-2nakau+na2-ka2vna2+ka22n2-1/n2-n2u2+v2;m=2, 4, 6 
u=n2-k2-12+4n2k21/2+n2-k2-121/2,
v=n2-k2-12+4n2k21/2-n2-k2-121/2,
D=aC200Vηγ1/2,
η=2.9×100.2C,
d=A×C Vη=A×100.1CCV,

Metrics