Abstract

We present the results of independent numerical simulations of adaptive optics systems for 8-m astronomical telescopes that use both Shack–Hartmann and wave-front curvature sensors. Four differents codes provided consistency checks and redundancy. All four simulate a complete system and model noise and servo-lag effects. A common atmospheric turbulence generator was used for consistency. We present the main characteristics of the codes, and we report the system performance in term of Strehl ratio and full width at half-maximum versus the magnitude of the (on-axis) guide star. We show that a Shack–Hartmann plus stacked actuator mirror system with 10 × 10 subapertures or a curvature plus bimorph mirror system with 56 subapertures yields a 50% Strehl ratio at 1.6 µm for a m R = 14.7 magnitude star, with almost equivalent performance at both brighter and dimmer light levels.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Roddier, C. Roddier, N. Roddier, “Curvature sensing: a new wavefront sensing method,” in Statistical Optics, G. M. Morris, ed., Proc. SPIE976, 203–209 (1988).
    [CrossRef]
  2. G. Rousset, “Wavefront sensing,” in Proceedings of the NATO Advanced Study Institute on Adaptive Optics for Astronomy, D. M. Alloin, J.-M. Mariotti, eds. (Cargèse, France, 1993), pp. 115–138.
  3. R. Racine, S. Salmon, D. Cowley, J. Sovka, “Mirror, dome and natural seeing at CFHT,” Publ. Astron. Soc. Pac. 103, 1020–1032 (1991).
    [CrossRef]
  4. M. J. Northcott, “The university of Hawaii adaptive optics system. II. Computer simulation,” in Active and Adaptive Optical Systems, M. A. Ealey, ed., Proc. SPIE1542, 254–261 (1991).
    [CrossRef]
  5. F. Roddier, J. Anuskiewicz, J. E. Graves, M. J. Northcott, C. Roddier, “Adaptive optics at the university of Hawaii I: current performance at the telescope,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 2–9 (1994).
    [CrossRef]
  6. F. Rigaut, R. Arsenault, J. Kerr, D. Salmon, M. J. Northcott, Y. Dutil, C. Boyer, “The Canada-France-Hawaii adaptive optics bonnette II: simulations and control,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 149–160 (1994).
    [CrossRef]
  7. B. L. Ellerbroek, “First-order performance evaluation of adaptive optics systems for atmospheric-turbulence compensation in extended field-of-view astronomical telescopes,” J. Opt. Soc. Am. A 11, 783–805 (1994).
    [CrossRef]
  8. E. Gendron, P. Léna, “Astronomical adaptive optics I. Modal control optimization,” Astron. Astrophys. 291, 337–347 (1994).
  9. B. L. Ellerbroek, C. Van loan, N. P. Pitsianis, R. J. Plemmons, “Optimizing closed-loop adaptive optics performance with use of multiple control bandwidths,” J. Opt. Soc. Am. A 11, 2871–2886 (1994).
    [CrossRef]
  10. G. M. Cochran, “Phase screening generation,” (Optical Science Company, Anaheim, Calif., 1985).
  11. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
    [CrossRef]
  12. F. Roddier, “Curvature sensing and compensation: a new concept in adaptive optics,” Appl. Opt. 27, 1223–1225 (1988).
    [CrossRef] [PubMed]
  13. F. Roddier, “Error propagation in a closed-loop adaptive optics system: a comparison between Shack-Hartmann and curvature wave-front sensors,” Opt. Commun. 113, 357–359 (1995).
    [CrossRef]
  14. D. L. Fried, “Least-square fitting of a wavefront distortion estimate to an array of phase-difference measurements,” J. Opt. Soc. Am. 67, 370–375 (1977).
    [CrossRef]
  15. F. Roddier, “The effect of atmospheric turbulence in optical astronomy,” in Progress in Optics XIX, E. Wolf, ed. (Pergamon, New York, 1981), p. 281.
    [CrossRef]
  16. L. Goad, “Digital image centering,” in Instrumentation in Astronomy VI, D. L. Crawford, ed., Proc. SPIE627, 688–692 (1986).
    [CrossRef]
  17. B. L. Ellerbroek, “Adaptive optics performance analysis for the Gemini 8-m telescope project,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 421–437 (1994).
    [CrossRef]

1995

F. Roddier, “Error propagation in a closed-loop adaptive optics system: a comparison between Shack-Hartmann and curvature wave-front sensors,” Opt. Commun. 113, 357–359 (1995).
[CrossRef]

1994

1991

R. Racine, S. Salmon, D. Cowley, J. Sovka, “Mirror, dome and natural seeing at CFHT,” Publ. Astron. Soc. Pac. 103, 1020–1032 (1991).
[CrossRef]

1988

1977

1976

Anuskiewicz, J.

F. Roddier, J. Anuskiewicz, J. E. Graves, M. J. Northcott, C. Roddier, “Adaptive optics at the university of Hawaii I: current performance at the telescope,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 2–9 (1994).
[CrossRef]

Arsenault, R.

F. Rigaut, R. Arsenault, J. Kerr, D. Salmon, M. J. Northcott, Y. Dutil, C. Boyer, “The Canada-France-Hawaii adaptive optics bonnette II: simulations and control,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 149–160 (1994).
[CrossRef]

Boyer, C.

F. Rigaut, R. Arsenault, J. Kerr, D. Salmon, M. J. Northcott, Y. Dutil, C. Boyer, “The Canada-France-Hawaii adaptive optics bonnette II: simulations and control,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 149–160 (1994).
[CrossRef]

Cochran, G. M.

G. M. Cochran, “Phase screening generation,” (Optical Science Company, Anaheim, Calif., 1985).

Cowley, D.

R. Racine, S. Salmon, D. Cowley, J. Sovka, “Mirror, dome and natural seeing at CFHT,” Publ. Astron. Soc. Pac. 103, 1020–1032 (1991).
[CrossRef]

Dutil, Y.

F. Rigaut, R. Arsenault, J. Kerr, D. Salmon, M. J. Northcott, Y. Dutil, C. Boyer, “The Canada-France-Hawaii adaptive optics bonnette II: simulations and control,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 149–160 (1994).
[CrossRef]

Ellerbroek, B. L.

Fried, D. L.

Gendron, E.

E. Gendron, P. Léna, “Astronomical adaptive optics I. Modal control optimization,” Astron. Astrophys. 291, 337–347 (1994).

Goad, L.

L. Goad, “Digital image centering,” in Instrumentation in Astronomy VI, D. L. Crawford, ed., Proc. SPIE627, 688–692 (1986).
[CrossRef]

Graves, J. E.

F. Roddier, J. Anuskiewicz, J. E. Graves, M. J. Northcott, C. Roddier, “Adaptive optics at the university of Hawaii I: current performance at the telescope,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 2–9 (1994).
[CrossRef]

Kerr, J.

F. Rigaut, R. Arsenault, J. Kerr, D. Salmon, M. J. Northcott, Y. Dutil, C. Boyer, “The Canada-France-Hawaii adaptive optics bonnette II: simulations and control,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 149–160 (1994).
[CrossRef]

Léna, P.

E. Gendron, P. Léna, “Astronomical adaptive optics I. Modal control optimization,” Astron. Astrophys. 291, 337–347 (1994).

Noll, R. J.

Northcott, M. J.

M. J. Northcott, “The university of Hawaii adaptive optics system. II. Computer simulation,” in Active and Adaptive Optical Systems, M. A. Ealey, ed., Proc. SPIE1542, 254–261 (1991).
[CrossRef]

F. Roddier, J. Anuskiewicz, J. E. Graves, M. J. Northcott, C. Roddier, “Adaptive optics at the university of Hawaii I: current performance at the telescope,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 2–9 (1994).
[CrossRef]

F. Rigaut, R. Arsenault, J. Kerr, D. Salmon, M. J. Northcott, Y. Dutil, C. Boyer, “The Canada-France-Hawaii adaptive optics bonnette II: simulations and control,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 149–160 (1994).
[CrossRef]

Pitsianis, N. P.

Plemmons, R. J.

Racine, R.

R. Racine, S. Salmon, D. Cowley, J. Sovka, “Mirror, dome and natural seeing at CFHT,” Publ. Astron. Soc. Pac. 103, 1020–1032 (1991).
[CrossRef]

Rigaut, F.

F. Rigaut, R. Arsenault, J. Kerr, D. Salmon, M. J. Northcott, Y. Dutil, C. Boyer, “The Canada-France-Hawaii adaptive optics bonnette II: simulations and control,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 149–160 (1994).
[CrossRef]

Roddier, C.

F. Roddier, C. Roddier, N. Roddier, “Curvature sensing: a new wavefront sensing method,” in Statistical Optics, G. M. Morris, ed., Proc. SPIE976, 203–209 (1988).
[CrossRef]

F. Roddier, J. Anuskiewicz, J. E. Graves, M. J. Northcott, C. Roddier, “Adaptive optics at the university of Hawaii I: current performance at the telescope,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 2–9 (1994).
[CrossRef]

Roddier, F.

F. Roddier, “Error propagation in a closed-loop adaptive optics system: a comparison between Shack-Hartmann and curvature wave-front sensors,” Opt. Commun. 113, 357–359 (1995).
[CrossRef]

F. Roddier, “Curvature sensing and compensation: a new concept in adaptive optics,” Appl. Opt. 27, 1223–1225 (1988).
[CrossRef] [PubMed]

F. Roddier, “The effect of atmospheric turbulence in optical astronomy,” in Progress in Optics XIX, E. Wolf, ed. (Pergamon, New York, 1981), p. 281.
[CrossRef]

F. Roddier, J. Anuskiewicz, J. E. Graves, M. J. Northcott, C. Roddier, “Adaptive optics at the university of Hawaii I: current performance at the telescope,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 2–9 (1994).
[CrossRef]

F. Roddier, C. Roddier, N. Roddier, “Curvature sensing: a new wavefront sensing method,” in Statistical Optics, G. M. Morris, ed., Proc. SPIE976, 203–209 (1988).
[CrossRef]

Roddier, N.

F. Roddier, C. Roddier, N. Roddier, “Curvature sensing: a new wavefront sensing method,” in Statistical Optics, G. M. Morris, ed., Proc. SPIE976, 203–209 (1988).
[CrossRef]

Rousset, G.

G. Rousset, “Wavefront sensing,” in Proceedings of the NATO Advanced Study Institute on Adaptive Optics for Astronomy, D. M. Alloin, J.-M. Mariotti, eds. (Cargèse, France, 1993), pp. 115–138.

Salmon, D.

F. Rigaut, R. Arsenault, J. Kerr, D. Salmon, M. J. Northcott, Y. Dutil, C. Boyer, “The Canada-France-Hawaii adaptive optics bonnette II: simulations and control,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 149–160 (1994).
[CrossRef]

Salmon, S.

R. Racine, S. Salmon, D. Cowley, J. Sovka, “Mirror, dome and natural seeing at CFHT,” Publ. Astron. Soc. Pac. 103, 1020–1032 (1991).
[CrossRef]

Sovka, J.

R. Racine, S. Salmon, D. Cowley, J. Sovka, “Mirror, dome and natural seeing at CFHT,” Publ. Astron. Soc. Pac. 103, 1020–1032 (1991).
[CrossRef]

Van loan, C.

Appl. Opt.

Astron. Astrophys.

E. Gendron, P. Léna, “Astronomical adaptive optics I. Modal control optimization,” Astron. Astrophys. 291, 337–347 (1994).

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Commun.

F. Roddier, “Error propagation in a closed-loop adaptive optics system: a comparison between Shack-Hartmann and curvature wave-front sensors,” Opt. Commun. 113, 357–359 (1995).
[CrossRef]

Publ. Astron. Soc. Pac.

R. Racine, S. Salmon, D. Cowley, J. Sovka, “Mirror, dome and natural seeing at CFHT,” Publ. Astron. Soc. Pac. 103, 1020–1032 (1991).
[CrossRef]

Other

M. J. Northcott, “The university of Hawaii adaptive optics system. II. Computer simulation,” in Active and Adaptive Optical Systems, M. A. Ealey, ed., Proc. SPIE1542, 254–261 (1991).
[CrossRef]

F. Roddier, J. Anuskiewicz, J. E. Graves, M. J. Northcott, C. Roddier, “Adaptive optics at the university of Hawaii I: current performance at the telescope,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 2–9 (1994).
[CrossRef]

F. Rigaut, R. Arsenault, J. Kerr, D. Salmon, M. J. Northcott, Y. Dutil, C. Boyer, “The Canada-France-Hawaii adaptive optics bonnette II: simulations and control,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 149–160 (1994).
[CrossRef]

G. M. Cochran, “Phase screening generation,” (Optical Science Company, Anaheim, Calif., 1985).

F. Roddier, C. Roddier, N. Roddier, “Curvature sensing: a new wavefront sensing method,” in Statistical Optics, G. M. Morris, ed., Proc. SPIE976, 203–209 (1988).
[CrossRef]

G. Rousset, “Wavefront sensing,” in Proceedings of the NATO Advanced Study Institute on Adaptive Optics for Astronomy, D. M. Alloin, J.-M. Mariotti, eds. (Cargèse, France, 1993), pp. 115–138.

F. Roddier, “The effect of atmospheric turbulence in optical astronomy,” in Progress in Optics XIX, E. Wolf, ed. (Pergamon, New York, 1981), p. 281.
[CrossRef]

L. Goad, “Digital image centering,” in Instrumentation in Astronomy VI, D. L. Crawford, ed., Proc. SPIE627, 688–692 (1986).
[CrossRef]

B. L. Ellerbroek, “Adaptive optics performance analysis for the Gemini 8-m telescope project,” in Adaptive Optics in Astronomy, M. A. Ealey, F. Merkle, eds., Proc. SPIE2201, 421–437 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Summary of the curvature system performance (Strehl ratio at 1.6 µm) versus the guide star R band magnitude.

Fig. 2
Fig. 2

Square root of the PSF, MTF, phase structure function, and signal-to-noise ratio on the MTF for the 56-subaperture curvature system obtained with Code 2 for a fifth magnitude star (solid curve), a fourteenth magnitude guide star (dotted curve) and an eighteenth magnitude star (dashed curve). Loop parameters are the same as in Table 2. The upper solid curve in the MTF plot is the theoretical MTF for the Gemini Telescope.

Fig. 3
Fig. 3

Summary of the Shack–Hartmann system performance (Strehl ratio at 1.6 µm) versus the guide star R band magnitude.

Fig. 4
Fig. 4

Square root of the PSF, MTF, phase structure function and signal-to-noise ratio on the MTF for the 9 × 9 subaperture Shack–Hartmann system (Code 4) for a fifth magnitude star (solid curve), a fourteenth magnitude guide star (dotted curve) and an eighteenth magnitude star (dashed curve). Loop parameters are the same as in Table 4. The upper solid curve in the MTF plot is the theoretical MTF for the Gemini Telescope.

Fig. 5
Fig. 5

Summary of the system performance (Strehl ratio at 1.6 µm) versus the guide star R band magnitude for all codes. D/r 0(0.7 µm) = 23.66, wind velocity = 20 m/s. Code 1 and Code 2 feature a 56-subaperture curvature system (CWFS), Code 3 a 10 × 10 Shack–Hartmann system (SHWFS), and Code 4 a 9 × 9 Shack–Hartmann system.

Tables (4)

Tables Icon

Table 1 Basic Simulation Parameters

Tables Icon

Table 2 56-Subaperture Curvature System Performance

Tables Icon

Table 3 Summary of Code 3 and Code 4 Main Characteristics

Tables Icon

Table 4 2 × 2 Pixels Per Subaperture Systems Performance

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

en=Msn,
an+1=an+gen,
σθ=θB/SNR,
SNR=NpeNpe+4σe2+Nb,
θB=0.5λd2+0.66λr02.
θx=kNpe+4σe2+NbNpec1-c2-c3+c4c1+c2+c3+c4,
hnx, y=1-Δ-1x-xn1-Δ-1y-ynif x-xn<Δ and y-yn<Δ0otherwise.

Metrics