Abstract

We present the results of independent numerical simulations of adaptive optics systems for 8-m astronomical telescopes that use both Shack–Hartmann and wave-front curvature sensors. Four differents codes provided consistency checks and redundancy. All four simulate a complete system and model noise and servo-lag effects. A common atmospheric turbulence generator was used for consistency. We present the main characteristics of the codes, and we report the system performance in term of Strehl ratio and full width at half-maximum versus the magnitude of the (on-axis) guide star. We show that a Shack–Hartmann plus stacked actuator mirror system with 10 × 10 subapertures or a curvature plus bimorph mirror system with 56 subapertures yields a 50% Strehl ratio at 1.6 µm for a m R = 14.7 magnitude star, with almost equivalent performance at both brighter and dimmer light levels.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription