Abstract

We have used spectral reflectance and transmittance measurements combined with Kramers–Krönig analyses to obtain the real (n) and imaginary (k) parts of the complex refractive index, N = n + ik, of Bacillus subtilis spores over a wavelength interval from 0.2 to 2.5 µm. Samples were in the form of thin solid films, pressed pellets, and suspensions in water and glycerol. The optical constants of spores suspended in water were found to differ from those of spores suspended in glycerol. In addition, spores previously exposed to water in earlier experiments and subsequently dried exhibited different optical constants from spores that had not been exposed to water.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Hill, R. G. Pinnick, P. Nachman, G. Chen, R. K. Chang, M. W. Mayo, G. L. Fernandez, “Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles,” Appl. Opt. 34, 7149–7155 (1995).
    [CrossRef] [PubMed]
  2. P. Nachman, G. Chen, R. G. Pinnick, S. C. Hill, R. K. Chang, M. W. Mayo, G. L. Fernandez, “Conditional-sampling spectrograph detection system for fluorescence measurements of individual airborne biological particles,” Appl. Opt. 35, 1069–1076 (1996).
    [CrossRef] [PubMed]
  3. R. A. Dalterio, W. H. Nelson, D. Britt, J. Sperry, D. Psaras, J. F. Tanguay, S. L. Suib, “Steady-state and decay characteristics of protein tryptophan fluorescence from bacteria,” Appl. Spectrosc. 40, 86–90 (1986).
    [CrossRef]
  4. R. A. Dalterio, W. H. Nelson, D. Britt, J. F. Sperry, J. F. Tanguay, S. L. Suib, “The steady-state and decay characteristics of primary fluorescence from live bacteria,” Appl. Spectrosc. 41, 234–241 (1987).
    [CrossRef]
  5. B. V. Bronk, L. Reinisch, “Variability of steady-state bacterial fluorescence with respect to growth conditions,” Appl. Spectrosc. 47, 436–440 (1993).
    [CrossRef]
  6. P. J. Wyatt, “Differential light scattering: a physical method for identifying living bacterial cells,” Appl. Opt. 7, 1879–1896 (1968).
    [CrossRef] [PubMed]
  7. A. L. Koch, “Theory of the angular dependence of light scattered by bacteria and similar-sized biological objects,” J. Theor. Biol. 18, 133–156 (1968).
    [CrossRef] [PubMed]
  8. C. Waltham, J. Boyle, B. Ramey, J. Smit, “Light scattering and absorption caused by bacterial activity in water,” Appl. Opt. 33, 7536–7540 (1994).
    [CrossRef] [PubMed]
  9. S. Yabushita, K. Wada, T. Inagaki, T. Ito, “Photometric and photoacoustic measurement of the absorbance of micro-organisms and its relation to the micro-organism-grain hypothesis,” Astrophys. Space Sci. 117, 401–406 (1985).
    [CrossRef]
  10. S. Yabushita, K. Wada, T. Takai, T. Inagaki, D. Young, E. T. Arakawa, “A spectroscopic study of the micro-organism model of interstellar grains,” Astrophys. Space Sci. 124, 377–388 (1986).
    [CrossRef]
  11. A. D. Russell, The Destruction of Bacterial Spores (Academic, London, 1982), p. 285.
  12. F. Stern, “Elementary theory of the optical properties of solids,” in Solid State Physics, Vol. 15, F. Seitz, D. Turnbull, eds. (Academic, New York, 1963), pp. 299–408.
  13. B. N. Khare, C. Sagan, E. T. Arakawa, F. Suits, T. A. Callcott, M. W. Williams, “Optical constants of organic tholins produced in a simulated titanian atmosphere: from soft x-ray to microwave frequencies,” Icarus 60, 127–137 (1984).
    [CrossRef]
  14. C. Sagan, W. R. Thompson, B. N. Khare, “Titan: a laboratory for prebiological organic chemistry,” Acc. Chem. Res. 25, 286–292 (1992).
    [CrossRef] [PubMed]
  15. M. W. Williams, E. T. Arakawa, T. Inagaki, “Optical and dielectric properties of materials relevant to biological research,” in Handbook on Synchrotron Radiation, Vol. 4, S. Ebashi, M. Koch, E. Rubenstein, eds. (Elsevier, Amsterdam, 1991), pp. 95–145.
  16. L. R. Painter, R. D. Birkhoff, E. T. Arakawa, “Optical measurements of liquid water in the vacuum ultraviolet,” J. Chem. Phys. 51, 243–251 (1969).
    [CrossRef]
  17. T. Inagaki, R. N. Hamm, E. T. Arakawa, L. R. Painter, “Optical and dielectric properties of DNA in the extreme ultraviolet,” J. Chem. Phys. 61, 4246–4250 (1974).
    [CrossRef]
  18. C. F. Robinow, “Morphology of bacterial spores, their development and germination,” in The Bacteria, A Treatise on Structure and Function, Vol. 1, I. C. Gunsalus, R. Y. Stannier, eds. (Academic, New York, 1960), pp. 207–248.
  19. K. F. A. Ross, E. Billing, “The water and solid content of living bacterial spores and vegetative cells as indicated by refractive index measurements,” J. Gen. Microbiol. 16, 418–425 (1957).
    [CrossRef] [PubMed]
  20. F. Hoyle, N. C. Wickramasinghe, “On the nature of the interstellar grains,” Q. J. R. Astron. Soc. 27, 21–37 (1986).
  21. T. Inagaki, Y. Yamamoto, S. Yabushita, “The ultraviolet extinction by hollow spherical particles of graphite,” Astrophys. Space Sci. 182, 75–80 (1991).
    [CrossRef]
  22. W. A. de Heer, D. Ugarte, “Carbon onions produced by heat treatment of carbon soot and their relation to the 217.5-nm interstellar absorption feature,” Chem. Phys. Lett. 207, 480–486 (1993).
    [CrossRef]
  23. T. Inagaki, S. Yabushita, K. Wada, E. T. Arakawa, “The ultraviolet spectra of thin evaporated films of carbonaceous chondrite,” Astrophys. Space Sci. 206, 111–117 (1993).
    [CrossRef]

1996 (1)

1995 (1)

1994 (1)

1993 (3)

B. V. Bronk, L. Reinisch, “Variability of steady-state bacterial fluorescence with respect to growth conditions,” Appl. Spectrosc. 47, 436–440 (1993).
[CrossRef]

W. A. de Heer, D. Ugarte, “Carbon onions produced by heat treatment of carbon soot and their relation to the 217.5-nm interstellar absorption feature,” Chem. Phys. Lett. 207, 480–486 (1993).
[CrossRef]

T. Inagaki, S. Yabushita, K. Wada, E. T. Arakawa, “The ultraviolet spectra of thin evaporated films of carbonaceous chondrite,” Astrophys. Space Sci. 206, 111–117 (1993).
[CrossRef]

1992 (1)

C. Sagan, W. R. Thompson, B. N. Khare, “Titan: a laboratory for prebiological organic chemistry,” Acc. Chem. Res. 25, 286–292 (1992).
[CrossRef] [PubMed]

1991 (1)

T. Inagaki, Y. Yamamoto, S. Yabushita, “The ultraviolet extinction by hollow spherical particles of graphite,” Astrophys. Space Sci. 182, 75–80 (1991).
[CrossRef]

1987 (1)

1986 (3)

R. A. Dalterio, W. H. Nelson, D. Britt, J. Sperry, D. Psaras, J. F. Tanguay, S. L. Suib, “Steady-state and decay characteristics of protein tryptophan fluorescence from bacteria,” Appl. Spectrosc. 40, 86–90 (1986).
[CrossRef]

F. Hoyle, N. C. Wickramasinghe, “On the nature of the interstellar grains,” Q. J. R. Astron. Soc. 27, 21–37 (1986).

S. Yabushita, K. Wada, T. Takai, T. Inagaki, D. Young, E. T. Arakawa, “A spectroscopic study of the micro-organism model of interstellar grains,” Astrophys. Space Sci. 124, 377–388 (1986).
[CrossRef]

1985 (1)

S. Yabushita, K. Wada, T. Inagaki, T. Ito, “Photometric and photoacoustic measurement of the absorbance of micro-organisms and its relation to the micro-organism-grain hypothesis,” Astrophys. Space Sci. 117, 401–406 (1985).
[CrossRef]

1984 (1)

B. N. Khare, C. Sagan, E. T. Arakawa, F. Suits, T. A. Callcott, M. W. Williams, “Optical constants of organic tholins produced in a simulated titanian atmosphere: from soft x-ray to microwave frequencies,” Icarus 60, 127–137 (1984).
[CrossRef]

1974 (1)

T. Inagaki, R. N. Hamm, E. T. Arakawa, L. R. Painter, “Optical and dielectric properties of DNA in the extreme ultraviolet,” J. Chem. Phys. 61, 4246–4250 (1974).
[CrossRef]

1969 (1)

L. R. Painter, R. D. Birkhoff, E. T. Arakawa, “Optical measurements of liquid water in the vacuum ultraviolet,” J. Chem. Phys. 51, 243–251 (1969).
[CrossRef]

1968 (2)

P. J. Wyatt, “Differential light scattering: a physical method for identifying living bacterial cells,” Appl. Opt. 7, 1879–1896 (1968).
[CrossRef] [PubMed]

A. L. Koch, “Theory of the angular dependence of light scattered by bacteria and similar-sized biological objects,” J. Theor. Biol. 18, 133–156 (1968).
[CrossRef] [PubMed]

1957 (1)

K. F. A. Ross, E. Billing, “The water and solid content of living bacterial spores and vegetative cells as indicated by refractive index measurements,” J. Gen. Microbiol. 16, 418–425 (1957).
[CrossRef] [PubMed]

Arakawa, E. T.

T. Inagaki, S. Yabushita, K. Wada, E. T. Arakawa, “The ultraviolet spectra of thin evaporated films of carbonaceous chondrite,” Astrophys. Space Sci. 206, 111–117 (1993).
[CrossRef]

S. Yabushita, K. Wada, T. Takai, T. Inagaki, D. Young, E. T. Arakawa, “A spectroscopic study of the micro-organism model of interstellar grains,” Astrophys. Space Sci. 124, 377–388 (1986).
[CrossRef]

B. N. Khare, C. Sagan, E. T. Arakawa, F. Suits, T. A. Callcott, M. W. Williams, “Optical constants of organic tholins produced in a simulated titanian atmosphere: from soft x-ray to microwave frequencies,” Icarus 60, 127–137 (1984).
[CrossRef]

T. Inagaki, R. N. Hamm, E. T. Arakawa, L. R. Painter, “Optical and dielectric properties of DNA in the extreme ultraviolet,” J. Chem. Phys. 61, 4246–4250 (1974).
[CrossRef]

L. R. Painter, R. D. Birkhoff, E. T. Arakawa, “Optical measurements of liquid water in the vacuum ultraviolet,” J. Chem. Phys. 51, 243–251 (1969).
[CrossRef]

M. W. Williams, E. T. Arakawa, T. Inagaki, “Optical and dielectric properties of materials relevant to biological research,” in Handbook on Synchrotron Radiation, Vol. 4, S. Ebashi, M. Koch, E. Rubenstein, eds. (Elsevier, Amsterdam, 1991), pp. 95–145.

Billing, E.

K. F. A. Ross, E. Billing, “The water and solid content of living bacterial spores and vegetative cells as indicated by refractive index measurements,” J. Gen. Microbiol. 16, 418–425 (1957).
[CrossRef] [PubMed]

Birkhoff, R. D.

L. R. Painter, R. D. Birkhoff, E. T. Arakawa, “Optical measurements of liquid water in the vacuum ultraviolet,” J. Chem. Phys. 51, 243–251 (1969).
[CrossRef]

Boyle, J.

Britt, D.

Bronk, B. V.

Callcott, T. A.

B. N. Khare, C. Sagan, E. T. Arakawa, F. Suits, T. A. Callcott, M. W. Williams, “Optical constants of organic tholins produced in a simulated titanian atmosphere: from soft x-ray to microwave frequencies,” Icarus 60, 127–137 (1984).
[CrossRef]

Chang, R. K.

Chen, G.

Dalterio, R. A.

de Heer, W. A.

W. A. de Heer, D. Ugarte, “Carbon onions produced by heat treatment of carbon soot and their relation to the 217.5-nm interstellar absorption feature,” Chem. Phys. Lett. 207, 480–486 (1993).
[CrossRef]

Fernandez, G. L.

Hamm, R. N.

T. Inagaki, R. N. Hamm, E. T. Arakawa, L. R. Painter, “Optical and dielectric properties of DNA in the extreme ultraviolet,” J. Chem. Phys. 61, 4246–4250 (1974).
[CrossRef]

Hill, S. C.

Hoyle, F.

F. Hoyle, N. C. Wickramasinghe, “On the nature of the interstellar grains,” Q. J. R. Astron. Soc. 27, 21–37 (1986).

Inagaki, T.

T. Inagaki, S. Yabushita, K. Wada, E. T. Arakawa, “The ultraviolet spectra of thin evaporated films of carbonaceous chondrite,” Astrophys. Space Sci. 206, 111–117 (1993).
[CrossRef]

T. Inagaki, Y. Yamamoto, S. Yabushita, “The ultraviolet extinction by hollow spherical particles of graphite,” Astrophys. Space Sci. 182, 75–80 (1991).
[CrossRef]

S. Yabushita, K. Wada, T. Takai, T. Inagaki, D. Young, E. T. Arakawa, “A spectroscopic study of the micro-organism model of interstellar grains,” Astrophys. Space Sci. 124, 377–388 (1986).
[CrossRef]

S. Yabushita, K. Wada, T. Inagaki, T. Ito, “Photometric and photoacoustic measurement of the absorbance of micro-organisms and its relation to the micro-organism-grain hypothesis,” Astrophys. Space Sci. 117, 401–406 (1985).
[CrossRef]

T. Inagaki, R. N. Hamm, E. T. Arakawa, L. R. Painter, “Optical and dielectric properties of DNA in the extreme ultraviolet,” J. Chem. Phys. 61, 4246–4250 (1974).
[CrossRef]

M. W. Williams, E. T. Arakawa, T. Inagaki, “Optical and dielectric properties of materials relevant to biological research,” in Handbook on Synchrotron Radiation, Vol. 4, S. Ebashi, M. Koch, E. Rubenstein, eds. (Elsevier, Amsterdam, 1991), pp. 95–145.

Ito, T.

S. Yabushita, K. Wada, T. Inagaki, T. Ito, “Photometric and photoacoustic measurement of the absorbance of micro-organisms and its relation to the micro-organism-grain hypothesis,” Astrophys. Space Sci. 117, 401–406 (1985).
[CrossRef]

Khare, B. N.

C. Sagan, W. R. Thompson, B. N. Khare, “Titan: a laboratory for prebiological organic chemistry,” Acc. Chem. Res. 25, 286–292 (1992).
[CrossRef] [PubMed]

B. N. Khare, C. Sagan, E. T. Arakawa, F. Suits, T. A. Callcott, M. W. Williams, “Optical constants of organic tholins produced in a simulated titanian atmosphere: from soft x-ray to microwave frequencies,” Icarus 60, 127–137 (1984).
[CrossRef]

Koch, A. L.

A. L. Koch, “Theory of the angular dependence of light scattered by bacteria and similar-sized biological objects,” J. Theor. Biol. 18, 133–156 (1968).
[CrossRef] [PubMed]

Mayo, M. W.

Nachman, P.

Nelson, W. H.

Painter, L. R.

T. Inagaki, R. N. Hamm, E. T. Arakawa, L. R. Painter, “Optical and dielectric properties of DNA in the extreme ultraviolet,” J. Chem. Phys. 61, 4246–4250 (1974).
[CrossRef]

L. R. Painter, R. D. Birkhoff, E. T. Arakawa, “Optical measurements of liquid water in the vacuum ultraviolet,” J. Chem. Phys. 51, 243–251 (1969).
[CrossRef]

Pinnick, R. G.

Psaras, D.

Ramey, B.

Reinisch, L.

Robinow, C. F.

C. F. Robinow, “Morphology of bacterial spores, their development and germination,” in The Bacteria, A Treatise on Structure and Function, Vol. 1, I. C. Gunsalus, R. Y. Stannier, eds. (Academic, New York, 1960), pp. 207–248.

Ross, K. F. A.

K. F. A. Ross, E. Billing, “The water and solid content of living bacterial spores and vegetative cells as indicated by refractive index measurements,” J. Gen. Microbiol. 16, 418–425 (1957).
[CrossRef] [PubMed]

Russell, A. D.

A. D. Russell, The Destruction of Bacterial Spores (Academic, London, 1982), p. 285.

Sagan, C.

C. Sagan, W. R. Thompson, B. N. Khare, “Titan: a laboratory for prebiological organic chemistry,” Acc. Chem. Res. 25, 286–292 (1992).
[CrossRef] [PubMed]

B. N. Khare, C. Sagan, E. T. Arakawa, F. Suits, T. A. Callcott, M. W. Williams, “Optical constants of organic tholins produced in a simulated titanian atmosphere: from soft x-ray to microwave frequencies,” Icarus 60, 127–137 (1984).
[CrossRef]

Smit, J.

Sperry, J.

Sperry, J. F.

Stern, F.

F. Stern, “Elementary theory of the optical properties of solids,” in Solid State Physics, Vol. 15, F. Seitz, D. Turnbull, eds. (Academic, New York, 1963), pp. 299–408.

Suib, S. L.

Suits, F.

B. N. Khare, C. Sagan, E. T. Arakawa, F. Suits, T. A. Callcott, M. W. Williams, “Optical constants of organic tholins produced in a simulated titanian atmosphere: from soft x-ray to microwave frequencies,” Icarus 60, 127–137 (1984).
[CrossRef]

Takai, T.

S. Yabushita, K. Wada, T. Takai, T. Inagaki, D. Young, E. T. Arakawa, “A spectroscopic study of the micro-organism model of interstellar grains,” Astrophys. Space Sci. 124, 377–388 (1986).
[CrossRef]

Tanguay, J. F.

Thompson, W. R.

C. Sagan, W. R. Thompson, B. N. Khare, “Titan: a laboratory for prebiological organic chemistry,” Acc. Chem. Res. 25, 286–292 (1992).
[CrossRef] [PubMed]

Ugarte, D.

W. A. de Heer, D. Ugarte, “Carbon onions produced by heat treatment of carbon soot and their relation to the 217.5-nm interstellar absorption feature,” Chem. Phys. Lett. 207, 480–486 (1993).
[CrossRef]

Wada, K.

T. Inagaki, S. Yabushita, K. Wada, E. T. Arakawa, “The ultraviolet spectra of thin evaporated films of carbonaceous chondrite,” Astrophys. Space Sci. 206, 111–117 (1993).
[CrossRef]

S. Yabushita, K. Wada, T. Takai, T. Inagaki, D. Young, E. T. Arakawa, “A spectroscopic study of the micro-organism model of interstellar grains,” Astrophys. Space Sci. 124, 377–388 (1986).
[CrossRef]

S. Yabushita, K. Wada, T. Inagaki, T. Ito, “Photometric and photoacoustic measurement of the absorbance of micro-organisms and its relation to the micro-organism-grain hypothesis,” Astrophys. Space Sci. 117, 401–406 (1985).
[CrossRef]

Waltham, C.

Wickramasinghe, N. C.

F. Hoyle, N. C. Wickramasinghe, “On the nature of the interstellar grains,” Q. J. R. Astron. Soc. 27, 21–37 (1986).

Williams, M. W.

B. N. Khare, C. Sagan, E. T. Arakawa, F. Suits, T. A. Callcott, M. W. Williams, “Optical constants of organic tholins produced in a simulated titanian atmosphere: from soft x-ray to microwave frequencies,” Icarus 60, 127–137 (1984).
[CrossRef]

M. W. Williams, E. T. Arakawa, T. Inagaki, “Optical and dielectric properties of materials relevant to biological research,” in Handbook on Synchrotron Radiation, Vol. 4, S. Ebashi, M. Koch, E. Rubenstein, eds. (Elsevier, Amsterdam, 1991), pp. 95–145.

Wyatt, P. J.

Yabushita, S.

T. Inagaki, S. Yabushita, K. Wada, E. T. Arakawa, “The ultraviolet spectra of thin evaporated films of carbonaceous chondrite,” Astrophys. Space Sci. 206, 111–117 (1993).
[CrossRef]

T. Inagaki, Y. Yamamoto, S. Yabushita, “The ultraviolet extinction by hollow spherical particles of graphite,” Astrophys. Space Sci. 182, 75–80 (1991).
[CrossRef]

S. Yabushita, K. Wada, T. Takai, T. Inagaki, D. Young, E. T. Arakawa, “A spectroscopic study of the micro-organism model of interstellar grains,” Astrophys. Space Sci. 124, 377–388 (1986).
[CrossRef]

S. Yabushita, K. Wada, T. Inagaki, T. Ito, “Photometric and photoacoustic measurement of the absorbance of micro-organisms and its relation to the micro-organism-grain hypothesis,” Astrophys. Space Sci. 117, 401–406 (1985).
[CrossRef]

Yamamoto, Y.

T. Inagaki, Y. Yamamoto, S. Yabushita, “The ultraviolet extinction by hollow spherical particles of graphite,” Astrophys. Space Sci. 182, 75–80 (1991).
[CrossRef]

Young, D.

S. Yabushita, K. Wada, T. Takai, T. Inagaki, D. Young, E. T. Arakawa, “A spectroscopic study of the micro-organism model of interstellar grains,” Astrophys. Space Sci. 124, 377–388 (1986).
[CrossRef]

Acc. Chem. Res. (1)

C. Sagan, W. R. Thompson, B. N. Khare, “Titan: a laboratory for prebiological organic chemistry,” Acc. Chem. Res. 25, 286–292 (1992).
[CrossRef] [PubMed]

Appl. Opt. (4)

Appl. Spectrosc. (3)

Astrophys. Space Sci. (4)

S. Yabushita, K. Wada, T. Inagaki, T. Ito, “Photometric and photoacoustic measurement of the absorbance of micro-organisms and its relation to the micro-organism-grain hypothesis,” Astrophys. Space Sci. 117, 401–406 (1985).
[CrossRef]

S. Yabushita, K. Wada, T. Takai, T. Inagaki, D. Young, E. T. Arakawa, “A spectroscopic study of the micro-organism model of interstellar grains,” Astrophys. Space Sci. 124, 377–388 (1986).
[CrossRef]

T. Inagaki, Y. Yamamoto, S. Yabushita, “The ultraviolet extinction by hollow spherical particles of graphite,” Astrophys. Space Sci. 182, 75–80 (1991).
[CrossRef]

T. Inagaki, S. Yabushita, K. Wada, E. T. Arakawa, “The ultraviolet spectra of thin evaporated films of carbonaceous chondrite,” Astrophys. Space Sci. 206, 111–117 (1993).
[CrossRef]

Chem. Phys. Lett. (1)

W. A. de Heer, D. Ugarte, “Carbon onions produced by heat treatment of carbon soot and their relation to the 217.5-nm interstellar absorption feature,” Chem. Phys. Lett. 207, 480–486 (1993).
[CrossRef]

Icarus (1)

B. N. Khare, C. Sagan, E. T. Arakawa, F. Suits, T. A. Callcott, M. W. Williams, “Optical constants of organic tholins produced in a simulated titanian atmosphere: from soft x-ray to microwave frequencies,” Icarus 60, 127–137 (1984).
[CrossRef]

J. Chem. Phys. (2)

L. R. Painter, R. D. Birkhoff, E. T. Arakawa, “Optical measurements of liquid water in the vacuum ultraviolet,” J. Chem. Phys. 51, 243–251 (1969).
[CrossRef]

T. Inagaki, R. N. Hamm, E. T. Arakawa, L. R. Painter, “Optical and dielectric properties of DNA in the extreme ultraviolet,” J. Chem. Phys. 61, 4246–4250 (1974).
[CrossRef]

J. Gen. Microbiol. (1)

K. F. A. Ross, E. Billing, “The water and solid content of living bacterial spores and vegetative cells as indicated by refractive index measurements,” J. Gen. Microbiol. 16, 418–425 (1957).
[CrossRef] [PubMed]

J. Theor. Biol. (1)

A. L. Koch, “Theory of the angular dependence of light scattered by bacteria and similar-sized biological objects,” J. Theor. Biol. 18, 133–156 (1968).
[CrossRef] [PubMed]

Q. J. R. Astron. Soc. (1)

F. Hoyle, N. C. Wickramasinghe, “On the nature of the interstellar grains,” Q. J. R. Astron. Soc. 27, 21–37 (1986).

Other (4)

C. F. Robinow, “Morphology of bacterial spores, their development and germination,” in The Bacteria, A Treatise on Structure and Function, Vol. 1, I. C. Gunsalus, R. Y. Stannier, eds. (Academic, New York, 1960), pp. 207–248.

M. W. Williams, E. T. Arakawa, T. Inagaki, “Optical and dielectric properties of materials relevant to biological research,” in Handbook on Synchrotron Radiation, Vol. 4, S. Ebashi, M. Koch, E. Rubenstein, eds. (Elsevier, Amsterdam, 1991), pp. 95–145.

A. D. Russell, The Destruction of Bacterial Spores (Academic, London, 1982), p. 285.

F. Stern, “Elementary theory of the optical properties of solids,” in Solid State Physics, Vol. 15, F. Seitz, D. Turnbull, eds. (Academic, New York, 1963), pp. 299–408.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Transmission spectra of pure water and two different suspensions of spores in water obtained by using the sandwich cell of the 150-µm path length.

Fig. 2
Fig. 2

Measurement of the index of refraction of B. subtilis spores by using the critical-angle technique.

Fig. 3
Fig. 3

Optical constants of B. subtilis spores in water from 0.2 to 2.5 µm.

Fig. 4
Fig. 4

Optical constants of used B. subtilis spores in water from 0.2 to 2.5 µm.

Fig. 5
Fig. 5

Optical constants of B. subtilis spores in glycerol from 0.2 to 2.5 µm.

Fig. 6
Fig. 6

Optical constants of used B. subtilis spores in glycerol from 0.2 to 2.5 µm.

Fig. 7
Fig. 7

Comparison of the B. subtilis spore optical constants obtained from the four types of suspensions over the wavelength subinterval from 0.2 to 0.5 µm.

Tables (1)

Tables Icon

Table 1 Real (n) and Imaginary (k) Parts of the Complex Refractive Index of B. subtilis Spores in Water and Glycerol

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k=λ lnTwater/T4πt,
t=concentration×pathlengthdensity,
nE=1+2π P 0EkEE2-E2dE,
n=nSC sin θc,

Metrics