Abstract

We report the design, construction, and evaluation of a static Fourier-transform ultraviolet spectrometer. The spectrometer is based on Wollaston prisms that form an interferogram in the spatial domain, which is recorded with a detector array. We demonstrate the application of the spectrometer to gas detection. Using a deuterium light source, we measured a detection limit, with a 1-s integration time, for hydrogen sulfide and sulfur dioxide, corresponding to 0.2 ppm over a 5-m path length.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Reid, S. Gillespie, “Open Path Detection of Hydrogen Sulphide,” presented at the International Symposium on Optical Remote Sensing for Environmental Monitoring, Atlanta, Ga., 1993.
  2. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), Chap. 2, p. 22.
  3. G. W. Stroke, A. T. Funkhouser, “Fourier Transform spectroscopy using holographic imaging without computing and with stationary interferometers,” Phys. Lett. 16, 272–274 (1965).
    [CrossRef]
  4. L. V. Egorova, I. E. Leshcheva, B. N. Popov, A. Yu. Stroganova, “Static fast-response Fourier transform spectrometer having a linear CCD image-formation system,” Sov. J. Opt. Technol. 56, 220–221 (1989).
  5. M. Françon, S. Mallick, Polarization Interferometers (Wiley Interscience, London, 1971), Chap. 2, p. 31.
  6. T. Okamoto, S. Kawata, S. Minami, “A photodiode array Fourier transform spectrometer based on a birefringent interferometer,” Appl. Spectrosc. 40, 691–695 (1986).
    [CrossRef]
  7. M. J. Padgett, A. R. Harvey, A. J. Duncan, W. Sibbett, “Single-pulse, Fourier-transform spectrometer having no moving parts,” Appl. Opt. 33, 6035–6040 (1994).
    [CrossRef] [PubMed]
  8. M. J. Padgett, A. R. Harvey, “A static Fourier-transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66, 2807–2811 (1995).
    [CrossRef]
  9. B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
    [CrossRef]
  10. Manufactured by Halbo Optics, Chelmsford, UK.
  11. Part RL1024SBQ-011, EG&G Reticon, Sunnyvale, Calif.
  12. Ref. 5, Chap. 2, p. 26.
  13. H. Koetser, Halbo Optics, Chelmsford, UK (personal communication, 1995).
  14. K. Watanabe, A. S. Jursa, “Absorption and Photoionization Cross Sections of H2O and H2S,” J. Chem. Phys. 41, 1650–1653 (1964).
    [CrossRef]
  15. D. Golomb, K. Watanabe, F. F. Marmo, “Absorption coefficients of sulphur dioxide in the vacuum ultraviolet,” J. Chem. Phys. 36, 958–960 (1962).
    [CrossRef]

1996 (1)

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
[CrossRef]

1995 (1)

M. J. Padgett, A. R. Harvey, “A static Fourier-transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66, 2807–2811 (1995).
[CrossRef]

1994 (1)

1989 (1)

L. V. Egorova, I. E. Leshcheva, B. N. Popov, A. Yu. Stroganova, “Static fast-response Fourier transform spectrometer having a linear CCD image-formation system,” Sov. J. Opt. Technol. 56, 220–221 (1989).

1986 (1)

1965 (1)

G. W. Stroke, A. T. Funkhouser, “Fourier Transform spectroscopy using holographic imaging without computing and with stationary interferometers,” Phys. Lett. 16, 272–274 (1965).
[CrossRef]

1964 (1)

K. Watanabe, A. S. Jursa, “Absorption and Photoionization Cross Sections of H2O and H2S,” J. Chem. Phys. 41, 1650–1653 (1964).
[CrossRef]

1962 (1)

D. Golomb, K. Watanabe, F. F. Marmo, “Absorption coefficients of sulphur dioxide in the vacuum ultraviolet,” J. Chem. Phys. 36, 958–960 (1962).
[CrossRef]

Antoni, M.

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
[CrossRef]

Bell, R. J.

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), Chap. 2, p. 22.

Courtial, J.

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
[CrossRef]

Duncan, A. J.

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
[CrossRef]

M. J. Padgett, A. R. Harvey, A. J. Duncan, W. Sibbett, “Single-pulse, Fourier-transform spectrometer having no moving parts,” Appl. Opt. 33, 6035–6040 (1994).
[CrossRef] [PubMed]

Egorova, L. V.

L. V. Egorova, I. E. Leshcheva, B. N. Popov, A. Yu. Stroganova, “Static fast-response Fourier transform spectrometer having a linear CCD image-formation system,” Sov. J. Opt. Technol. 56, 220–221 (1989).

Françon, M.

M. Françon, S. Mallick, Polarization Interferometers (Wiley Interscience, London, 1971), Chap. 2, p. 31.

Funkhouser, A. T.

G. W. Stroke, A. T. Funkhouser, “Fourier Transform spectroscopy using holographic imaging without computing and with stationary interferometers,” Phys. Lett. 16, 272–274 (1965).
[CrossRef]

Gillespie, S.

S. A. Reid, S. Gillespie, “Open Path Detection of Hydrogen Sulphide,” presented at the International Symposium on Optical Remote Sensing for Environmental Monitoring, Atlanta, Ga., 1993.

Golomb, D.

D. Golomb, K. Watanabe, F. F. Marmo, “Absorption coefficients of sulphur dioxide in the vacuum ultraviolet,” J. Chem. Phys. 36, 958–960 (1962).
[CrossRef]

Harvey, A. R.

M. J. Padgett, A. R. Harvey, “A static Fourier-transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66, 2807–2811 (1995).
[CrossRef]

M. J. Padgett, A. R. Harvey, A. J. Duncan, W. Sibbett, “Single-pulse, Fourier-transform spectrometer having no moving parts,” Appl. Opt. 33, 6035–6040 (1994).
[CrossRef] [PubMed]

Jursa, A. S.

K. Watanabe, A. S. Jursa, “Absorption and Photoionization Cross Sections of H2O and H2S,” J. Chem. Phys. 41, 1650–1653 (1964).
[CrossRef]

Kawata, S.

Koetser, H.

H. Koetser, Halbo Optics, Chelmsford, UK (personal communication, 1995).

Leshcheva, I. E.

L. V. Egorova, I. E. Leshcheva, B. N. Popov, A. Yu. Stroganova, “Static fast-response Fourier transform spectrometer having a linear CCD image-formation system,” Sov. J. Opt. Technol. 56, 220–221 (1989).

Mallick, S.

M. Françon, S. Mallick, Polarization Interferometers (Wiley Interscience, London, 1971), Chap. 2, p. 31.

Marmo, F. F.

D. Golomb, K. Watanabe, F. F. Marmo, “Absorption coefficients of sulphur dioxide in the vacuum ultraviolet,” J. Chem. Phys. 36, 958–960 (1962).
[CrossRef]

Minami, S.

Okamoto, T.

Padgett, M. J.

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
[CrossRef]

M. J. Padgett, A. R. Harvey, “A static Fourier-transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66, 2807–2811 (1995).
[CrossRef]

M. J. Padgett, A. R. Harvey, A. J. Duncan, W. Sibbett, “Single-pulse, Fourier-transform spectrometer having no moving parts,” Appl. Opt. 33, 6035–6040 (1994).
[CrossRef] [PubMed]

Patterson, B. A.

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
[CrossRef]

Popov, B. N.

L. V. Egorova, I. E. Leshcheva, B. N. Popov, A. Yu. Stroganova, “Static fast-response Fourier transform spectrometer having a linear CCD image-formation system,” Sov. J. Opt. Technol. 56, 220–221 (1989).

Reid, S. A.

S. A. Reid, S. Gillespie, “Open Path Detection of Hydrogen Sulphide,” presented at the International Symposium on Optical Remote Sensing for Environmental Monitoring, Atlanta, Ga., 1993.

Sibbett, W.

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
[CrossRef]

M. J. Padgett, A. R. Harvey, A. J. Duncan, W. Sibbett, “Single-pulse, Fourier-transform spectrometer having no moving parts,” Appl. Opt. 33, 6035–6040 (1994).
[CrossRef] [PubMed]

Stroganova, A. Yu.

L. V. Egorova, I. E. Leshcheva, B. N. Popov, A. Yu. Stroganova, “Static fast-response Fourier transform spectrometer having a linear CCD image-formation system,” Sov. J. Opt. Technol. 56, 220–221 (1989).

Stroke, G. W.

G. W. Stroke, A. T. Funkhouser, “Fourier Transform spectroscopy using holographic imaging without computing and with stationary interferometers,” Phys. Lett. 16, 272–274 (1965).
[CrossRef]

Watanabe, K.

K. Watanabe, A. S. Jursa, “Absorption and Photoionization Cross Sections of H2O and H2S,” J. Chem. Phys. 41, 1650–1653 (1964).
[CrossRef]

D. Golomb, K. Watanabe, F. F. Marmo, “Absorption coefficients of sulphur dioxide in the vacuum ultraviolet,” J. Chem. Phys. 36, 958–960 (1962).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (1)

J. Chem. Phys. (2)

K. Watanabe, A. S. Jursa, “Absorption and Photoionization Cross Sections of H2O and H2S,” J. Chem. Phys. 41, 1650–1653 (1964).
[CrossRef]

D. Golomb, K. Watanabe, F. F. Marmo, “Absorption coefficients of sulphur dioxide in the vacuum ultraviolet,” J. Chem. Phys. 36, 958–960 (1962).
[CrossRef]

Opt. Commun. (1)

B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
[CrossRef]

Phys. Lett. (1)

G. W. Stroke, A. T. Funkhouser, “Fourier Transform spectroscopy using holographic imaging without computing and with stationary interferometers,” Phys. Lett. 16, 272–274 (1965).
[CrossRef]

Rev. Sci. Instrum. (1)

M. J. Padgett, A. R. Harvey, “A static Fourier-transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66, 2807–2811 (1995).
[CrossRef]

Sov. J. Opt. Technol. (1)

L. V. Egorova, I. E. Leshcheva, B. N. Popov, A. Yu. Stroganova, “Static fast-response Fourier transform spectrometer having a linear CCD image-formation system,” Sov. J. Opt. Technol. 56, 220–221 (1989).

Other (7)

M. Françon, S. Mallick, Polarization Interferometers (Wiley Interscience, London, 1971), Chap. 2, p. 31.

Manufactured by Halbo Optics, Chelmsford, UK.

Part RL1024SBQ-011, EG&G Reticon, Sunnyvale, Calif.

Ref. 5, Chap. 2, p. 26.

H. Koetser, Halbo Optics, Chelmsford, UK (personal communication, 1995).

S. A. Reid, S. Gillespie, “Open Path Detection of Hydrogen Sulphide,” presented at the International Symposium on Optical Remote Sensing for Environmental Monitoring, Atlanta, Ga., 1993.

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), Chap. 2, p. 22.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic layout of the static FTUV spectrometer. The displacement x along the detector array, which acts as parameter for the interferogram, is also indicated.

Fig. 2
Fig. 2

Wave number resolution of the FTUV spectrometer.

Fig. 3
Fig. 3

Fringe frequency as a function of wave number for a nondispersive interferometer (index nd) and a synthetic quartz Wollaston prism spectrometer (index W).

Fig. 4
Fig. 4

Spectral amplitude correction factors for a nondispersive interferometer (index nd) and a synthetic quartz Wollaston prism spectrometer (index W).

Fig. 5
Fig. 5

Laboratory configuration of an open-path gas detection system operating in the ultraviolet with a Wollaston prism spectrometer.

Fig. 6
Fig. 6

Measured absorption coefficient of hydrogen sulfide.

Fig. 7
Fig. 7

Measured absorption coefficient of sulfur dioxide.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Vλ=e-1e+12.
Ix0sk1+cos2πΔx, kkdk.
Ixosk1/22+expi2π·Δx, kk+exp-i2πΔx, kkdk.
Ix1/2-sk1+expi2πΔx, kkdk.
Ix1/2-sk+δk- skdk×expi2πΔx, kkdk,
skκkFIxκk  for k>0,
FIxκ -Ixexp-i2π·x·κdx

Metrics