Abstract

A six-element polarization-independent transmission trap detector with coaxial input and output beams has been constructed and full characterized. The measured optical parameters are compared with their values, predicted by Fresnel equations. Measured transmittances are in agreement with the predicted values within 2 × 10-5 in the wavelength region from 450 to 650nm. The spectral responsivity of the transmission trap detector is in agreement with the predicted values within 0.035% at 543.5- and 633.0-nm vacuum wavelengths. The spatial uniformity of the responsivity is ±0.03% across the active area of approximately 5 × 6 mm2, measured with a laser beam of 1-mm diameter. The angular uniformity of the transmission trap detector is better than ±0.01% for ±3° rotation around two perpendicular axes.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. F. Zalewski, J. Geist, “Spectral response self-calibration and interpolation of silicon photodiodes,” Appl. Opt. 19, 3795–3799 (1980).
    [CrossRef] [PubMed]
  2. E. F. Zalewski, C. R. Duda, “Silicon photodiode device with 100% external quantum efficiency,” Appl. Opt. 22, 2867–2873 (1983).
    [CrossRef] [PubMed]
  3. N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991).
    [CrossRef]
  4. The mention of brandnames is for information purposes only and does not constitute an endorsement of the product by the authors or their institutions or sponsors.
  5. P. Kärhä, A. Lassila, H. Ludvigsen, F. Manoochehri, H. Fagerlund, E. Ikonen, “Optical power and transmittance measurements and their use in detector-based realization of the luminous intensity scale,” Opt. Eng. 34, 2611–2618 (1995).
    [CrossRef]
  6. R. J. Bruening, “Spectral irradiance scales based on filtered absolute silicon photodetectors,” Appl. Opt. 26, 1051–1057 (1987).
    [CrossRef] [PubMed]
  7. B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
    [CrossRef]
  8. J. L. Gardner, “Transmission trap detectors,” Appl. Opt. 25, 5914–5918 (1994).
    [CrossRef]
  9. M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, Oxford, UK, 1965), pp. 40, 632–633.
  10. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985), pp. 547–569.
  11. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
    [CrossRef]

1995

P. Kärhä, A. Lassila, H. Ludvigsen, F. Manoochehri, H. Fagerlund, E. Ikonen, “Optical power and transmittance measurements and their use in detector-based realization of the luminous intensity scale,” Opt. Eng. 34, 2611–2618 (1995).
[CrossRef]

1994

J. L. Gardner, “Transmission trap detectors,” Appl. Opt. 25, 5914–5918 (1994).
[CrossRef]

1993

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

1991

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991).
[CrossRef]

1987

1983

1980

1965

Born, M.

M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, Oxford, UK, 1965), pp. 40, 632–633.

Bruening, R. J.

Cromer, C. L.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Dezsi, G.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Duda, C. R.

Eppeldauer, G.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Fagerlund, H.

P. Kärhä, A. Lassila, H. Ludvigsen, F. Manoochehri, H. Fagerlund, E. Ikonen, “Optical power and transmittance measurements and their use in detector-based realization of the luminous intensity scale,” Opt. Eng. 34, 2611–2618 (1995).
[CrossRef]

Fowler, J.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Fox, N. P.

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991).
[CrossRef]

Gardner, J. L.

J. L. Gardner, “Transmission trap detectors,” Appl. Opt. 25, 5914–5918 (1994).
[CrossRef]

Geist, J.

Ikonen, E.

P. Kärhä, A. Lassila, H. Ludvigsen, F. Manoochehri, H. Fagerlund, E. Ikonen, “Optical power and transmittance measurements and their use in detector-based realization of the luminous intensity scale,” Opt. Eng. 34, 2611–2618 (1995).
[CrossRef]

Johnson, B. C.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Kärhä, P.

P. Kärhä, A. Lassila, H. Ludvigsen, F. Manoochehri, H. Fagerlund, E. Ikonen, “Optical power and transmittance measurements and their use in detector-based realization of the luminous intensity scale,” Opt. Eng. 34, 2611–2618 (1995).
[CrossRef]

Lassila, A.

P. Kärhä, A. Lassila, H. Ludvigsen, F. Manoochehri, H. Fagerlund, E. Ikonen, “Optical power and transmittance measurements and their use in detector-based realization of the luminous intensity scale,” Opt. Eng. 34, 2611–2618 (1995).
[CrossRef]

Ludvigsen, H.

P. Kärhä, A. Lassila, H. Ludvigsen, F. Manoochehri, H. Fagerlund, E. Ikonen, “Optical power and transmittance measurements and their use in detector-based realization of the luminous intensity scale,” Opt. Eng. 34, 2611–2618 (1995).
[CrossRef]

Malitson, I. H.

Manoochehri, F.

P. Kärhä, A. Lassila, H. Ludvigsen, F. Manoochehri, H. Fagerlund, E. Ikonen, “Optical power and transmittance measurements and their use in detector-based realization of the luminous intensity scale,” Opt. Eng. 34, 2611–2618 (1995).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985), pp. 547–569.

Sapritsky, V. I.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Saunders, R. D.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, Oxford, UK, 1965), pp. 40, 632–633.

Zalewski, E. F.

Appl. Opt.

J. Opt. Soc. Am.

Metrologia

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991).
[CrossRef]

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Opt. Eng.

P. Kärhä, A. Lassila, H. Ludvigsen, F. Manoochehri, H. Fagerlund, E. Ikonen, “Optical power and transmittance measurements and their use in detector-based realization of the luminous intensity scale,” Opt. Eng. 34, 2611–2618 (1995).
[CrossRef]

Other

The mention of brandnames is for information purposes only and does not constitute an endorsement of the product by the authors or their institutions or sponsors.

M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, Oxford, UK, 1965), pp. 40, 632–633.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985), pp. 547–569.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Isometric view of the six photodiodes assembled in the transmission trap detector. The dashed line follows the beam between the photodiodes. Hatched areas indicate the active surfaces of the photodiodes.

Fig. 2
Fig. 2

Body part to which the photodiodes are attached. The photodiodes are assembled to the recesses in the body part. The device is constructed from two similar modules.

Fig. 3
Fig. 3

Block diagram of the measurement setup: L, laser; ID, iris diaphragms; BS, beam splitter; TT, transmission trap detector; RT1, RT2, reflection trap detectors.

Fig. 4
Fig. 4

Measured (solid squares) and calculated (solid curve) transmittances of the transmission trap detector (in absolute units). The uncertainty bars (2σ) contain the combined uncertainty of calculations and measurements, caused primarily by alignment. At wavelengths longer than 500 nm, the uncertainty is smaller than the size of the square symbol.

Fig. 5
Fig. 5

Angular dependence of the transmittance of the transmission trap detector (in absolute units). The solid circles represent changes measured during rotation around the x axis and the squares around the y axis. A positive change indicates increased transmittance.

Fig. 6
Fig. 6

Angular dependence of the responsivity of the transmission trap detector, given as a relative deviation from the responsivity at a zero deg angle. Symbols and directions are as in Fig. 5. A positive change indicates increased responsivity.

Fig. 7
Fig. 7

Measured transmittance (in absolute units) of the transmission trap detector at a 458.0-nm wavelength as a function of the incident beam location.

Fig. 8
Fig. 8

Spatial variation of responsivity of the transmission trap detector at a 458.0-nm wavelength, given as a relative deviation from the average responsivity at the center of the detector.

Tables (1)

Tables Icon

Table 1 Predicted and Measured Values of the Spectral Responsivity of the Transmission Trap Detectora

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Tttλ=ρpλ×ρsλ3,
Rttλ=1-Tttλ1-ρrtλRrtλ,

Metrics