Abstract

We experimentally and theoretically studied the phenomenon of thermal emission from nonvolatile liquid surface coatings following heating with a pulsed CO2 laser. The effects of thermal diffusion across the liquid–air and liquid–substrate interfaces as well as the full absorption spectrum of the liquid are addressed theoretically. The differential temporal and intensity characteristics of the thermal emission signal from the heated surface coating, resulting from the differential heat deposition profile for on- and off-resonance excitation, are shown to be useful for the purposes of identifying different surface contaminants. The application of this technique to standoff thermal imaging of contaminated surfaces is discussed.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Haugland, E. Bahar, A. H. Carrieri, “Identification of contaminant coatings over rough surfaces using polarized infrared scattering,” Appl. Opt. 31, 3847–3852 (1992).
    [CrossRef] [PubMed]
  2. A. H. Carrieri, “Infrared detection of liquids on terrestrial surfaces by CO2 laser heating,” Appl. Opt. 29, 4907–4913 (1990).
    [CrossRef] [PubMed]
  3. A. H. Carrieri, P. I. Lim, “Neural network pattern recognition of thermal-signature spectra for chemical defense,” Appl. Opt. 34, 2623–2635 (1995).
    [CrossRef] [PubMed]
  4. G. N. Pearson, M. Harris, E. Jakeman, D. Letalick, “Spectral filtering of light possessing non-Gaussian statistics,” J. Mod. Opt. 41, 2067–2077 (1994).
    [CrossRef]
  5. P. E. Nordal, S. O. Kanstad, “Photothermal radiometry,” Phys. Scr. 20, 659–662 (1979).
    [CrossRef]
  6. S. O. Kanstad, P. E. Nordal, “Photoacoustic and photothermal techniques for powder and surface spectroscopy,” Appl. Surf. Sci. 6, 372–391 (1980).
    [CrossRef]
  7. R. Santos, L. C. M. Miranda, “Theory of photothermal radiometry with solids,” J. Appl. Phys. 52, 4194–4198 (1981).
    [CrossRef]
  8. A. C. Tam, B. Sullivan, “Remote sensing applications of pulsed photothermal radiometry,” Appl. Phys. Lett. 43, 333–335 (1983).
    [CrossRef]
  9. W. P. Leung, A. C. Tam, “Techniques of flash radiometry,” J. Appl. Phys. 56, 153–161 (1984).
    [CrossRef]
  10. R. E. Imhof, D. J. S. Birch, F. R. Thornley, J. R. Gilchrist, T. A. Strivens, “Optothermal transient emission radiometry,” J. Phys. E 17, 521–525 (1984).
    [CrossRef]
  11. A. C. Tam, “Pulsed laser photoacoustic and photothermal detection,” in Photoacoustic and Thermat Wave Phenomena in Semiconductors, A. Mandelis, ed. (North-Holland, New York, 1987), Chap. 8.
  12. L. T. Lin, D. D. Archibald, D. E. Honigs, “Preliminary studies of laser induced thermal emission spectroscopy of condensed phases,” Appl. Spectrosc. 42, 477–482 (1988).
    [CrossRef]
  13. S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).
    [CrossRef] [PubMed]
  14. I. A. Vitkin, B. C. Wilson, R. R. Anderson, “Analysis of layered scattering materials by pulsed photothermal radiometry: application to photon propagation in tissue,” Appl. Opt. 34, 2973–2982 (1995).
    [CrossRef] [PubMed]
  15. R. D. Tom, E. P. O’Hara, D. Benin, “A generalized model of photothermal radiometry,” J. Appl. Phys. 53, 5392–5400 (1982).
    [CrossRef]
  16. S. O. Kanstad, P. E. Nordal, “Experimental aspects of photothermal radiometry,” Can. J. Phys. 64, 1155–1164 (1986).
    [CrossRef]
  17. R. E. Imhof, A. D. McKendrick, P. Xiao, “Thermal emission decay Fourier transform infrared spectroscopy,” Rev. Sci. Instrum. 66, 5203–5213 (1995).
    [CrossRef]

1995 (3)

1994 (1)

G. N. Pearson, M. Harris, E. Jakeman, D. Letalick, “Spectral filtering of light possessing non-Gaussian statistics,” J. Mod. Opt. 41, 2067–2077 (1994).
[CrossRef]

1992 (2)

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).
[CrossRef] [PubMed]

S. M. Haugland, E. Bahar, A. H. Carrieri, “Identification of contaminant coatings over rough surfaces using polarized infrared scattering,” Appl. Opt. 31, 3847–3852 (1992).
[CrossRef] [PubMed]

1990 (1)

1988 (1)

1986 (1)

S. O. Kanstad, P. E. Nordal, “Experimental aspects of photothermal radiometry,” Can. J. Phys. 64, 1155–1164 (1986).
[CrossRef]

1984 (2)

W. P. Leung, A. C. Tam, “Techniques of flash radiometry,” J. Appl. Phys. 56, 153–161 (1984).
[CrossRef]

R. E. Imhof, D. J. S. Birch, F. R. Thornley, J. R. Gilchrist, T. A. Strivens, “Optothermal transient emission radiometry,” J. Phys. E 17, 521–525 (1984).
[CrossRef]

1983 (1)

A. C. Tam, B. Sullivan, “Remote sensing applications of pulsed photothermal radiometry,” Appl. Phys. Lett. 43, 333–335 (1983).
[CrossRef]

1982 (1)

R. D. Tom, E. P. O’Hara, D. Benin, “A generalized model of photothermal radiometry,” J. Appl. Phys. 53, 5392–5400 (1982).
[CrossRef]

1981 (1)

R. Santos, L. C. M. Miranda, “Theory of photothermal radiometry with solids,” J. Appl. Phys. 52, 4194–4198 (1981).
[CrossRef]

1980 (1)

S. O. Kanstad, P. E. Nordal, “Photoacoustic and photothermal techniques for powder and surface spectroscopy,” Appl. Surf. Sci. 6, 372–391 (1980).
[CrossRef]

1979 (1)

P. E. Nordal, S. O. Kanstad, “Photothermal radiometry,” Phys. Scr. 20, 659–662 (1979).
[CrossRef]

Anderson, R. R.

I. A. Vitkin, B. C. Wilson, R. R. Anderson, “Analysis of layered scattering materials by pulsed photothermal radiometry: application to photon propagation in tissue,” Appl. Opt. 34, 2973–2982 (1995).
[CrossRef] [PubMed]

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).
[CrossRef] [PubMed]

Archibald, D. D.

Bahar, E.

Benin, D.

R. D. Tom, E. P. O’Hara, D. Benin, “A generalized model of photothermal radiometry,” J. Appl. Phys. 53, 5392–5400 (1982).
[CrossRef]

Birch, D. J. S.

R. E. Imhof, D. J. S. Birch, F. R. Thornley, J. R. Gilchrist, T. A. Strivens, “Optothermal transient emission radiometry,” J. Phys. E 17, 521–525 (1984).
[CrossRef]

Bruggemann, U.

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).
[CrossRef] [PubMed]

Carrieri, A. H.

Gilchrist, J. R.

R. E. Imhof, D. J. S. Birch, F. R. Thornley, J. R. Gilchrist, T. A. Strivens, “Optothermal transient emission radiometry,” J. Phys. E 17, 521–525 (1984).
[CrossRef]

Harris, M.

G. N. Pearson, M. Harris, E. Jakeman, D. Letalick, “Spectral filtering of light possessing non-Gaussian statistics,” J. Mod. Opt. 41, 2067–2077 (1994).
[CrossRef]

Haugland, S. M.

Honigs, D. E.

Imhof, R. E.

R. E. Imhof, A. D. McKendrick, P. Xiao, “Thermal emission decay Fourier transform infrared spectroscopy,” Rev. Sci. Instrum. 66, 5203–5213 (1995).
[CrossRef]

R. E. Imhof, D. J. S. Birch, F. R. Thornley, J. R. Gilchrist, T. A. Strivens, “Optothermal transient emission radiometry,” J. Phys. E 17, 521–525 (1984).
[CrossRef]

Jakeman, E.

G. N. Pearson, M. Harris, E. Jakeman, D. Letalick, “Spectral filtering of light possessing non-Gaussian statistics,” J. Mod. Opt. 41, 2067–2077 (1994).
[CrossRef]

Kanstad, S. O.

S. O. Kanstad, P. E. Nordal, “Experimental aspects of photothermal radiometry,” Can. J. Phys. 64, 1155–1164 (1986).
[CrossRef]

S. O. Kanstad, P. E. Nordal, “Photoacoustic and photothermal techniques for powder and surface spectroscopy,” Appl. Surf. Sci. 6, 372–391 (1980).
[CrossRef]

P. E. Nordal, S. O. Kanstad, “Photothermal radiometry,” Phys. Scr. 20, 659–662 (1979).
[CrossRef]

Letalick, D.

G. N. Pearson, M. Harris, E. Jakeman, D. Letalick, “Spectral filtering of light possessing non-Gaussian statistics,” J. Mod. Opt. 41, 2067–2077 (1994).
[CrossRef]

Leung, W. P.

W. P. Leung, A. C. Tam, “Techniques of flash radiometry,” J. Appl. Phys. 56, 153–161 (1984).
[CrossRef]

Lim, P. I.

Lin, L. T.

McKendrick, A. D.

R. E. Imhof, A. D. McKendrick, P. Xiao, “Thermal emission decay Fourier transform infrared spectroscopy,” Rev. Sci. Instrum. 66, 5203–5213 (1995).
[CrossRef]

Miranda, L. C. M.

R. Santos, L. C. M. Miranda, “Theory of photothermal radiometry with solids,” J. Appl. Phys. 52, 4194–4198 (1981).
[CrossRef]

Nordal, P. E.

S. O. Kanstad, P. E. Nordal, “Experimental aspects of photothermal radiometry,” Can. J. Phys. 64, 1155–1164 (1986).
[CrossRef]

S. O. Kanstad, P. E. Nordal, “Photoacoustic and photothermal techniques for powder and surface spectroscopy,” Appl. Surf. Sci. 6, 372–391 (1980).
[CrossRef]

P. E. Nordal, S. O. Kanstad, “Photothermal radiometry,” Phys. Scr. 20, 659–662 (1979).
[CrossRef]

O’Hara, E. P.

R. D. Tom, E. P. O’Hara, D. Benin, “A generalized model of photothermal radiometry,” J. Appl. Phys. 53, 5392–5400 (1982).
[CrossRef]

Pearson, G. N.

G. N. Pearson, M. Harris, E. Jakeman, D. Letalick, “Spectral filtering of light possessing non-Gaussian statistics,” J. Mod. Opt. 41, 2067–2077 (1994).
[CrossRef]

Prahl, S. A.

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).
[CrossRef] [PubMed]

Santos, R.

R. Santos, L. C. M. Miranda, “Theory of photothermal radiometry with solids,” J. Appl. Phys. 52, 4194–4198 (1981).
[CrossRef]

Strivens, T. A.

R. E. Imhof, D. J. S. Birch, F. R. Thornley, J. R. Gilchrist, T. A. Strivens, “Optothermal transient emission radiometry,” J. Phys. E 17, 521–525 (1984).
[CrossRef]

Sullivan, B.

A. C. Tam, B. Sullivan, “Remote sensing applications of pulsed photothermal radiometry,” Appl. Phys. Lett. 43, 333–335 (1983).
[CrossRef]

Tam, A. C.

W. P. Leung, A. C. Tam, “Techniques of flash radiometry,” J. Appl. Phys. 56, 153–161 (1984).
[CrossRef]

A. C. Tam, B. Sullivan, “Remote sensing applications of pulsed photothermal radiometry,” Appl. Phys. Lett. 43, 333–335 (1983).
[CrossRef]

A. C. Tam, “Pulsed laser photoacoustic and photothermal detection,” in Photoacoustic and Thermat Wave Phenomena in Semiconductors, A. Mandelis, ed. (North-Holland, New York, 1987), Chap. 8.

Thornley, F. R.

R. E. Imhof, D. J. S. Birch, F. R. Thornley, J. R. Gilchrist, T. A. Strivens, “Optothermal transient emission radiometry,” J. Phys. E 17, 521–525 (1984).
[CrossRef]

Tom, R. D.

R. D. Tom, E. P. O’Hara, D. Benin, “A generalized model of photothermal radiometry,” J. Appl. Phys. 53, 5392–5400 (1982).
[CrossRef]

Vitkin, I. A.

I. A. Vitkin, B. C. Wilson, R. R. Anderson, “Analysis of layered scattering materials by pulsed photothermal radiometry: application to photon propagation in tissue,” Appl. Opt. 34, 2973–2982 (1995).
[CrossRef] [PubMed]

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).
[CrossRef] [PubMed]

Wilson, B. C.

I. A. Vitkin, B. C. Wilson, R. R. Anderson, “Analysis of layered scattering materials by pulsed photothermal radiometry: application to photon propagation in tissue,” Appl. Opt. 34, 2973–2982 (1995).
[CrossRef] [PubMed]

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).
[CrossRef] [PubMed]

Xiao, P.

R. E. Imhof, A. D. McKendrick, P. Xiao, “Thermal emission decay Fourier transform infrared spectroscopy,” Rev. Sci. Instrum. 66, 5203–5213 (1995).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

A. C. Tam, B. Sullivan, “Remote sensing applications of pulsed photothermal radiometry,” Appl. Phys. Lett. 43, 333–335 (1983).
[CrossRef]

Appl. Spectrosc. (1)

Appl. Surf. Sci. (1)

S. O. Kanstad, P. E. Nordal, “Photoacoustic and photothermal techniques for powder and surface spectroscopy,” Appl. Surf. Sci. 6, 372–391 (1980).
[CrossRef]

Can. J. Phys. (1)

S. O. Kanstad, P. E. Nordal, “Experimental aspects of photothermal radiometry,” Can. J. Phys. 64, 1155–1164 (1986).
[CrossRef]

J. Appl. Phys. (3)

R. D. Tom, E. P. O’Hara, D. Benin, “A generalized model of photothermal radiometry,” J. Appl. Phys. 53, 5392–5400 (1982).
[CrossRef]

R. Santos, L. C. M. Miranda, “Theory of photothermal radiometry with solids,” J. Appl. Phys. 52, 4194–4198 (1981).
[CrossRef]

W. P. Leung, A. C. Tam, “Techniques of flash radiometry,” J. Appl. Phys. 56, 153–161 (1984).
[CrossRef]

J. Mod. Opt. (1)

G. N. Pearson, M. Harris, E. Jakeman, D. Letalick, “Spectral filtering of light possessing non-Gaussian statistics,” J. Mod. Opt. 41, 2067–2077 (1994).
[CrossRef]

J. Phys. E (1)

R. E. Imhof, D. J. S. Birch, F. R. Thornley, J. R. Gilchrist, T. A. Strivens, “Optothermal transient emission radiometry,” J. Phys. E 17, 521–525 (1984).
[CrossRef]

Phys. Med. Biol. (1)

S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol. 37, 1203–1217 (1992).
[CrossRef] [PubMed]

Phys. Scr. (1)

P. E. Nordal, S. O. Kanstad, “Photothermal radiometry,” Phys. Scr. 20, 659–662 (1979).
[CrossRef]

Rev. Sci. Instrum. (1)

R. E. Imhof, A. D. McKendrick, P. Xiao, “Thermal emission decay Fourier transform infrared spectroscopy,” Rev. Sci. Instrum. 66, 5203–5213 (1995).
[CrossRef]

Other (1)

A. C. Tam, “Pulsed laser photoacoustic and photothermal detection,” in Photoacoustic and Thermat Wave Phenomena in Semiconductors, A. Mandelis, ed. (North-Holland, New York, 1987), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Absorption coefficients of MS over the spectral region 2.2–20 µm. These data were put together from individual transmission spectra taken over path lengths of 6, 25, 50, and 80 µm. The spectrometer was a Fourier transform device with a resolution of 4 cm-1.

Fig. 2
Fig. 2

Absorption and specular directional reflectance spectra of MS over the 8–11-µm spectral region. The on- and off-resonance CO2 laser wavelengths (9.2 and 9.52 µm, respectively) are marked by dotted lines.

Fig. 3
Fig. 3

Example of the solution to the diffusion equation for infinitely thick liquid and air layers with an initial exponential heat distribution in the liquid. The excitation absorption coefficient was 0.5 µm-1 and curves (1)–(3) correspond to times of 1, 10, and 100 µs after the laser heating pulse. The liquid assumed here was water, and the associated physical constants are given in Table 1.

Fig. 4
Fig. 4

Examples of the diffusion equation solution as a function of time for the case of a liquid layer sandwiched between air and a substrate: (A) the effect of a glass substrate and (B) the effect of a steel substrate.

Fig. 5
Fig. 5

Initial conditions for excitation of MS at the on- and off-resonance wavelengths. The laser pulse energy was 50 mJ/cm-2 and the respective absorption coefficients were 0.24 µm-1 (curve 1, λ = 9.2 µm) and 0.016 µm-1 (curve 2, λ = 9.52 µm).

Fig. 6
Fig. 6

Theoretical temporal evolution of the spectral radiance of MS following on-resonance pulsed excitation at 9.2 µm. The curves correspond to times of 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6 ms. The smooth gray bodylike curve represents the radiance from MS at 300 K (long-time limit).

Fig. 7
Fig. 7

Theoretical temporal evolution of the spectral radiance of MS following off-resonance pulsed excitation at 9.52 µm. The curves correspond to the same times as given in Fig. 6. All curves appear approximately overlaid for this scaling.

Fig. 8
Fig. 8

Integrated radiance across the 8–14-µm spectral band as a function of time for various cases: ■, decay following on-resonance pulse heating; ●, decay following off-resonance pulsed heating; (1) blackbody at a constant 305 K; (2) blackbody at a constant 302 K; (3) blackbody at a constant 300 K; (4) MS at a constant 300 K.

Fig. 9
Fig. 9

Integrated radiance across the 3–5-µm spectral band as a function of time for various cases: ■, decay following on-resonance pulse heating; ●, decay following off-resonance pulsed heating; (1) blackbody at a constant 305 K; (2) blackbody at a constant 302 K; (3) blackbody at a constant 300 K; (4) MS at a constant 300 K.

Fig. 10
Fig. 10

Schematic of the experimental arrangement we used for our preliminary experiment.

Fig. 11
Fig. 11

Experimental and theoretical data for the decay of the PPTR signal after pulsed heating at different wavelengths: ■, theoretical data for λ = 9.2 µm; ▲, theoretical data for λ = 9.52 µm. Curves represent experimental data for the three wavelengths shown. The experimental data were sampled at 500 kHz and the traces shown are the result of five averages. The signal was filtered through a low-pass filter with a cutoff frequency of 1.0 MHz.

Tables (1)

Tables Icon

Table 1 Physical Constants Used in Simulations

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

ΔTx, 0=Eαρc exp-αx,
R=n-12+nκ2n+12+nκ2,
κ=αλ4π,
Tx, tt=Kρc2Tx, tx2,
Tx, t=exp±iρc/K1/2kxexp-k2t
Tx, t=2πK2C21/2K1C11/2+K2C21/2T2-T1×0αα2+k2 exp-k2t×coskxC1/K11/2dk+0kα2+k2×exp-k2tsinkxC1/K11/2dk  x<0,
Tx, t=2πK2C21/2K1C11/2+K2C21/2T2-T1×0αα2+k2 exp-k2t×coskxC1/K11/2dk+K1C1/K2C21/2×0kα2+k2 exp-k2t×sinkxC1/K11/2dk,  x0.
y=xC/K1/2.
D0=d0C0/K01/2,  D1=d1C1/K11/2,  D2=d2C2/K21/2.
T0y, t=p0 expiky+q0 exp-ikyexp-k2t,
T1y, t=p1 expiky-D0+q1 exp-iky-D0exp-k2t,
T2y, t=[p2 expiky-D0-D1+q2 exp-iky-D0-D1exp-k2t.
ET, λdλ=AΩ2πβσ141λ5sλdλexpσ2/Tλ-1=Bλsλdλexpσ2/Tλ-1,
ET, λ=Bλαλ0z exp-αλxdxexpσ2/T0λ-1.
ET, λ=Bλ0zαλexp-αλxexpσ2T0+ΔTxλ-1dx,

Metrics