Abstract

KrF excimer lasers are often employed as high-power excitation sources in planar laser-induced fluorescence (PLIF) imaging experiments to measure the distributions of O2, OH, and H2O—all important species in combustion phenomena. However, due to the predissociative nature of these molecules, the high laser pumping rates typically required in such PLIF experiments may significantly deplete the ground-state population. The proper interpretation of the ground-state number density and/or the temperature from the fluorescence signals then requires the inclusion of photobleaching effects. We compare the results of a five-level rate-equation model incorporating photobleaching effects to the time-resolved PLIF signals from O2 as obtained in the products of a fuel-lean CH4 air flame. The results indicate that the fluorescence signals in a typical predissociated PLIF imaging experiment are subject to significant amounts of photobleaching. In an effort to provide a convenient way to account for photobleaching, a simple three-level model is developed. This model provides an analytic solution that describes satisfactorily the time-integrated fluorescence signal when compared with both the five-level model and the measurements. The results also indicate that at the low laser irradiances required to minimize the effects of photobleaching, the correspondingly low fluorescence signal levels make the acquisition of single-shot PLIF images a challenge to currently available camera systems.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Andresen, H. Schlüter, D. Wolff, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. Rothe, “Identification and imaging of OH (ν″ = 0) and O2 (ν″ = 6 or 7) in an automobile spark-ignition engine using a tunable KrF excimer laser,” Appl. Opt. 31, 7684–7689 (1992).
    [CrossRef] [PubMed]
  2. M. Versluis, M. Boogarts, R. Klein-Douwel, B. Thus, W. de Jongh, A. Braam, J. J. ter Meulen, W. L. Meerts, G. Meijer, “Laser-induced fluorescence imaging in a 100 kW natural gas flame,” Appl. Phys. B 55, 164–170 (1992).
    [CrossRef]
  3. T. M. Quagliaroli, G. Laufer, S. D. Hollo, R. H. Krauss, R. B. Whitehurst, J. C. McDaniel, “Planar KrF laser-induced OH fluorescence imaging in a supersonic combustion tunnel,” J. Propul. Power 10, 377–381 (1994).
    [CrossRef]
  4. H. Neij, M. Aldén, “Application of two-photon laser-induced fluorescence for visualization of water vapor in combustion environments,” Appl. Opt. 33, 6514–6523 (1994).
    [CrossRef] [PubMed]
  5. P. Andresen, A. Bath, W. Gröoger, H. W. Lülf, G. Meijer, J. J. ter Meulen, “Laser-induced fluorescence with tunable excimer lasers as a possible method for instantaneous temperature field measurements at high pressures: checks with an atmospheric flame,” Appl. Opt. 27, 365–378 (1988).
    [CrossRef] [PubMed]
  6. J. A. Gray, R. L. Farrow, “Predissociation lifetimes of OH A2Σ+ (v′ = 3 obtained from optical-optical double-resonance linewidth measurements,” J. Chem. Phys. 95, 7054–7060 (1991).
    [CrossRef]
  7. E. W. Rothe, Y.-W. Gu, G. P. Reck, “Laser induced predissociative fluorescence: dynamics and polarization and the effect of lower-state rotational energy transfer on quantitative diagnostics,” Appl. Opt. 35, 934–947 (1996).
    [CrossRef] [PubMed]
  8. J. H. Grinstead, G. Laufer, J. C. McDaniel, “Single-pulse, two-line temperature measurement technique using KrF laser-induced O2 fluorescence,” Appl. Opt. 34, 5501–5512 (1995).
    [CrossRef] [PubMed]
  9. V. Sick, M. Szabadi, “Einstein coefficients for oxygen B-X transitions used in LIF experiments with tunable KrF excimer lasers,” J. Quant. Spectrosc. Radiat. Transfer 54, 891–898 (1995).
    [CrossRef]
  10. P. C. Cosby, H. Park, R. A. Copeland, T. G. Slanger, “Predissociation linewidths in O2B33Σu- (ν = 0,2),” J. Chem. Phys. 98, 5117–5133 (1993).
    [CrossRef]
  11. Q. V. Nguyen, R. W. Dibble, C. D. Carter, G. J. Fiechtner, R. S. Barlow, “Raman-LIF measurements of temperature, major species, OH, and NO in a methane-air Bunsen flame,” Combus. Flame 105, 499–510 (1996).
    [CrossRef]
  12. J. W. Daily, “Use of rate-equations to describe laser excitation in flames,” Appl. Opt. 16, 2322–2327 (1977).
    [CrossRef] [PubMed]
  13. R. P. Lucht, D. M. Sweeney, N. M. Laurendeau, “Balanced cross-rate model for saturated molecular fluorescence in flames using nanosecond pulse length laser,” Appl. Opt. 19, 3295–3300 (1980).
    [CrossRef] [PubMed]
  14. D. H. Campbell, “Collisional effects on laser-induced fluorescence measurements of hydroxide concentrations in a combustion environment. 1. Effects for ν′ = 0 excitation,” Appl. Opt. 23, 689–703 (1984).
    [CrossRef]
  15. G. Zizak, F. Cignoli, S. Benecchi, “A complete treatment of a steady-state four-level model for the interpretation of OH laser-induced fluorescence measurements in atmospheric pressure flames,” Appl. Phys. B 51, 67–70 (1990).
    [CrossRef]
  16. J. M. Seitzman, R. K. Hanson, “Comparison of excitation techniques for quantitative fluorescence imaging of reacting flows,” AIAA J. 31, 513–519 (1993).
    [CrossRef]
  17. M. Legentil, S. Pasquirs, V. Puech, R. Riva, “Spectroscopic diagnostics of the onset of discharge instabilities in a XeCl phototriggered laser,” Appl. Phys. B 58, 515–517 (1994).
    [CrossRef]
  18. K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979), pp. 496–498.
  19. V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the O2 B3Σ-state,” Chem. Phys. Lett. 249, 335–340 (1996).
    [CrossRef]
  20. B. R. Lewis, L. Berzins, J. H. Carver, “Oscillator strengths for the Schumann-Runge bands of 16O2,” J. Quant. Spectrosc. Radiat. Transfer 36, 209–232 (1986).
    [CrossRef]
  21. J. B. Tatum, “Hönl-London factors for3Σ±-3Σ± transitions,” Can. J. Phys. 44, 2944–2946 (1966).
    [CrossRef]
  22. R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Time-resolved fluorescence investigation of rotational transfer in A2Σ+ (ν = 0) OH,” Appl. Opt. 25, 4086–4095 (1986).
    [CrossRef]

1996 (3)

Q. V. Nguyen, R. W. Dibble, C. D. Carter, G. J. Fiechtner, R. S. Barlow, “Raman-LIF measurements of temperature, major species, OH, and NO in a methane-air Bunsen flame,” Combus. Flame 105, 499–510 (1996).
[CrossRef]

V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the O2 B3Σ-state,” Chem. Phys. Lett. 249, 335–340 (1996).
[CrossRef]

E. W. Rothe, Y.-W. Gu, G. P. Reck, “Laser induced predissociative fluorescence: dynamics and polarization and the effect of lower-state rotational energy transfer on quantitative diagnostics,” Appl. Opt. 35, 934–947 (1996).
[CrossRef] [PubMed]

1995 (2)

J. H. Grinstead, G. Laufer, J. C. McDaniel, “Single-pulse, two-line temperature measurement technique using KrF laser-induced O2 fluorescence,” Appl. Opt. 34, 5501–5512 (1995).
[CrossRef] [PubMed]

V. Sick, M. Szabadi, “Einstein coefficients for oxygen B-X transitions used in LIF experiments with tunable KrF excimer lasers,” J. Quant. Spectrosc. Radiat. Transfer 54, 891–898 (1995).
[CrossRef]

1994 (3)

T. M. Quagliaroli, G. Laufer, S. D. Hollo, R. H. Krauss, R. B. Whitehurst, J. C. McDaniel, “Planar KrF laser-induced OH fluorescence imaging in a supersonic combustion tunnel,” J. Propul. Power 10, 377–381 (1994).
[CrossRef]

M. Legentil, S. Pasquirs, V. Puech, R. Riva, “Spectroscopic diagnostics of the onset of discharge instabilities in a XeCl phototriggered laser,” Appl. Phys. B 58, 515–517 (1994).
[CrossRef]

H. Neij, M. Aldén, “Application of two-photon laser-induced fluorescence for visualization of water vapor in combustion environments,” Appl. Opt. 33, 6514–6523 (1994).
[CrossRef] [PubMed]

1993 (2)

P. C. Cosby, H. Park, R. A. Copeland, T. G. Slanger, “Predissociation linewidths in O2B33Σu- (ν = 0,2),” J. Chem. Phys. 98, 5117–5133 (1993).
[CrossRef]

J. M. Seitzman, R. K. Hanson, “Comparison of excitation techniques for quantitative fluorescence imaging of reacting flows,” AIAA J. 31, 513–519 (1993).
[CrossRef]

1992 (2)

M. Versluis, M. Boogarts, R. Klein-Douwel, B. Thus, W. de Jongh, A. Braam, J. J. ter Meulen, W. L. Meerts, G. Meijer, “Laser-induced fluorescence imaging in a 100 kW natural gas flame,” Appl. Phys. B 55, 164–170 (1992).
[CrossRef]

P. Andresen, H. Schlüter, D. Wolff, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. Rothe, “Identification and imaging of OH (ν″ = 0) and O2 (ν″ = 6 or 7) in an automobile spark-ignition engine using a tunable KrF excimer laser,” Appl. Opt. 31, 7684–7689 (1992).
[CrossRef] [PubMed]

1991 (1)

J. A. Gray, R. L. Farrow, “Predissociation lifetimes of OH A2Σ+ (v′ = 3 obtained from optical-optical double-resonance linewidth measurements,” J. Chem. Phys. 95, 7054–7060 (1991).
[CrossRef]

1990 (1)

G. Zizak, F. Cignoli, S. Benecchi, “A complete treatment of a steady-state four-level model for the interpretation of OH laser-induced fluorescence measurements in atmospheric pressure flames,” Appl. Phys. B 51, 67–70 (1990).
[CrossRef]

1988 (1)

1986 (2)

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Time-resolved fluorescence investigation of rotational transfer in A2Σ+ (ν = 0) OH,” Appl. Opt. 25, 4086–4095 (1986).
[CrossRef]

B. R. Lewis, L. Berzins, J. H. Carver, “Oscillator strengths for the Schumann-Runge bands of 16O2,” J. Quant. Spectrosc. Radiat. Transfer 36, 209–232 (1986).
[CrossRef]

1984 (1)

1980 (1)

1977 (1)

1966 (1)

J. B. Tatum, “Hönl-London factors for3Σ±-3Σ± transitions,” Can. J. Phys. 44, 2944–2946 (1966).
[CrossRef]

Aldén, M.

Andresen, P.

Barlow, R. S.

Q. V. Nguyen, R. W. Dibble, C. D. Carter, G. J. Fiechtner, R. S. Barlow, “Raman-LIF measurements of temperature, major species, OH, and NO in a methane-air Bunsen flame,” Combus. Flame 105, 499–510 (1996).
[CrossRef]

Bath, A.

Benecchi, S.

G. Zizak, F. Cignoli, S. Benecchi, “A complete treatment of a steady-state four-level model for the interpretation of OH laser-induced fluorescence measurements in atmospheric pressure flames,” Appl. Phys. B 51, 67–70 (1990).
[CrossRef]

Berzins, L.

B. R. Lewis, L. Berzins, J. H. Carver, “Oscillator strengths for the Schumann-Runge bands of 16O2,” J. Quant. Spectrosc. Radiat. Transfer 36, 209–232 (1986).
[CrossRef]

Boogarts, M.

M. Versluis, M. Boogarts, R. Klein-Douwel, B. Thus, W. de Jongh, A. Braam, J. J. ter Meulen, W. L. Meerts, G. Meijer, “Laser-induced fluorescence imaging in a 100 kW natural gas flame,” Appl. Phys. B 55, 164–170 (1992).
[CrossRef]

Braam, A.

M. Versluis, M. Boogarts, R. Klein-Douwel, B. Thus, W. de Jongh, A. Braam, J. J. ter Meulen, W. L. Meerts, G. Meijer, “Laser-induced fluorescence imaging in a 100 kW natural gas flame,” Appl. Phys. B 55, 164–170 (1992).
[CrossRef]

Campbell, D. H.

Carter, C. D.

Q. V. Nguyen, R. W. Dibble, C. D. Carter, G. J. Fiechtner, R. S. Barlow, “Raman-LIF measurements of temperature, major species, OH, and NO in a methane-air Bunsen flame,” Combus. Flame 105, 499–510 (1996).
[CrossRef]

Carver, J. H.

B. R. Lewis, L. Berzins, J. H. Carver, “Oscillator strengths for the Schumann-Runge bands of 16O2,” J. Quant. Spectrosc. Radiat. Transfer 36, 209–232 (1986).
[CrossRef]

Cignoli, F.

G. Zizak, F. Cignoli, S. Benecchi, “A complete treatment of a steady-state four-level model for the interpretation of OH laser-induced fluorescence measurements in atmospheric pressure flames,” Appl. Phys. B 51, 67–70 (1990).
[CrossRef]

Copeland, R. A.

P. C. Cosby, H. Park, R. A. Copeland, T. G. Slanger, “Predissociation linewidths in O2B33Σu- (ν = 0,2),” J. Chem. Phys. 98, 5117–5133 (1993).
[CrossRef]

Cosby, P. C.

P. C. Cosby, H. Park, R. A. Copeland, T. G. Slanger, “Predissociation linewidths in O2B33Σu- (ν = 0,2),” J. Chem. Phys. 98, 5117–5133 (1993).
[CrossRef]

Daily, J. W.

de Jongh, W.

M. Versluis, M. Boogarts, R. Klein-Douwel, B. Thus, W. de Jongh, A. Braam, J. J. ter Meulen, W. L. Meerts, G. Meijer, “Laser-induced fluorescence imaging in a 100 kW natural gas flame,” Appl. Phys. B 55, 164–170 (1992).
[CrossRef]

Decker, M.

V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the O2 B3Σ-state,” Chem. Phys. Lett. 249, 335–340 (1996).
[CrossRef]

Dibble, R. W.

Q. V. Nguyen, R. W. Dibble, C. D. Carter, G. J. Fiechtner, R. S. Barlow, “Raman-LIF measurements of temperature, major species, OH, and NO in a methane-air Bunsen flame,” Combus. Flame 105, 499–510 (1996).
[CrossRef]

Farrow, R. L.

J. A. Gray, R. L. Farrow, “Predissociation lifetimes of OH A2Σ+ (v′ = 3 obtained from optical-optical double-resonance linewidth measurements,” J. Chem. Phys. 95, 7054–7060 (1991).
[CrossRef]

Fiechtner, G. J.

Q. V. Nguyen, R. W. Dibble, C. D. Carter, G. J. Fiechtner, R. S. Barlow, “Raman-LIF measurements of temperature, major species, OH, and NO in a methane-air Bunsen flame,” Combus. Flame 105, 499–510 (1996).
[CrossRef]

Gray, J. A.

J. A. Gray, R. L. Farrow, “Predissociation lifetimes of OH A2Σ+ (v′ = 3 obtained from optical-optical double-resonance linewidth measurements,” J. Chem. Phys. 95, 7054–7060 (1991).
[CrossRef]

Grinstead, J. H.

Gröoger, W.

Gu, Y.-W.

Hanson, R. K.

J. M. Seitzman, R. K. Hanson, “Comparison of excitation techniques for quantitative fluorescence imaging of reacting flows,” AIAA J. 31, 513–519 (1993).
[CrossRef]

Heinze, J.

V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the O2 B3Σ-state,” Chem. Phys. Lett. 249, 335–340 (1996).
[CrossRef]

Hentschel, W.

Herzberg, G.

K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979), pp. 496–498.

Hollo, S. D.

T. M. Quagliaroli, G. Laufer, S. D. Hollo, R. H. Krauss, R. B. Whitehurst, J. C. McDaniel, “Planar KrF laser-induced OH fluorescence imaging in a supersonic combustion tunnel,” J. Propul. Power 10, 377–381 (1994).
[CrossRef]

Huber, K. P.

K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979), pp. 496–498.

Klein-Douwel, R.

M. Versluis, M. Boogarts, R. Klein-Douwel, B. Thus, W. de Jongh, A. Braam, J. J. ter Meulen, W. L. Meerts, G. Meijer, “Laser-induced fluorescence imaging in a 100 kW natural gas flame,” Appl. Phys. B 55, 164–170 (1992).
[CrossRef]

Koch, A.

Krauss, R. H.

T. M. Quagliaroli, G. Laufer, S. D. Hollo, R. H. Krauss, R. B. Whitehurst, J. C. McDaniel, “Planar KrF laser-induced OH fluorescence imaging in a supersonic combustion tunnel,” J. Propul. Power 10, 377–381 (1994).
[CrossRef]

Laufer, G.

J. H. Grinstead, G. Laufer, J. C. McDaniel, “Single-pulse, two-line temperature measurement technique using KrF laser-induced O2 fluorescence,” Appl. Opt. 34, 5501–5512 (1995).
[CrossRef] [PubMed]

T. M. Quagliaroli, G. Laufer, S. D. Hollo, R. H. Krauss, R. B. Whitehurst, J. C. McDaniel, “Planar KrF laser-induced OH fluorescence imaging in a supersonic combustion tunnel,” J. Propul. Power 10, 377–381 (1994).
[CrossRef]

Laurendeau, N. M.

Legentil, M.

M. Legentil, S. Pasquirs, V. Puech, R. Riva, “Spectroscopic diagnostics of the onset of discharge instabilities in a XeCl phototriggered laser,” Appl. Phys. B 58, 515–517 (1994).
[CrossRef]

Lewis, B. R.

B. R. Lewis, L. Berzins, J. H. Carver, “Oscillator strengths for the Schumann-Runge bands of 16O2,” J. Quant. Spectrosc. Radiat. Transfer 36, 209–232 (1986).
[CrossRef]

Lucht, R. P.

Lülf, H. W.

McDaniel, J. C.

J. H. Grinstead, G. Laufer, J. C. McDaniel, “Single-pulse, two-line temperature measurement technique using KrF laser-induced O2 fluorescence,” Appl. Opt. 34, 5501–5512 (1995).
[CrossRef] [PubMed]

T. M. Quagliaroli, G. Laufer, S. D. Hollo, R. H. Krauss, R. B. Whitehurst, J. C. McDaniel, “Planar KrF laser-induced OH fluorescence imaging in a supersonic combustion tunnel,” J. Propul. Power 10, 377–381 (1994).
[CrossRef]

Meerts, W. L.

M. Versluis, M. Boogarts, R. Klein-Douwel, B. Thus, W. de Jongh, A. Braam, J. J. ter Meulen, W. L. Meerts, G. Meijer, “Laser-induced fluorescence imaging in a 100 kW natural gas flame,” Appl. Phys. B 55, 164–170 (1992).
[CrossRef]

Meijer, G.

M. Versluis, M. Boogarts, R. Klein-Douwel, B. Thus, W. de Jongh, A. Braam, J. J. ter Meulen, W. L. Meerts, G. Meijer, “Laser-induced fluorescence imaging in a 100 kW natural gas flame,” Appl. Phys. B 55, 164–170 (1992).
[CrossRef]

P. Andresen, A. Bath, W. Gröoger, H. W. Lülf, G. Meijer, J. J. ter Meulen, “Laser-induced fluorescence with tunable excimer lasers as a possible method for instantaneous temperature field measurements at high pressures: checks with an atmospheric flame,” Appl. Opt. 27, 365–378 (1988).
[CrossRef] [PubMed]

Neij, H.

Nguyen, Q. V.

Q. V. Nguyen, R. W. Dibble, C. D. Carter, G. J. Fiechtner, R. S. Barlow, “Raman-LIF measurements of temperature, major species, OH, and NO in a methane-air Bunsen flame,” Combus. Flame 105, 499–510 (1996).
[CrossRef]

Oppermann, W.

Park, H.

P. C. Cosby, H. Park, R. A. Copeland, T. G. Slanger, “Predissociation linewidths in O2B33Σu- (ν = 0,2),” J. Chem. Phys. 98, 5117–5133 (1993).
[CrossRef]

Pasquirs, S.

M. Legentil, S. Pasquirs, V. Puech, R. Riva, “Spectroscopic diagnostics of the onset of discharge instabilities in a XeCl phototriggered laser,” Appl. Phys. B 58, 515–517 (1994).
[CrossRef]

Puech, V.

M. Legentil, S. Pasquirs, V. Puech, R. Riva, “Spectroscopic diagnostics of the onset of discharge instabilities in a XeCl phototriggered laser,” Appl. Phys. B 58, 515–517 (1994).
[CrossRef]

Quagliaroli, T. M.

T. M. Quagliaroli, G. Laufer, S. D. Hollo, R. H. Krauss, R. B. Whitehurst, J. C. McDaniel, “Planar KrF laser-induced OH fluorescence imaging in a supersonic combustion tunnel,” J. Propul. Power 10, 377–381 (1994).
[CrossRef]

Reck, G. P.

Riva, R.

M. Legentil, S. Pasquirs, V. Puech, R. Riva, “Spectroscopic diagnostics of the onset of discharge instabilities in a XeCl phototriggered laser,” Appl. Phys. B 58, 515–517 (1994).
[CrossRef]

Rothe, E.

Rothe, E. W.

Schlüter, H.

Seitzman, J. M.

J. M. Seitzman, R. K. Hanson, “Comparison of excitation techniques for quantitative fluorescence imaging of reacting flows,” AIAA J. 31, 513–519 (1993).
[CrossRef]

Sick, V.

V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the O2 B3Σ-state,” Chem. Phys. Lett. 249, 335–340 (1996).
[CrossRef]

V. Sick, M. Szabadi, “Einstein coefficients for oxygen B-X transitions used in LIF experiments with tunable KrF excimer lasers,” J. Quant. Spectrosc. Radiat. Transfer 54, 891–898 (1995).
[CrossRef]

Slanger, T. G.

P. C. Cosby, H. Park, R. A. Copeland, T. G. Slanger, “Predissociation linewidths in O2B33Σu- (ν = 0,2),” J. Chem. Phys. 98, 5117–5133 (1993).
[CrossRef]

Stricker, W.

V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the O2 B3Σ-state,” Chem. Phys. Lett. 249, 335–340 (1996).
[CrossRef]

Sweeney, D. M.

Sweeney, D. W.

Szabadi, M.

V. Sick, M. Szabadi, “Einstein coefficients for oxygen B-X transitions used in LIF experiments with tunable KrF excimer lasers,” J. Quant. Spectrosc. Radiat. Transfer 54, 891–898 (1995).
[CrossRef]

Tatum, J. B.

J. B. Tatum, “Hönl-London factors for3Σ±-3Σ± transitions,” Can. J. Phys. 44, 2944–2946 (1966).
[CrossRef]

ter Meulen, J. J.

M. Versluis, M. Boogarts, R. Klein-Douwel, B. Thus, W. de Jongh, A. Braam, J. J. ter Meulen, W. L. Meerts, G. Meijer, “Laser-induced fluorescence imaging in a 100 kW natural gas flame,” Appl. Phys. B 55, 164–170 (1992).
[CrossRef]

P. Andresen, A. Bath, W. Gröoger, H. W. Lülf, G. Meijer, J. J. ter Meulen, “Laser-induced fluorescence with tunable excimer lasers as a possible method for instantaneous temperature field measurements at high pressures: checks with an atmospheric flame,” Appl. Opt. 27, 365–378 (1988).
[CrossRef] [PubMed]

Thus, B.

M. Versluis, M. Boogarts, R. Klein-Douwel, B. Thus, W. de Jongh, A. Braam, J. J. ter Meulen, W. L. Meerts, G. Meijer, “Laser-induced fluorescence imaging in a 100 kW natural gas flame,” Appl. Phys. B 55, 164–170 (1992).
[CrossRef]

Versluis, M.

M. Versluis, M. Boogarts, R. Klein-Douwel, B. Thus, W. de Jongh, A. Braam, J. J. ter Meulen, W. L. Meerts, G. Meijer, “Laser-induced fluorescence imaging in a 100 kW natural gas flame,” Appl. Phys. B 55, 164–170 (1992).
[CrossRef]

Voges, H.

Whitehurst, R. B.

T. M. Quagliaroli, G. Laufer, S. D. Hollo, R. H. Krauss, R. B. Whitehurst, J. C. McDaniel, “Planar KrF laser-induced OH fluorescence imaging in a supersonic combustion tunnel,” J. Propul. Power 10, 377–381 (1994).
[CrossRef]

Wolff, D.

Zizak, G.

G. Zizak, F. Cignoli, S. Benecchi, “A complete treatment of a steady-state four-level model for the interpretation of OH laser-induced fluorescence measurements in atmospheric pressure flames,” Appl. Phys. B 51, 67–70 (1990).
[CrossRef]

AIAA J. (1)

J. M. Seitzman, R. K. Hanson, “Comparison of excitation techniques for quantitative fluorescence imaging of reacting flows,” AIAA J. 31, 513–519 (1993).
[CrossRef]

Appl. Opt. (9)

J. W. Daily, “Use of rate-equations to describe laser excitation in flames,” Appl. Opt. 16, 2322–2327 (1977).
[CrossRef] [PubMed]

R. P. Lucht, D. M. Sweeney, N. M. Laurendeau, “Balanced cross-rate model for saturated molecular fluorescence in flames using nanosecond pulse length laser,” Appl. Opt. 19, 3295–3300 (1980).
[CrossRef] [PubMed]

D. H. Campbell, “Collisional effects on laser-induced fluorescence measurements of hydroxide concentrations in a combustion environment. 1. Effects for ν′ = 0 excitation,” Appl. Opt. 23, 689–703 (1984).
[CrossRef]

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Time-resolved fluorescence investigation of rotational transfer in A2Σ+ (ν = 0) OH,” Appl. Opt. 25, 4086–4095 (1986).
[CrossRef]

P. Andresen, H. Schlüter, D. Wolff, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. Rothe, “Identification and imaging of OH (ν″ = 0) and O2 (ν″ = 6 or 7) in an automobile spark-ignition engine using a tunable KrF excimer laser,” Appl. Opt. 31, 7684–7689 (1992).
[CrossRef] [PubMed]

H. Neij, M. Aldén, “Application of two-photon laser-induced fluorescence for visualization of water vapor in combustion environments,” Appl. Opt. 33, 6514–6523 (1994).
[CrossRef] [PubMed]

J. H. Grinstead, G. Laufer, J. C. McDaniel, “Single-pulse, two-line temperature measurement technique using KrF laser-induced O2 fluorescence,” Appl. Opt. 34, 5501–5512 (1995).
[CrossRef] [PubMed]

E. W. Rothe, Y.-W. Gu, G. P. Reck, “Laser induced predissociative fluorescence: dynamics and polarization and the effect of lower-state rotational energy transfer on quantitative diagnostics,” Appl. Opt. 35, 934–947 (1996).
[CrossRef] [PubMed]

P. Andresen, A. Bath, W. Gröoger, H. W. Lülf, G. Meijer, J. J. ter Meulen, “Laser-induced fluorescence with tunable excimer lasers as a possible method for instantaneous temperature field measurements at high pressures: checks with an atmospheric flame,” Appl. Opt. 27, 365–378 (1988).
[CrossRef] [PubMed]

Appl. Phys. B (3)

M. Legentil, S. Pasquirs, V. Puech, R. Riva, “Spectroscopic diagnostics of the onset of discharge instabilities in a XeCl phototriggered laser,” Appl. Phys. B 58, 515–517 (1994).
[CrossRef]

M. Versluis, M. Boogarts, R. Klein-Douwel, B. Thus, W. de Jongh, A. Braam, J. J. ter Meulen, W. L. Meerts, G. Meijer, “Laser-induced fluorescence imaging in a 100 kW natural gas flame,” Appl. Phys. B 55, 164–170 (1992).
[CrossRef]

G. Zizak, F. Cignoli, S. Benecchi, “A complete treatment of a steady-state four-level model for the interpretation of OH laser-induced fluorescence measurements in atmospheric pressure flames,” Appl. Phys. B 51, 67–70 (1990).
[CrossRef]

Can. J. Phys. (1)

J. B. Tatum, “Hönl-London factors for3Σ±-3Σ± transitions,” Can. J. Phys. 44, 2944–2946 (1966).
[CrossRef]

Chem. Phys. Lett. (1)

V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the O2 B3Σ-state,” Chem. Phys. Lett. 249, 335–340 (1996).
[CrossRef]

Combus. Flame (1)

Q. V. Nguyen, R. W. Dibble, C. D. Carter, G. J. Fiechtner, R. S. Barlow, “Raman-LIF measurements of temperature, major species, OH, and NO in a methane-air Bunsen flame,” Combus. Flame 105, 499–510 (1996).
[CrossRef]

J. Chem. Phys. (2)

P. C. Cosby, H. Park, R. A. Copeland, T. G. Slanger, “Predissociation linewidths in O2B33Σu- (ν = 0,2),” J. Chem. Phys. 98, 5117–5133 (1993).
[CrossRef]

J. A. Gray, R. L. Farrow, “Predissociation lifetimes of OH A2Σ+ (v′ = 3 obtained from optical-optical double-resonance linewidth measurements,” J. Chem. Phys. 95, 7054–7060 (1991).
[CrossRef]

J. Propul. Power (1)

T. M. Quagliaroli, G. Laufer, S. D. Hollo, R. H. Krauss, R. B. Whitehurst, J. C. McDaniel, “Planar KrF laser-induced OH fluorescence imaging in a supersonic combustion tunnel,” J. Propul. Power 10, 377–381 (1994).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

B. R. Lewis, L. Berzins, J. H. Carver, “Oscillator strengths for the Schumann-Runge bands of 16O2,” J. Quant. Spectrosc. Radiat. Transfer 36, 209–232 (1986).
[CrossRef]

V. Sick, M. Szabadi, “Einstein coefficients for oxygen B-X transitions used in LIF experiments with tunable KrF excimer lasers,” J. Quant. Spectrosc. Radiat. Transfer 54, 891–898 (1995).
[CrossRef]

Other (1)

K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979), pp. 496–498.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental schematic: PMT, photomultiplier tube; PC, personal computer.

Fig. 2
Fig. 2

Schematic diagram of the five-level model representing the O2 B–X (0,6) system.

Fig. 3
Fig. 3

Comparison of the five-level model with the PLIF measurements for the weak pumping case (conditions are shown in Table 1). The peak signal level is scaled to unity.

Fig. 4
Fig. 4

Comparison of the five-level model with the PLIF measurements for the strong pumping case (conditions are shown in Table 1). Signal levels are relative to the weak pumping case shown in Fig. 3.

Fig. 5
Fig. 5

Sensitivity of the five-level model to variations in the adjusted RET rate.

Fig. 6
Fig. 6

Relative time-integrated fluorescence signal as a function of the nondimensional pumping rate IB/R calculated with the five-level model with the parameters shown in Table 1.

Fig. 7
Fig. 7

Relative time-integrated fluorescence signal (normalized by f) as a function of the nondimensional pumping rate IB/R calculated with Eq. (17) from the three-level model for different ground-state Boltzmann fractions.

Fig. 8
Fig. 8

Two-line PLIF thermometry temperature errors as a function of a nondimensional pumping rate for different true gas temperatures. The temperatures were calculated for the P(7) and P(13) lines of the (0,6) band with Eqs. (20) and (21).

Tables (2)

Tables Icon

Table 1 Parameters Used in the Five-Level Model and Experimentally Measured Laser Irradiances and Flame Temperature

Tables Icon

Table 2 Effect of Pressure on the Parameters Governing the Effect of Photobleaching

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

R=fi1-fiR.
ηRt,
ϕifi/1-fi,
λP/R,
ΓQ/R,
βIB/R
niNi/NTOT,
dn1dη=-β+1n1+γβn2+ϕ1n3,
dn2dη=+βn1-γβ+λ+Γ+1n2+ϕ2n4,
dn3dη=+n1-ϕ1n3,
dn4dη=+n2-ϕ2+λ+Γn4,
dn5dη=Γ+λn2+n4,
n10=f1, n30=1-f1, n2,4,50=0.
qt=2ln2kNORMπi=16aici exp-2ln2t-bici2,
kNORM=i=16 ai.
It=ElwΔνLqt,
SFt=VkF2n2t+kF4n4t,
SMEASt=kMEAS10NDst,
dn1dη=-βn1-n1+ϕn3,
dn2dη=+βn1-λ+Γn2,
dn3dη=+n1-ϕn3,
n10=f, n20=0, n30=1-f.
SF  AP+Q NTOT1-exp-IB/R1+IB/R1-ffRτ.
SF  AP+Q NTOTIBfτ1-IBR1+fRτ2+OIBn>1.
P+QQSfQSfPP+QQQτ2.
TMEAS=ε2-ε1/klnA1P2+Q2I1B1τ1g1A2P1+Q1I2B2τ2g2-lnS1S2.
S1S2=A1P2+Q2A2P1+Q11-exp-Ψ1T1-exp-Ψ2T,
S1S2=A1P2+Q2A2P1+Q1 expΨ1T1-exp-Ψ1T1-exp-Ψ2T,

Metrics