Abstract

The emissivity model for rough sea surface [Remote Sensing Environ. 24, 313–329 (1988)] is inspected in light of the measured surface emissivity. In the presence of moderate wind (5 m/s or less), the emissivity model is found to be adequate for small to moderate view angles. For large view angles, the discrepancy between the computed and the measured emissivity is large, but one can reduce this considerably by incorporating the reflected sea surface emission into the emissivity model. In addition, examination of the spectral variation of the observed and computed emissivity suggests the need for refined measurements of the complex refractive index. An improved model is constructed to calculate the rough sea surface emissivity that can be used to provide accurate estimates of sea surface skin temperatures from remotely sensed radiometric measurements. An important feature of the improved model is that the computed sea surface emissivity is only weakly dependent on wind speed for most view angles used in practice.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Webster, M. Fieux, “TOGA overview,” in Large-scale Oceanographic Experiments and Satellites, C. Gautier, M. Fieux, eds. (Reidel, Dordrecht, 1984), pp. 17–24.
    [CrossRef]
  2. X. Wu, W. L. Smith, “Sensitivity of sea surface temperature retrieval to sea surface emissivity,” ACTA Meteorol. Sinica 10, 376–384 (1996).
  3. F. F. Hall, “The polarized emissivity of water in the infrared,” Appl. Opt. 3, 781–782 (1964).
    [CrossRef]
  4. P. M. Saunders, “Shadowing on the ocean and the existence of the horizon,” J. Geophys. Res. 72, 4643–4649 (1967).
    [CrossRef]
  5. C. Cox, W. Munk, “Statistics of the sea surface derived from sun glitter,” J. Mar. Res. 13, 198–227 (1954).
  6. T. Takashima, Y. Takayama, “Emissivity and reflectance of the model sea surface for the use of AVHRR data of NOAA satellites,” Pap. Meteorol. Geophys. 32, 267–274 (1981).
    [CrossRef]
  7. K. Masuda, T. Takashima, Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sensing Environ. 24, 313–329 (1988).
    [CrossRef]
  8. C. Françcois, C. Ottlé, “Estimation of the angular variation of the sea surface emissivity with the ATSR/ERS-1 data,” Remote Sensing Environ. 48, 302–308 (1994).
    [CrossRef]
  9. W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. Nalli, O. B. Brown, J. Brown, P. J. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
    [CrossRef]
  10. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, 6th ed. (Pergamon, New York, 1989), p. 38.
  11. D. Clarke, J. F. Grainger, Polarized Light and Optical Measurement (Pergamon, New York, 1971), p. 55.
  12. S. Khattak, R. A. Vaughan, A. P. Cracknell, “Sunglint and its observation in AVHRR data,” Remote Sensing Environ. 37, 101–116 (1991).
    [CrossRef]
  13. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]
  14. D. Friedman, “Infrared characteristics of ocean water (1.5–15 µ),” Appl. Opt. 8, 2073–2078 (1969).
    [CrossRef] [PubMed]
  15. H. C. Blume, H. Huhnerfuss, W. Alpers, “Variation of the microwave brightness temperature of sea surfaces covered with mineral and monomolecular oil films,” IEEE Trans. Geosci. Remote Sensing GE-21, 295–300 (1983).
    [CrossRef]
  16. I. G. Ómuirgheartaigh, E. C. Monahan, “Statistical aspects of the relationship between oceanic whitecap coverage, wind speed, and other environmental factors,” in Oceanic Whitecaps and Their Role in Air-Sea Exchange Processes, E. C. Monahan, G. M. Niocaill, eds. (Reidel, Dordrecht, 1986), pp. 125–128.
  17. D. Lü, “Microwave radiation and remote sensing of natural surfaces,” in Principles of Microwave Radiation and Remote Sensing of the Atmosphere, X. J. Zhou, ed. (Science, Beijing, 1982), p. 14.
  18. F. J. Wentz, “A two-scale scattering model for foam-free sea microwave emission and backscattering from the sea surface,” J. Geophys. Res. 80, 3441–3446 (1975).
    [CrossRef]
  19. R. J. Wagner, “Shadowing of randomly rough surfaces,” J. Acoust. Soc. Am. 41, 138–148 (1967).
    [CrossRef]
  20. R. A. Brockelman, T. Hagfors, “Note on the effect of shadowing on the backscattering of waves from a random rough surface,” IEEE Trans. Antennas Propag. 14, 621–626 (1966).
    [CrossRef]
  21. K. E. Hamilton, “An experimental investigation of the shadowing of random rough surfaces,” M.A. thesis (University of Colorado, Boulder, Colorado, 1966).
  22. K. Yoshimori, K. Itoh, Y. Ichioka, “Thermal radiative and reflective characteristics of a wind-roughened water surface,” J. Opt. Soc. Am. A 11, 1886–1893 (1994).
    [CrossRef]
  23. K. Yoshimori, K. Itoh, Y. Ichioka, “Optical characteristics of a wind-roughened water surface: a two-dimensional theory,” Appl. Opt. 34, 6236–6247 (1995).
    [CrossRef] [PubMed]
  24. K. Masuda, Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305, Japan (personal communication).
  25. H. Tan, S. Tian, FORTRAN Language (Qinghua, Beijing, 1981), p. 139.
  26. J. Otterman, J. Susskind, G. Dalu, D. Kratz, I. L. Goldber, “Effects of water-emission anisotropy on multispectral remote sensing at thermal wavelengths of ocean temperature and of cirrus clouds,” Appl. Opt. 31, 7633–7646 (1992).
    [CrossRef] [PubMed]
  27. P. Watts, M. Allen, T. Nightingale, “Sea surface emission and reflection for the Along Track Scanning Radiometer,” J. Atmos. Oceanic Technol. 13, 126–141 (1996).
    [CrossRef]
  28. L. Pontier, C. Dechambenoy, “Détermination des constantes optiques de l’eau liquide entre 1 et 40 µ. Application au calcul de son pouvoir réflecteur et de son émissivté,” Ann. Geophys. 22, 633–641 (1966).
  29. D. J. Segelstein, “The complex refractive index of water,” M.S. thesis (University of Missouri, Kansas City, Missouri, 1981).
  30. D. M. Wieliczka, S. Weng, M. R. Querry, “Wedge shaped cell for highly absorbent liquids: infrared optical constants of water,” Appl. Opt. 28, 1714–1719 (1989).
    [CrossRef] [PubMed]
  31. R. G. Fleagle, J. A. Businger, An Introduction to Atmospheric Physics, 2nd ed. (Academic, New York, 1980), p. 210.

1996 (3)

X. Wu, W. L. Smith, “Sensitivity of sea surface temperature retrieval to sea surface emissivity,” ACTA Meteorol. Sinica 10, 376–384 (1996).

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. Nalli, O. B. Brown, J. Brown, P. J. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

P. Watts, M. Allen, T. Nightingale, “Sea surface emission and reflection for the Along Track Scanning Radiometer,” J. Atmos. Oceanic Technol. 13, 126–141 (1996).
[CrossRef]

1995 (1)

1994 (2)

C. Françcois, C. Ottlé, “Estimation of the angular variation of the sea surface emissivity with the ATSR/ERS-1 data,” Remote Sensing Environ. 48, 302–308 (1994).
[CrossRef]

K. Yoshimori, K. Itoh, Y. Ichioka, “Thermal radiative and reflective characteristics of a wind-roughened water surface,” J. Opt. Soc. Am. A 11, 1886–1893 (1994).
[CrossRef]

1992 (1)

1991 (1)

S. Khattak, R. A. Vaughan, A. P. Cracknell, “Sunglint and its observation in AVHRR data,” Remote Sensing Environ. 37, 101–116 (1991).
[CrossRef]

1989 (1)

1988 (1)

K. Masuda, T. Takashima, Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sensing Environ. 24, 313–329 (1988).
[CrossRef]

1983 (1)

H. C. Blume, H. Huhnerfuss, W. Alpers, “Variation of the microwave brightness temperature of sea surfaces covered with mineral and monomolecular oil films,” IEEE Trans. Geosci. Remote Sensing GE-21, 295–300 (1983).
[CrossRef]

1981 (1)

T. Takashima, Y. Takayama, “Emissivity and reflectance of the model sea surface for the use of AVHRR data of NOAA satellites,” Pap. Meteorol. Geophys. 32, 267–274 (1981).
[CrossRef]

1975 (1)

F. J. Wentz, “A two-scale scattering model for foam-free sea microwave emission and backscattering from the sea surface,” J. Geophys. Res. 80, 3441–3446 (1975).
[CrossRef]

1973 (1)

1969 (1)

1967 (2)

P. M. Saunders, “Shadowing on the ocean and the existence of the horizon,” J. Geophys. Res. 72, 4643–4649 (1967).
[CrossRef]

R. J. Wagner, “Shadowing of randomly rough surfaces,” J. Acoust. Soc. Am. 41, 138–148 (1967).
[CrossRef]

1966 (2)

R. A. Brockelman, T. Hagfors, “Note on the effect of shadowing on the backscattering of waves from a random rough surface,” IEEE Trans. Antennas Propag. 14, 621–626 (1966).
[CrossRef]

L. Pontier, C. Dechambenoy, “Détermination des constantes optiques de l’eau liquide entre 1 et 40 µ. Application au calcul de son pouvoir réflecteur et de son émissivté,” Ann. Geophys. 22, 633–641 (1966).

1964 (1)

1954 (1)

C. Cox, W. Munk, “Statistics of the sea surface derived from sun glitter,” J. Mar. Res. 13, 198–227 (1954).

Allen, M.

P. Watts, M. Allen, T. Nightingale, “Sea surface emission and reflection for the Along Track Scanning Radiometer,” J. Atmos. Oceanic Technol. 13, 126–141 (1996).
[CrossRef]

Alpers, W.

H. C. Blume, H. Huhnerfuss, W. Alpers, “Variation of the microwave brightness temperature of sea surfaces covered with mineral and monomolecular oil films,” IEEE Trans. Geosci. Remote Sensing GE-21, 295–300 (1983).
[CrossRef]

Blume, H. C.

H. C. Blume, H. Huhnerfuss, W. Alpers, “Variation of the microwave brightness temperature of sea surfaces covered with mineral and monomolecular oil films,” IEEE Trans. Geosci. Remote Sensing GE-21, 295–300 (1983).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, 6th ed. (Pergamon, New York, 1989), p. 38.

Brockelman, R. A.

R. A. Brockelman, T. Hagfors, “Note on the effect of shadowing on the backscattering of waves from a random rough surface,” IEEE Trans. Antennas Propag. 14, 621–626 (1966).
[CrossRef]

Brown, J.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. Nalli, O. B. Brown, J. Brown, P. J. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

Brown, O. B.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. Nalli, O. B. Brown, J. Brown, P. J. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

Businger, J. A.

R. G. Fleagle, J. A. Businger, An Introduction to Atmospheric Physics, 2nd ed. (Academic, New York, 1980), p. 210.

Clarke, D.

D. Clarke, J. F. Grainger, Polarized Light and Optical Measurement (Pergamon, New York, 1971), p. 55.

Cox, C.

C. Cox, W. Munk, “Statistics of the sea surface derived from sun glitter,” J. Mar. Res. 13, 198–227 (1954).

Cracknell, A. P.

S. Khattak, R. A. Vaughan, A. P. Cracknell, “Sunglint and its observation in AVHRR data,” Remote Sensing Environ. 37, 101–116 (1991).
[CrossRef]

Dalu, G.

Dechambenoy, C.

L. Pontier, C. Dechambenoy, “Détermination des constantes optiques de l’eau liquide entre 1 et 40 µ. Application au calcul de son pouvoir réflecteur et de son émissivté,” Ann. Geophys. 22, 633–641 (1966).

Feltz, W.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. Nalli, O. B. Brown, J. Brown, P. J. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

Fieux, M.

F. Webster, M. Fieux, “TOGA overview,” in Large-scale Oceanographic Experiments and Satellites, C. Gautier, M. Fieux, eds. (Reidel, Dordrecht, 1984), pp. 17–24.
[CrossRef]

Fleagle, R. G.

R. G. Fleagle, J. A. Businger, An Introduction to Atmospheric Physics, 2nd ed. (Academic, New York, 1980), p. 210.

Françcois, C.

C. Françcois, C. Ottlé, “Estimation of the angular variation of the sea surface emissivity with the ATSR/ERS-1 data,” Remote Sensing Environ. 48, 302–308 (1994).
[CrossRef]

Friedman, D.

Goldber, I. L.

Grainger, J. F.

D. Clarke, J. F. Grainger, Polarized Light and Optical Measurement (Pergamon, New York, 1971), p. 55.

Hagfors, T.

R. A. Brockelman, T. Hagfors, “Note on the effect of shadowing on the backscattering of waves from a random rough surface,” IEEE Trans. Antennas Propag. 14, 621–626 (1966).
[CrossRef]

Hale, G. M.

Hall, F. F.

Hamilton, K. E.

K. E. Hamilton, “An experimental investigation of the shadowing of random rough surfaces,” M.A. thesis (University of Colorado, Boulder, Colorado, 1966).

Howell, H. B.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. Nalli, O. B. Brown, J. Brown, P. J. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

Huhnerfuss, H.

H. C. Blume, H. Huhnerfuss, W. Alpers, “Variation of the microwave brightness temperature of sea surfaces covered with mineral and monomolecular oil films,” IEEE Trans. Geosci. Remote Sensing GE-21, 295–300 (1983).
[CrossRef]

Ichioka, Y.

Itoh, K.

Khattak, S.

S. Khattak, R. A. Vaughan, A. P. Cracknell, “Sunglint and its observation in AVHRR data,” Remote Sensing Environ. 37, 101–116 (1991).
[CrossRef]

Knuteson, R. O.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. Nalli, O. B. Brown, J. Brown, P. J. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

Kratz, D.

Lü, D.

D. Lü, “Microwave radiation and remote sensing of natural surfaces,” in Principles of Microwave Radiation and Remote Sensing of the Atmosphere, X. J. Zhou, ed. (Science, Beijing, 1982), p. 14.

Masuda, K.

K. Masuda, T. Takashima, Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sensing Environ. 24, 313–329 (1988).
[CrossRef]

K. Masuda, Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305, Japan (personal communication).

McKeown, W.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. Nalli, O. B. Brown, J. Brown, P. J. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

Menzel, W. P.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. Nalli, O. B. Brown, J. Brown, P. J. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

Minnett, P. J.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. Nalli, O. B. Brown, J. Brown, P. J. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

Monahan, E. C.

I. G. Ómuirgheartaigh, E. C. Monahan, “Statistical aspects of the relationship between oceanic whitecap coverage, wind speed, and other environmental factors,” in Oceanic Whitecaps and Their Role in Air-Sea Exchange Processes, E. C. Monahan, G. M. Niocaill, eds. (Reidel, Dordrecht, 1986), pp. 125–128.

Munk, W.

C. Cox, W. Munk, “Statistics of the sea surface derived from sun glitter,” J. Mar. Res. 13, 198–227 (1954).

Nalli, N.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. Nalli, O. B. Brown, J. Brown, P. J. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

Nightingale, T.

P. Watts, M. Allen, T. Nightingale, “Sea surface emission and reflection for the Along Track Scanning Radiometer,” J. Atmos. Oceanic Technol. 13, 126–141 (1996).
[CrossRef]

Ómuirgheartaigh, I. G.

I. G. Ómuirgheartaigh, E. C. Monahan, “Statistical aspects of the relationship between oceanic whitecap coverage, wind speed, and other environmental factors,” in Oceanic Whitecaps and Their Role in Air-Sea Exchange Processes, E. C. Monahan, G. M. Niocaill, eds. (Reidel, Dordrecht, 1986), pp. 125–128.

Otterman, J.

Ottlé, C.

C. Françcois, C. Ottlé, “Estimation of the angular variation of the sea surface emissivity with the ATSR/ERS-1 data,” Remote Sensing Environ. 48, 302–308 (1994).
[CrossRef]

Pontier, L.

L. Pontier, C. Dechambenoy, “Détermination des constantes optiques de l’eau liquide entre 1 et 40 µ. Application au calcul de son pouvoir réflecteur et de son émissivté,” Ann. Geophys. 22, 633–641 (1966).

Querry, M. R.

Revercomb, H. E.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. Nalli, O. B. Brown, J. Brown, P. J. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

Saunders, P. M.

P. M. Saunders, “Shadowing on the ocean and the existence of the horizon,” J. Geophys. Res. 72, 4643–4649 (1967).
[CrossRef]

Segelstein, D. J.

D. J. Segelstein, “The complex refractive index of water,” M.S. thesis (University of Missouri, Kansas City, Missouri, 1981).

Smith, W. L.

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. Nalli, O. B. Brown, J. Brown, P. J. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

X. Wu, W. L. Smith, “Sensitivity of sea surface temperature retrieval to sea surface emissivity,” ACTA Meteorol. Sinica 10, 376–384 (1996).

Susskind, J.

Takashima, T.

K. Masuda, T. Takashima, Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sensing Environ. 24, 313–329 (1988).
[CrossRef]

T. Takashima, Y. Takayama, “Emissivity and reflectance of the model sea surface for the use of AVHRR data of NOAA satellites,” Pap. Meteorol. Geophys. 32, 267–274 (1981).
[CrossRef]

Takayama, Y.

K. Masuda, T. Takashima, Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sensing Environ. 24, 313–329 (1988).
[CrossRef]

T. Takashima, Y. Takayama, “Emissivity and reflectance of the model sea surface for the use of AVHRR data of NOAA satellites,” Pap. Meteorol. Geophys. 32, 267–274 (1981).
[CrossRef]

Tan, H.

H. Tan, S. Tian, FORTRAN Language (Qinghua, Beijing, 1981), p. 139.

Tian, S.

H. Tan, S. Tian, FORTRAN Language (Qinghua, Beijing, 1981), p. 139.

Vaughan, R. A.

S. Khattak, R. A. Vaughan, A. P. Cracknell, “Sunglint and its observation in AVHRR data,” Remote Sensing Environ. 37, 101–116 (1991).
[CrossRef]

Wagner, R. J.

R. J. Wagner, “Shadowing of randomly rough surfaces,” J. Acoust. Soc. Am. 41, 138–148 (1967).
[CrossRef]

Watts, P.

P. Watts, M. Allen, T. Nightingale, “Sea surface emission and reflection for the Along Track Scanning Radiometer,” J. Atmos. Oceanic Technol. 13, 126–141 (1996).
[CrossRef]

Webster, F.

F. Webster, M. Fieux, “TOGA overview,” in Large-scale Oceanographic Experiments and Satellites, C. Gautier, M. Fieux, eds. (Reidel, Dordrecht, 1984), pp. 17–24.
[CrossRef]

Weng, S.

Wentz, F. J.

F. J. Wentz, “A two-scale scattering model for foam-free sea microwave emission and backscattering from the sea surface,” J. Geophys. Res. 80, 3441–3446 (1975).
[CrossRef]

Wieliczka, D. M.

Wolf, E.

M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, 6th ed. (Pergamon, New York, 1989), p. 38.

Wu, X.

X. Wu, W. L. Smith, “Sensitivity of sea surface temperature retrieval to sea surface emissivity,” ACTA Meteorol. Sinica 10, 376–384 (1996).

Yoshimori, K.

ACTA Meteorol. Sinica (1)

X. Wu, W. L. Smith, “Sensitivity of sea surface temperature retrieval to sea surface emissivity,” ACTA Meteorol. Sinica 10, 376–384 (1996).

Ann. Geophys. (1)

L. Pontier, C. Dechambenoy, “Détermination des constantes optiques de l’eau liquide entre 1 et 40 µ. Application au calcul de son pouvoir réflecteur et de son émissivté,” Ann. Geophys. 22, 633–641 (1966).

Appl. Opt. (6)

Bull. Am. Meteorol. Soc. (1)

W. L. Smith, R. O. Knuteson, H. E. Revercomb, W. Feltz, H. B. Howell, W. P. Menzel, N. Nalli, O. B. Brown, J. Brown, P. J. Minnett, W. McKeown, “Observations of the infrared radiative properties of the ocean—implications for the measurement of sea surface temperature via satellite remote sensing,” Bull. Am. Meteorol. Soc. 77, 41–51 (1996).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

R. A. Brockelman, T. Hagfors, “Note on the effect of shadowing on the backscattering of waves from a random rough surface,” IEEE Trans. Antennas Propag. 14, 621–626 (1966).
[CrossRef]

IEEE Trans. Geosci. Remote Sensing (1)

H. C. Blume, H. Huhnerfuss, W. Alpers, “Variation of the microwave brightness temperature of sea surfaces covered with mineral and monomolecular oil films,” IEEE Trans. Geosci. Remote Sensing GE-21, 295–300 (1983).
[CrossRef]

J. Acoust. Soc. Am. (1)

R. J. Wagner, “Shadowing of randomly rough surfaces,” J. Acoust. Soc. Am. 41, 138–148 (1967).
[CrossRef]

J. Atmos. Oceanic Technol. (1)

P. Watts, M. Allen, T. Nightingale, “Sea surface emission and reflection for the Along Track Scanning Radiometer,” J. Atmos. Oceanic Technol. 13, 126–141 (1996).
[CrossRef]

J. Geophys. Res. (2)

F. J. Wentz, “A two-scale scattering model for foam-free sea microwave emission and backscattering from the sea surface,” J. Geophys. Res. 80, 3441–3446 (1975).
[CrossRef]

P. M. Saunders, “Shadowing on the ocean and the existence of the horizon,” J. Geophys. Res. 72, 4643–4649 (1967).
[CrossRef]

J. Mar. Res. (1)

C. Cox, W. Munk, “Statistics of the sea surface derived from sun glitter,” J. Mar. Res. 13, 198–227 (1954).

J. Opt. Soc. Am. A (1)

Pap. Meteorol. Geophys. (1)

T. Takashima, Y. Takayama, “Emissivity and reflectance of the model sea surface for the use of AVHRR data of NOAA satellites,” Pap. Meteorol. Geophys. 32, 267–274 (1981).
[CrossRef]

Remote Sensing Environ. (3)

K. Masuda, T. Takashima, Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sensing Environ. 24, 313–329 (1988).
[CrossRef]

C. Françcois, C. Ottlé, “Estimation of the angular variation of the sea surface emissivity with the ATSR/ERS-1 data,” Remote Sensing Environ. 48, 302–308 (1994).
[CrossRef]

S. Khattak, R. A. Vaughan, A. P. Cracknell, “Sunglint and its observation in AVHRR data,” Remote Sensing Environ. 37, 101–116 (1991).
[CrossRef]

Other (10)

F. Webster, M. Fieux, “TOGA overview,” in Large-scale Oceanographic Experiments and Satellites, C. Gautier, M. Fieux, eds. (Reidel, Dordrecht, 1984), pp. 17–24.
[CrossRef]

M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, 6th ed. (Pergamon, New York, 1989), p. 38.

D. Clarke, J. F. Grainger, Polarized Light and Optical Measurement (Pergamon, New York, 1971), p. 55.

K. E. Hamilton, “An experimental investigation of the shadowing of random rough surfaces,” M.A. thesis (University of Colorado, Boulder, Colorado, 1966).

I. G. Ómuirgheartaigh, E. C. Monahan, “Statistical aspects of the relationship between oceanic whitecap coverage, wind speed, and other environmental factors,” in Oceanic Whitecaps and Their Role in Air-Sea Exchange Processes, E. C. Monahan, G. M. Niocaill, eds. (Reidel, Dordrecht, 1986), pp. 125–128.

D. Lü, “Microwave radiation and remote sensing of natural surfaces,” in Principles of Microwave Radiation and Remote Sensing of the Atmosphere, X. J. Zhou, ed. (Science, Beijing, 1982), p. 14.

K. Masuda, Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305, Japan (personal communication).

H. Tan, S. Tian, FORTRAN Language (Qinghua, Beijing, 1981), p. 139.

R. G. Fleagle, J. A. Businger, An Introduction to Atmospheric Physics, 2nd ed. (Academic, New York, 1980), p. 210.

D. J. Segelstein, “The complex refractive index of water,” M.S. thesis (University of Missouri, Kansas City, Missouri, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Geometry of emission at a wave facet tangent to the instantaneous sea surface, after Masuda et al.7 with minor modification. z is the local zenith; the other two orthogonal components of the Cartesian coordinate, x and y, are defined such that e, the unit vector of emission, is in the xz plane. n is the facet unit normal vector; θ n and φ are its zenith and azimuth angles, respectively. θ e and χ are zenith angles of emission e relative to the local zenith z and the facet norm n, respectively.

Fig. 2
Fig. 2

Illustration of the wave shadowing of emission.

Fig. 3
Fig. 3

Comparison of the computed and measured emissivity at 36.5° (upper), 56.5° (middle), and 73.5° (lower). Solid and dotted curves are the mean and standard deviation of the measured emissivity. Symbols mark the computed emissivity with Eq. (19) for wind speed of 0 (+), 1 (*), 2(×), 4(⋄), 8 (△), and 16 (□) m/s.

Fig. 4
Fig. 4

Illustration of the effect of sea surface roughness on mean emissivity for small and large view angles. Solid arrowhead lines are the direction of emission and dashed arrowhead lines are the local zenith. For a small view angle (left), emission from any point (A, B, or C) has a small emission angle when the sea is calm (upper). When the sea is rough (lower), emission from crest (A) and valley (C) remains at a small emission angle, but emission from wave slope (B) has a larger emission angle. The mean emissivity thus will reduce as the sea surface becomes rough. Similarly, the mean emissivity of the sea surface will increase with surface roughness for the large view angle (right).

Fig. 5
Fig. 5

Geometry of emission and reflection at a wave facet tangent to the instantaneous sea surface at point O, modified from Fig. 1. The direction of emission e now is such that some emission from below the horizon r can be reflected at point O along e. The two-dimensional graph (upper) illustrates this mechanism; the three-dimensional graph (lower) defines the relevant angles (see text).

Fig. 6
Fig. 6

As Fig. 3, but the emissivity is computed with Eq. (21) which includes the reflected emission.

Fig. 7
Fig. 7

As Fig. 6, but is computed with Segelstein’s29 refractive index for pure water.

Fig. 8
Fig. 8

Spectral variation of refractive indices obtained by various authors.

Fig. 9
Fig. 9

As Fig. 7, but is computed with the real part of the refractive index from Hale and Querry.13

Fig. 10
Fig. 10

Difference between the emissivity for a wind speed of 16 m/s and that for a wind speed of 0 m/s (but not the specular surface), as a function of wavelength and view angle. The model that neglects the reflected emission (upper panel) results in the difference larger than 0.5% for most angles beyond approximately 45°. The model that takes into account the reflected emission (lower panel) keeps the difference less than 0.5% for angles to approximately 60°.

Tables (1)

Tables Icon

Table 1 Integration of Eq. (18) with Various δ for θ e = 73.5 ° and w = 16 m/s

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

ρ=n cos χ-cos χn cos χ+cos χ,
ρ=cos χ-n cos χcos χ+n cos χ,
sin χ=sin χ/n.
ρn, χ=ρ2+ρ22.
αn, χ=1-ρn, χ.
εn, χ=αn, χ=1-ρn, χ.
Pzx, zy=12πσ2 exp-zx2+zy22σ2,
2σ2=0.003+0.00512w.
2πR cos3 χλ,
zx=z/x=-tan θn cos φ,
zy=z/y=-tan θn sin φ.
cos χ=cos θe cos θn+sin θe sin θn cos φ  =μeμn+1-μe21/21-μn21/2 cos φ,
ε¯n, μe=1μe-- εn, χcos χμn-1×Pzx, zydzxdzy, cos χ>0.
Pθn=12πσ2 exp-tan2 θn2σ2,
dzxdzy=Jdμndφ=μn-3dμndφ,
J=zxμnzxφnzyμnzyφn.
ε¯n, μe=1πσ2μe010πεn, χcos χ exp-tan2 θn2σ2×μn-4dφdμn, cos χ>0.
μe=1πσ2μe010π cos χ exp-tan2 θn2σ2×μn-4dφdμn,  cos χ>0
ε¯n, μe=ε¯n, μeμe.
expμn*2-12σ2μn*2<δμn*4δ,
μn*>1-2σ2 ln δ-1/2,
ε̃n, χ=εn, χ+1-εn, χPθrε¯n, μr,
θr*=π2-tan-12HL,
Pθr=  1,θr>90°1-θr-85°2/25,85°θr90°.  0,θr<85°.
cos α=cos θe-cos χ cos θnsin χ sin θn.
cos θr=cos χ cos θn+sin χ sin θn cosπ-α  =2 cos χ cos θn-cos θe.

Metrics