Abstract

We demonstrate, for the first time as far as we know, a passively Q-switched operation of a Nd:YVO4 laser in which a Cr4+:YAG crystal and a laser-diode bar are used as the saturable absorber and the pump source, respectively. Stable laser pulses as short as 28 ns with 20-µJ energy can be generated with this laser, which has the advantages of simplicity, high efficiency, and good long-term stability.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Fields, M. Birnbaum, C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
    [CrossRef]
  2. A. A. Kaminskii, Laser Crystals, Their Physics and Properties, translation edited by H. F. Hvey (Springer-Verlag, Berlin, 1981), pp. 254–257.
  3. J. J. Zayhowski, C. Dill, “Coupled-cavity electro-optically Q-switched Nd:YVO4 microchip lasers,” Opt. Lett. 20, 716–718 (1995).
    [CrossRef] [PubMed]
  4. M. Bass, “Electrooptic Q switching of the Nd:YVO4 laser without an intracavity polarizer,” IEEE J. Quantum Electron. QE-11, 938–941 (1975).
    [CrossRef]
  5. H. Plaessmann, K. S. Yamada, C. E. Rich, W. M. Grossman, “Subnanosecond pulse generation from diode-pumped acousto-optically Q-switched solid-state lasers,” Appl. Opt. 32, 6616–6619 (1993).
    [CrossRef] [PubMed]
  6. T. Taira, T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30, 800–804 (1994).
    [CrossRef]
  7. J. E. Bernard, A. J. Alcock, “High-repetition-rate diode-pumped Nd:YVO4 slab laser,” Opt. Lett. 19, 1861–1863 (1994).
    [CrossRef]
  8. J. A. Morris, C. R. Pollock, “Passive Q switching of a diode-pumped Nd:YAG laser with a saturable absorber,” Opt. Lett. 15, 440–442 (1990).
    [CrossRef] [PubMed]
  9. I. J. Miller, A. J. Alcock, J. E. Bernard, “Experimental investigation of Cr4+ in YAG as a passive Q-switch,” in Advanced Solid-State Lasers, Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 322–325.
  10. D. M. Andrauskas, C. Kennedy, “Tetravalent chromium solid-state passive Q-switch for Nd:YAG laser systems,” in Advanced Solid-State Lasers, Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 393–397.
  11. M. I. Demchuk, V. P. Mikhailov, N. I. Zhavoronkov, N. V. Kuleshov, P. V. Prokoshin, K. V. Yumashev, M. G. Livshits, B. I. Minkov, “Chromium-doped forsterite as a solid-state saturable absorber,” Opt. Lett. 17, 929–930 (1992).
    [CrossRef] [PubMed]
  12. E. Munin, A. B. Villaverde, X. X. Zhang, M. Bass, “Broadband intensity dependent absorption in tetravalent chromium-doped crystals,” Appl. Phys. Lett. 63, 1739–1741 (1993).
    [CrossRef]
  13. S. Li, S. Zhou, P. Wang, Y. C. Chen, K. K. Lee, “Self-Q-switched diode-end-pumped Cr,Nd:YAG laser with polarized output,” Opt. Lett. 18, 203–204 (1993).
    [CrossRef] [PubMed]
  14. Y. K. Kuo, M. F. Huang, M. Birnbaum, “Tunable Cr4+: YSO Q-switched Cr:LiCAf laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
    [CrossRef]
  15. K. Spariosu, W. Chen, R. Stulz, M. Birnbaum, A. V. Shestakov, “Dual Q switching and laser action at 1.06 and 1.44 µm in a Nd3+:YAG–Cr4+:YAG oscillator at 300 K,” Opt. Lett. 18, 814–816 (1993).
    [CrossRef] [PubMed]
  16. J. R. Hobbs, “Diode-pumped solid-state lasers offset-plane mirrors transform laser beams,” Laser Focus World 30, 46–50 (1994).
  17. A. E. Siegman, Lasers, 1st ed. (University Science, Mill Valley, Calif., 1986), Chap. 26, pp. 1024–1028.

1995

J. J. Zayhowski, C. Dill, “Coupled-cavity electro-optically Q-switched Nd:YVO4 microchip lasers,” Opt. Lett. 20, 716–718 (1995).
[CrossRef] [PubMed]

Y. K. Kuo, M. F. Huang, M. Birnbaum, “Tunable Cr4+: YSO Q-switched Cr:LiCAf laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
[CrossRef]

1994

J. R. Hobbs, “Diode-pumped solid-state lasers offset-plane mirrors transform laser beams,” Laser Focus World 30, 46–50 (1994).

T. Taira, T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30, 800–804 (1994).
[CrossRef]

J. E. Bernard, A. J. Alcock, “High-repetition-rate diode-pumped Nd:YVO4 slab laser,” Opt. Lett. 19, 1861–1863 (1994).
[CrossRef]

1993

1992

1990

1987

R. A. Fields, M. Birnbaum, C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
[CrossRef]

1975

M. Bass, “Electrooptic Q switching of the Nd:YVO4 laser without an intracavity polarizer,” IEEE J. Quantum Electron. QE-11, 938–941 (1975).
[CrossRef]

Alcock, A. J.

J. E. Bernard, A. J. Alcock, “High-repetition-rate diode-pumped Nd:YVO4 slab laser,” Opt. Lett. 19, 1861–1863 (1994).
[CrossRef]

I. J. Miller, A. J. Alcock, J. E. Bernard, “Experimental investigation of Cr4+ in YAG as a passive Q-switch,” in Advanced Solid-State Lasers, Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 322–325.

Andrauskas, D. M.

D. M. Andrauskas, C. Kennedy, “Tetravalent chromium solid-state passive Q-switch for Nd:YAG laser systems,” in Advanced Solid-State Lasers, Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 393–397.

Bass, M.

E. Munin, A. B. Villaverde, X. X. Zhang, M. Bass, “Broadband intensity dependent absorption in tetravalent chromium-doped crystals,” Appl. Phys. Lett. 63, 1739–1741 (1993).
[CrossRef]

M. Bass, “Electrooptic Q switching of the Nd:YVO4 laser without an intracavity polarizer,” IEEE J. Quantum Electron. QE-11, 938–941 (1975).
[CrossRef]

Bernard, J. E.

J. E. Bernard, A. J. Alcock, “High-repetition-rate diode-pumped Nd:YVO4 slab laser,” Opt. Lett. 19, 1861–1863 (1994).
[CrossRef]

I. J. Miller, A. J. Alcock, J. E. Bernard, “Experimental investigation of Cr4+ in YAG as a passive Q-switch,” in Advanced Solid-State Lasers, Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 322–325.

Birnbaum, M.

Y. K. Kuo, M. F. Huang, M. Birnbaum, “Tunable Cr4+: YSO Q-switched Cr:LiCAf laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
[CrossRef]

K. Spariosu, W. Chen, R. Stulz, M. Birnbaum, A. V. Shestakov, “Dual Q switching and laser action at 1.06 and 1.44 µm in a Nd3+:YAG–Cr4+:YAG oscillator at 300 K,” Opt. Lett. 18, 814–816 (1993).
[CrossRef] [PubMed]

R. A. Fields, M. Birnbaum, C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
[CrossRef]

Chen, W.

Chen, Y. C.

Demchuk, M. I.

Dill, C.

Fields, R. A.

R. A. Fields, M. Birnbaum, C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
[CrossRef]

Fincher, C. L.

R. A. Fields, M. Birnbaum, C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
[CrossRef]

Grossman, W. M.

Hobbs, J. R.

J. R. Hobbs, “Diode-pumped solid-state lasers offset-plane mirrors transform laser beams,” Laser Focus World 30, 46–50 (1994).

Huang, M. F.

Y. K. Kuo, M. F. Huang, M. Birnbaum, “Tunable Cr4+: YSO Q-switched Cr:LiCAf laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, Laser Crystals, Their Physics and Properties, translation edited by H. F. Hvey (Springer-Verlag, Berlin, 1981), pp. 254–257.

Kennedy, C.

D. M. Andrauskas, C. Kennedy, “Tetravalent chromium solid-state passive Q-switch for Nd:YAG laser systems,” in Advanced Solid-State Lasers, Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 393–397.

Kobayashi, T.

T. Taira, T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30, 800–804 (1994).
[CrossRef]

Kuleshov, N. V.

Kuo, Y. K.

Y. K. Kuo, M. F. Huang, M. Birnbaum, “Tunable Cr4+: YSO Q-switched Cr:LiCAf laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
[CrossRef]

Lee, K. K.

Li, S.

Livshits, M. G.

Mikhailov, V. P.

Miller, I. J.

I. J. Miller, A. J. Alcock, J. E. Bernard, “Experimental investigation of Cr4+ in YAG as a passive Q-switch,” in Advanced Solid-State Lasers, Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 322–325.

Minkov, B. I.

Morris, J. A.

Munin, E.

E. Munin, A. B. Villaverde, X. X. Zhang, M. Bass, “Broadband intensity dependent absorption in tetravalent chromium-doped crystals,” Appl. Phys. Lett. 63, 1739–1741 (1993).
[CrossRef]

Plaessmann, H.

Pollock, C. R.

Prokoshin, P. V.

Rich, C. E.

Shestakov, A. V.

Siegman, A. E.

A. E. Siegman, Lasers, 1st ed. (University Science, Mill Valley, Calif., 1986), Chap. 26, pp. 1024–1028.

Spariosu, K.

Stulz, R.

Taira, T.

T. Taira, T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30, 800–804 (1994).
[CrossRef]

Villaverde, A. B.

E. Munin, A. B. Villaverde, X. X. Zhang, M. Bass, “Broadband intensity dependent absorption in tetravalent chromium-doped crystals,” Appl. Phys. Lett. 63, 1739–1741 (1993).
[CrossRef]

Wang, P.

Yamada, K. S.

Yumashev, K. V.

Zayhowski, J. J.

Zhang, X. X.

E. Munin, A. B. Villaverde, X. X. Zhang, M. Bass, “Broadband intensity dependent absorption in tetravalent chromium-doped crystals,” Appl. Phys. Lett. 63, 1739–1741 (1993).
[CrossRef]

Zhavoronkov, N. I.

Zhou, S.

Appl. Opt.

Appl. Phys. Lett.

R. A. Fields, M. Birnbaum, C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885–1886 (1987).
[CrossRef]

E. Munin, A. B. Villaverde, X. X. Zhang, M. Bass, “Broadband intensity dependent absorption in tetravalent chromium-doped crystals,” Appl. Phys. Lett. 63, 1739–1741 (1993).
[CrossRef]

IEEE J. Quantum Electron.

Y. K. Kuo, M. F. Huang, M. Birnbaum, “Tunable Cr4+: YSO Q-switched Cr:LiCAf laser,” IEEE J. Quantum Electron. 31, 657–663 (1995).
[CrossRef]

M. Bass, “Electrooptic Q switching of the Nd:YVO4 laser without an intracavity polarizer,” IEEE J. Quantum Electron. QE-11, 938–941 (1975).
[CrossRef]

T. Taira, T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30, 800–804 (1994).
[CrossRef]

Laser Focus World

J. R. Hobbs, “Diode-pumped solid-state lasers offset-plane mirrors transform laser beams,” Laser Focus World 30, 46–50 (1994).

Opt. Lett.

Other

A. A. Kaminskii, Laser Crystals, Their Physics and Properties, translation edited by H. F. Hvey (Springer-Verlag, Berlin, 1981), pp. 254–257.

I. J. Miller, A. J. Alcock, J. E. Bernard, “Experimental investigation of Cr4+ in YAG as a passive Q-switch,” in Advanced Solid-State Lasers, Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 322–325.

D. M. Andrauskas, C. Kennedy, “Tetravalent chromium solid-state passive Q-switch for Nd:YAG laser systems,” in Advanced Solid-State Lasers, Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 393–397.

A. E. Siegman, Lasers, 1st ed. (University Science, Mill Valley, Calif., 1986), Chap. 26, pp. 1024–1028.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of a passively Q-switched Nd:YVO4 laser with a Cr4+:YAG crystal as the saturable absorber: LD, laser-diode bar; CL, cylindrical lens; MRBS, multiple reflection beam shaper; FL, focusing lens; CM, concave curved mirror; SA, saturable absorber (Cr4+:YAG crystal); OC, output coupler. The optical beams in the large and small circles are the unshaped and MRBS-shaped beams, respectively.

Fig. 2
Fig. 2

Measured cw output power as a function of pump power injected into a Nd:YVO4 laser for free-running conditions. The slope efficiency is approximately 45%.

Fig. 3
Fig. 3

Pulse generated by a passively Q-switched Nd:YVO4 laser with 20-µJ energy and a FWHM pulse width of 28 ns (19-ns rise time and 31-ns fall time). Horizontal axis: 20 ns/div. The energy of the rectangular pump pulse is slightly greater than the threshold of 245 µJ for 100-µs duration. The small-signal transmission of the saturable absorber is 87%.

Fig. 4
Fig. 4

Energy of the pulses generated by the Q-switched Nd:YVO4 laser versus the energy of the pump pulse: curve A, circles, 100-µs pump pulse; curve B, diamonds, 200-µs pump pulse. The numbers 1–6 represent the generated pulses.

Fig. 5
Fig. 5

Pulse generated by a passively Q-switched Nd:YVO4 laser with 16-µJ energy and a FWHM pulse width of 33 ns (25-ns rise time and 33-ns fall time). Horizontal axis: 20 ns/div. The energy of the rectangular pump pulse is slightly over threshold at 215 µJ for 100-µs duration. The small-signal transmission of the saturable absorber is 92%.

Fig. 6
Fig. 6

Pulse generated by a passively Q-switched Nd:YAG laser with the shortest FWHM pulse width of 9 ns. Horizontal axis: 10 ns/div.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

2αaLa2αgLgσaσgAgAa>γ1-β,
dntdt=KgNgt-KaNat-βKaNa0-Nat-γcnt,
dNgtdt=Rp-γgNgt-γKgNgtnt,
dNatdt=γaNa0-Nat-KaNatnt,
dntdt=KgNgt-1-βKaNat-γcnt,
γc=γc+βKaNa0.
dNgtdt-γKgNgtnt,
dNatdt-KaNatnt.
NgtNg0 exp-γKg0tntdt,
NatNa0 exp-Ka0tntdt.
dndtγg0nt,
ntni expγg0t,
NgtNg0 exp-γKgnt-niγg0,
NatNa0 exp-Kant-niγg0,
1ntdntdtKgNg0 exp-γKgnt-niγg0-1-βKaNa0 exp-Kant-niγg0-γc=γg0+1-βKa2Na0-γKg2Ng0×nt-niγg0+.
1-βKa2Na0-γKg2Ng0>0.
KgNg0KaNa0=2αgLg2αaLa.
KgKa=σgσaAaAg.

Metrics