Abstract

We report a method for evanescent-wave holography using surface-plasmon resonance from the illumination light. The device we have made consists of three layers: a prism of high refractive index, a thin metallic film, and a grating. Evanescent waves generated by the surface plasmons are diffracted with a prerecorded grating to reconstruct a three-dimensional image. The possibility of white-light illumination and the application to a flat display system with waveguides in the proposed method are discussed.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Reather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  2. C. Nylander, B. Liedberg, T. Lind, “Gas detection by means of surface plasmon resonance,” Sensors Actuators 3, 79–88 (1982/1983).
    [CrossRef]
  3. K. Matsubara, S. Kawata, S. Minami, “Optical chemical sensor based on surface plasmon measurement,” Appl. Opt. 27, 1160–1163 (1988).
    [CrossRef] [PubMed]
  4. J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
    [CrossRef] [PubMed]
  5. W. Hickel, B. Rothenhäusler, W. Knoll, “Surface plasmon microscopic characterization of external surfaces,” J. Appl. Phys. 66, 4832–4836 (1989).
    [CrossRef]
  6. T. Okamoto, I. Yamaguchi, “Surface plasmon microscopy with an electronic angular scanning,” Opt. Commun. 93, 265–270 (1992).
    [CrossRef]
  7. M. E. Caldwell, E. M. Yeatman, “Surface-plasmon spatial light modulators based on liquid crystal,” Appl. Opt. 31, 3880–3891 (1992).
    [CrossRef] [PubMed]
  8. H. Kano, S. Kawata, “Surface-plasmon sensor for absorption-sensitivity enhancement,” Appl. Opt. 33, 5166–5170 (1994).
    [CrossRef] [PubMed]
  9. T. Sugiura, S. Kawata, “Numerical analysis of radiation force exertion by surface plasmon resonance on a thin film,” (in Japanese) Jpn. J. Opt. 23, 191–197 (1994).
  10. R. T. Deck, D. Sarid, “Enhancement of second-harmonic generation by coupling to long-range surface plasmons,” J. Opt. Soc. Am. 72, 1613–1617 (1982).
    [CrossRef]
  11. S. Hayashi, K. Kozaru, K. Yamamoto, “Enhancement of photoelectric conversion efficiency by surface plasmon excitation: a test with an organic solar cell,” Solid State Commun. 79, 763–767 (1991).
    [CrossRef]
  12. R. E. Benner, R. Dornhaus, R. K. Chang, “Angular emission profiles of dye molecules excited by surface plasmon waves at a metal surface,” Opt. Commun. 30, 145–149 (1979).
    [CrossRef]
  13. J. J. Cowan, “Surface plasmon holography,” AIP Conf. Proc. 65, 515–518 (1980).
    [CrossRef]
  14. J. J. Cowan, “The laser button: a novel approach to the large scale replication of holograms,” in Three-Dimensional Imaging, J. P. Ebbeni, M. Monfils, eds., Proc. SPIE402, 25–32 (1983).
  15. J. J. Cowan, “The newport button: the large scale replication of combined three- and two-dimensional holographic images,” in Optics in Entertainment II, C. Outwater, ed., Proc. SPIE462, 20–27 (1984).
    [CrossRef]
  16. W. H. Weber, G. W. Ford, “Optical electric-field enhancement at a metal surface arising from surface-plasmon excitation,” Opt. Lett. 6, 122–124 (1981).
    [CrossRef] [PubMed]
  17. M. Masuda, J. Koyama, “Effects of a buffer layer on TM modes in a metal-clad optical waveguide using Ti-diffused LiNbO3 C-plates,” Appl. Opt. 16, 2994–3000 (1977).
    [CrossRef] [PubMed]

1994 (2)

T. Sugiura, S. Kawata, “Numerical analysis of radiation force exertion by surface plasmon resonance on a thin film,” (in Japanese) Jpn. J. Opt. 23, 191–197 (1994).

H. Kano, S. Kawata, “Surface-plasmon sensor for absorption-sensitivity enhancement,” Appl. Opt. 33, 5166–5170 (1994).
[CrossRef] [PubMed]

1992 (2)

M. E. Caldwell, E. M. Yeatman, “Surface-plasmon spatial light modulators based on liquid crystal,” Appl. Opt. 31, 3880–3891 (1992).
[CrossRef] [PubMed]

T. Okamoto, I. Yamaguchi, “Surface plasmon microscopy with an electronic angular scanning,” Opt. Commun. 93, 265–270 (1992).
[CrossRef]

1991 (2)

S. Hayashi, K. Kozaru, K. Yamamoto, “Enhancement of photoelectric conversion efficiency by surface plasmon excitation: a test with an organic solar cell,” Solid State Commun. 79, 763–767 (1991).
[CrossRef]

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
[CrossRef] [PubMed]

1989 (1)

W. Hickel, B. Rothenhäusler, W. Knoll, “Surface plasmon microscopic characterization of external surfaces,” J. Appl. Phys. 66, 4832–4836 (1989).
[CrossRef]

1988 (1)

1982 (1)

1981 (1)

1980 (1)

J. J. Cowan, “Surface plasmon holography,” AIP Conf. Proc. 65, 515–518 (1980).
[CrossRef]

1979 (1)

R. E. Benner, R. Dornhaus, R. K. Chang, “Angular emission profiles of dye molecules excited by surface plasmon waves at a metal surface,” Opt. Commun. 30, 145–149 (1979).
[CrossRef]

1977 (1)

Attridge, J. W.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
[CrossRef] [PubMed]

Benner, R. E.

R. E. Benner, R. Dornhaus, R. K. Chang, “Angular emission profiles of dye molecules excited by surface plasmon waves at a metal surface,” Opt. Commun. 30, 145–149 (1979).
[CrossRef]

Caldwell, M. E.

Chang, R. K.

R. E. Benner, R. Dornhaus, R. K. Chang, “Angular emission profiles of dye molecules excited by surface plasmon waves at a metal surface,” Opt. Commun. 30, 145–149 (1979).
[CrossRef]

Cowan, J. J.

J. J. Cowan, “Surface plasmon holography,” AIP Conf. Proc. 65, 515–518 (1980).
[CrossRef]

J. J. Cowan, “The newport button: the large scale replication of combined three- and two-dimensional holographic images,” in Optics in Entertainment II, C. Outwater, ed., Proc. SPIE462, 20–27 (1984).
[CrossRef]

J. J. Cowan, “The laser button: a novel approach to the large scale replication of holograms,” in Three-Dimensional Imaging, J. P. Ebbeni, M. Monfils, eds., Proc. SPIE402, 25–32 (1983).

Daniels, P. B.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
[CrossRef] [PubMed]

Davidson, G. P.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
[CrossRef] [PubMed]

Deacon, J. K.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
[CrossRef] [PubMed]

Deck, R. T.

Dornhaus, R.

R. E. Benner, R. Dornhaus, R. K. Chang, “Angular emission profiles of dye molecules excited by surface plasmon waves at a metal surface,” Opt. Commun. 30, 145–149 (1979).
[CrossRef]

Ford, G. W.

Hayashi, S.

S. Hayashi, K. Kozaru, K. Yamamoto, “Enhancement of photoelectric conversion efficiency by surface plasmon excitation: a test with an organic solar cell,” Solid State Commun. 79, 763–767 (1991).
[CrossRef]

Hickel, W.

W. Hickel, B. Rothenhäusler, W. Knoll, “Surface plasmon microscopic characterization of external surfaces,” J. Appl. Phys. 66, 4832–4836 (1989).
[CrossRef]

Kano, H.

Kawata, S.

Knoll, W.

W. Hickel, B. Rothenhäusler, W. Knoll, “Surface plasmon microscopic characterization of external surfaces,” J. Appl. Phys. 66, 4832–4836 (1989).
[CrossRef]

Koyama, J.

Kozaru, K.

S. Hayashi, K. Kozaru, K. Yamamoto, “Enhancement of photoelectric conversion efficiency by surface plasmon excitation: a test with an organic solar cell,” Solid State Commun. 79, 763–767 (1991).
[CrossRef]

Liedberg, B.

C. Nylander, B. Liedberg, T. Lind, “Gas detection by means of surface plasmon resonance,” Sensors Actuators 3, 79–88 (1982/1983).
[CrossRef]

Lind, T.

C. Nylander, B. Liedberg, T. Lind, “Gas detection by means of surface plasmon resonance,” Sensors Actuators 3, 79–88 (1982/1983).
[CrossRef]

Masuda, M.

Matsubara, K.

Minami, S.

Nylander, C.

C. Nylander, B. Liedberg, T. Lind, “Gas detection by means of surface plasmon resonance,” Sensors Actuators 3, 79–88 (1982/1983).
[CrossRef]

Okamoto, T.

T. Okamoto, I. Yamaguchi, “Surface plasmon microscopy with an electronic angular scanning,” Opt. Commun. 93, 265–270 (1992).
[CrossRef]

Reather, H.

H. Reather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

Robinson, G. A.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
[CrossRef] [PubMed]

Rothenhäusler, B.

W. Hickel, B. Rothenhäusler, W. Knoll, “Surface plasmon microscopic characterization of external surfaces,” J. Appl. Phys. 66, 4832–4836 (1989).
[CrossRef]

Sarid, D.

Sugiura, T.

T. Sugiura, S. Kawata, “Numerical analysis of radiation force exertion by surface plasmon resonance on a thin film,” (in Japanese) Jpn. J. Opt. 23, 191–197 (1994).

Weber, W. H.

Yamaguchi, I.

T. Okamoto, I. Yamaguchi, “Surface plasmon microscopy with an electronic angular scanning,” Opt. Commun. 93, 265–270 (1992).
[CrossRef]

Yamamoto, K.

S. Hayashi, K. Kozaru, K. Yamamoto, “Enhancement of photoelectric conversion efficiency by surface plasmon excitation: a test with an organic solar cell,” Solid State Commun. 79, 763–767 (1991).
[CrossRef]

Yeatman, E. M.

AIP Conf. Proc. (1)

J. J. Cowan, “Surface plasmon holography,” AIP Conf. Proc. 65, 515–518 (1980).
[CrossRef]

Appl. Opt. (4)

Biosens. Bioelectron. (1)

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

W. Hickel, B. Rothenhäusler, W. Knoll, “Surface plasmon microscopic characterization of external surfaces,” J. Appl. Phys. 66, 4832–4836 (1989).
[CrossRef]

J. Opt. Soc. Am. (1)

Jpn. J. Opt. (1)

T. Sugiura, S. Kawata, “Numerical analysis of radiation force exertion by surface plasmon resonance on a thin film,” (in Japanese) Jpn. J. Opt. 23, 191–197 (1994).

Opt. Commun. (2)

R. E. Benner, R. Dornhaus, R. K. Chang, “Angular emission profiles of dye molecules excited by surface plasmon waves at a metal surface,” Opt. Commun. 30, 145–149 (1979).
[CrossRef]

T. Okamoto, I. Yamaguchi, “Surface plasmon microscopy with an electronic angular scanning,” Opt. Commun. 93, 265–270 (1992).
[CrossRef]

Opt. Lett. (1)

Sensors Actuators (1)

C. Nylander, B. Liedberg, T. Lind, “Gas detection by means of surface plasmon resonance,” Sensors Actuators 3, 79–88 (1982/1983).
[CrossRef]

Solid State Commun. (1)

S. Hayashi, K. Kozaru, K. Yamamoto, “Enhancement of photoelectric conversion efficiency by surface plasmon excitation: a test with an organic solar cell,” Solid State Commun. 79, 763–767 (1991).
[CrossRef]

Other (3)

H. Reather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

J. J. Cowan, “The laser button: a novel approach to the large scale replication of holograms,” in Three-Dimensional Imaging, J. P. Ebbeni, M. Monfils, eds., Proc. SPIE402, 25–32 (1983).

J. J. Cowan, “The newport button: the large scale replication of combined three- and two-dimensional holographic images,” in Optics in Entertainment II, C. Outwater, ed., Proc. SPIE462, 20–27 (1984).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Illustration of the principle of evanescent-wave holography by use of SPR.

Fig. 2
Fig. 2

Theoretical intensity distribution of the electric field when the surface plasmon is excited with the device we proposed.

Fig. 3
Fig. 3

Optics for recording a hologram.

Fig. 4
Fig. 4

Appearance of the SPR hologram attached to a prism.

Fig. 5
Fig. 5

Optics for reconstructing a SPR hologram.

Fig. 6
Fig. 6

Photographs of the virtual image reconstructed by use of SPR holography viewed (a) from a distance, (b) from the left, and (c) from the right.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ksp=ωcnm2nd2nm2+nd21/2,

Metrics