Abstract

The results of this study clarify the influence of probe geometry on spectroscopic measurements obtained from the surface of a turbid biological tissue. We show that the transition between the measurement of the predominantly backward-propagating and the predominantly forward-propagating photon fluxes is marked by the separation between the source probe and the detector probes at which the dependence of the fluence on small changes in scattering coefficient vanishes. This is the probe separation at which a variable scattering background has the least influence on the measurement of optical absorption in turbid materials. Estimates of the optimum probe spacing for typical values of absorption and scattering coefficients of soft tissue in the near-infrared spectral region (800–2500 nm) are derived from an analytical solution of the diffusion equation. The estimates were verified by Monte Carlo simulations and experiments on particle suspensions with optical properties similar to those of skin tissue.

© 1997 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media

Roberto Reif, Ousama A'Amar, and Irving J. Bigio
Appl. Opt. 46(29) 7317-7328 (2007)

Perturbation Monte Carlo methods for tissue structure alterations

Jennifer Nguyen, Carole K. Hayakawa, Judith R. Mourant, and Jerome Spanier
Biomed. Opt. Express 4(10) 1946-1963 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription