Abstract

The results of this study clarify the influence of probe geometry on spectroscopic measurements obtained from the surface of a turbid biological tissue. We show that the transition between the measurement of the predominantly backward-propagating and the predominantly forward-propagating photon fluxes is marked by the separation between the source probe and the detector probes at which the dependence of the fluence on small changes in scattering coefficient vanishes. This is the probe separation at which a variable scattering background has the least influence on the measurement of optical absorption in turbid materials. Estimates of the optimum probe spacing for typical values of absorption and scattering coefficients of soft tissue in the near-infrared spectral region (800–2500 nm) are derived from an analytical solution of the diffusion equation. The estimates were verified by Monte Carlo simulations and experiments on particle suspensions with optical properties similar to those of skin tissue.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ferrari, D. A. Wilson, D. F. Hanley, J. F. Hartmann, M. C. Rogers, R. J. Traystman, “Noninvasive determination of hemoglobin saturation in dogs by derivative near-infrared spectroscopy,” Am. J. Physiol. 256, H1493–H1499 (1989).
    [PubMed]
  2. J. M. Schmitt, G. X. Zhou, J. Miller, “Measurement of blood hematocrit by dual-wavelength near-IR photoplethysmography,” in Physiological Monitoring and Early Detection Diagnostic Methods, T. S. Mang, ed., Proc. SPIE1641, 150–161, 1992.
    [CrossRef]
  3. P. I. Walling, J. M. Dabney, “Moisture in skin by near-infrared reflectance spectroscopy,” J. Soc. Cosmet. Chem. 40, 151–171 (1989).
  4. S. J. Matcher, M. Cope, D. T. Delpy, “Use of water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 38, 177–196 (1993).
  5. J. M. Conway, K. H. Norris, C. E. Bodwell, “A new approach for estimation of body composition: infrared interactance,” Am. J. Clin. Nutr. 40, 1123–1130 (1984).
    [PubMed]
  6. M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38/9, 1618–1622 (1992).
  7. R. Marbach, T. H. Koshinsky, F. A. Gries, H. M. Heise, “Noninvasive blood glucose assay by near-infrared diffuse reflectance spectroscopy of the human inner lip,” Appl. Spectrosc. 47, 875–881 (1993).
    [CrossRef]
  8. R. F. Bonner, R. Nossal, S. Havlin, G. H. Weiss, “Model for photon migration in turbid biological media,” J. Opt. Soc. Am. A 4, 423–432 (1987).
    [CrossRef] [PubMed]
  9. S. Takatani, H. Noda, H. Takano, T. Akutsu, “A miniature hybrid reflection type optical sensor for measurement of hemoglobin content and oxygen saturation of whole blood,” IEEE Trans. Biomed. Eng. 35, 187–198 (1988).
    [CrossRef] [PubMed]
  10. Y. Mendelson, J. C. Kent, B. L. Yocum, M. J. Birle, “Design and evaluation of a new reflectance pulse oximeter,” Med. Instrum. 22, 167–173 (1988).
    [PubMed]
  11. J. M. Schmitt, G. Kumar, “Spectral distortions in near-infrared spectroscopy of turbid media,” Appl. Spectrosc. 50, 1066–1073 (1996).
    [CrossRef]
  12. E. Stark, “Calibration methods for NIRS analysis,” in Analytical Applications of Spectroscopy, C. S. Creaser, A. M. C. Davies, eds. (Royal Society of Chemists, London, 1988), pp. 21–34.
  13. I. Dayan, S. Havlin, G. H. Weiss, “Photon migration in a two-layer turbid medium: a diffusion analysis,” J. Mod. Opt. 39, 1567–1582 (1992).
    [CrossRef]
  14. R. Aronson, “Boundary conditions for diffusion of light,” J. Opt. Soc. Am. A 12, 2532–2539 (1995).
    [CrossRef]
  15. B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).
    [CrossRef] [PubMed]
  16. S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissues—II. Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
    [CrossRef] [PubMed]
  17. L. H. Wang, S. L. Jacques, L. Q. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
    [CrossRef] [PubMed]
  18. W. F. Cheong, “Appendix to Chapter 8: Summary of optical properties,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welsh, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 275–303.
  19. C. F. Bohren, D. R. Huffman, “Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Appendix A, p. 475.
  20. R. Nossal, J. Kiefer, G. H. Weiss, R. Bonner, H. Taitelbaum, S. Havlin, “Photon migration in layered media,” Appl. Opt. 28, 2245–2249 (1989).
    [CrossRef]
  21. J. M. Schmitt, G. X. Zhou, E. C. Walker, R. T. Wall, “Multi-layer model of photon diffusion in skin,” J. Opt. Soc. Am. A 7, 2141–2153 (1990).
    [CrossRef] [PubMed]
  22. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissue in the near infrared,” Opt. Lett. 19, 2062–2064 (1994).
    [CrossRef] [PubMed]
  23. I. J. Bigio, J. R. Mourant, J. D. Boyer, T. M. Johnson, T. Shimada, R. L. Conn, “Noninvasive identification of bladder cancer with sub-surface backscattered light,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 26–35 (1994).
    [CrossRef]

1996 (1)

1995 (2)

L. H. Wang, S. L. Jacques, L. Q. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

R. Aronson, “Boundary conditions for diffusion of light,” J. Opt. Soc. Am. A 12, 2532–2539 (1995).
[CrossRef]

1994 (1)

1993 (2)

R. Marbach, T. H. Koshinsky, F. A. Gries, H. M. Heise, “Noninvasive blood glucose assay by near-infrared diffuse reflectance spectroscopy of the human inner lip,” Appl. Spectrosc. 47, 875–881 (1993).
[CrossRef]

S. J. Matcher, M. Cope, D. T. Delpy, “Use of water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 38, 177–196 (1993).

1992 (2)

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38/9, 1618–1622 (1992).

I. Dayan, S. Havlin, G. H. Weiss, “Photon migration in a two-layer turbid medium: a diffusion analysis,” J. Mod. Opt. 39, 1567–1582 (1992).
[CrossRef]

1990 (1)

1989 (4)

S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissues—II. Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
[CrossRef] [PubMed]

R. Nossal, J. Kiefer, G. H. Weiss, R. Bonner, H. Taitelbaum, S. Havlin, “Photon migration in layered media,” Appl. Opt. 28, 2245–2249 (1989).
[CrossRef]

M. Ferrari, D. A. Wilson, D. F. Hanley, J. F. Hartmann, M. C. Rogers, R. J. Traystman, “Noninvasive determination of hemoglobin saturation in dogs by derivative near-infrared spectroscopy,” Am. J. Physiol. 256, H1493–H1499 (1989).
[PubMed]

P. I. Walling, J. M. Dabney, “Moisture in skin by near-infrared reflectance spectroscopy,” J. Soc. Cosmet. Chem. 40, 151–171 (1989).

1988 (2)

S. Takatani, H. Noda, H. Takano, T. Akutsu, “A miniature hybrid reflection type optical sensor for measurement of hemoglobin content and oxygen saturation of whole blood,” IEEE Trans. Biomed. Eng. 35, 187–198 (1988).
[CrossRef] [PubMed]

Y. Mendelson, J. C. Kent, B. L. Yocum, M. J. Birle, “Design and evaluation of a new reflectance pulse oximeter,” Med. Instrum. 22, 167–173 (1988).
[PubMed]

1987 (1)

1984 (1)

J. M. Conway, K. H. Norris, C. E. Bodwell, “A new approach for estimation of body composition: infrared interactance,” Am. J. Clin. Nutr. 40, 1123–1130 (1984).
[PubMed]

1983 (1)

B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Adam, G.

B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Akutsu, T.

S. Takatani, H. Noda, H. Takano, T. Akutsu, “A miniature hybrid reflection type optical sensor for measurement of hemoglobin content and oxygen saturation of whole blood,” IEEE Trans. Biomed. Eng. 35, 187–198 (1988).
[CrossRef] [PubMed]

Aronson, R.

Bigio, I. J.

I. J. Bigio, J. R. Mourant, J. D. Boyer, T. M. Johnson, T. Shimada, R. L. Conn, “Noninvasive identification of bladder cancer with sub-surface backscattered light,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 26–35 (1994).
[CrossRef]

Birle, M. J.

Y. Mendelson, J. C. Kent, B. L. Yocum, M. J. Birle, “Design and evaluation of a new reflectance pulse oximeter,” Med. Instrum. 22, 167–173 (1988).
[PubMed]

Bodwell, C. E.

J. M. Conway, K. H. Norris, C. E. Bodwell, “A new approach for estimation of body composition: infrared interactance,” Am. J. Clin. Nutr. 40, 1123–1130 (1984).
[PubMed]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, “Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Appendix A, p. 475.

Bonner, R.

Bonner, R. F.

Boyer, J. D.

I. J. Bigio, J. R. Mourant, J. D. Boyer, T. M. Johnson, T. Shimada, R. L. Conn, “Noninvasive identification of bladder cancer with sub-surface backscattered light,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 26–35 (1994).
[CrossRef]

Cheong, W. F.

W. F. Cheong, “Appendix to Chapter 8: Summary of optical properties,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welsh, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 275–303.

Conn, R. L.

I. J. Bigio, J. R. Mourant, J. D. Boyer, T. M. Johnson, T. Shimada, R. L. Conn, “Noninvasive identification of bladder cancer with sub-surface backscattered light,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 26–35 (1994).
[CrossRef]

Conway, J. M.

J. M. Conway, K. H. Norris, C. E. Bodwell, “A new approach for estimation of body composition: infrared interactance,” Am. J. Clin. Nutr. 40, 1123–1130 (1984).
[PubMed]

Cope, M.

S. J. Matcher, M. Cope, D. T. Delpy, “Use of water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 38, 177–196 (1993).

Dabney, J. M.

P. I. Walling, J. M. Dabney, “Moisture in skin by near-infrared reflectance spectroscopy,” J. Soc. Cosmet. Chem. 40, 151–171 (1989).

Dayan, I.

I. Dayan, S. Havlin, G. H. Weiss, “Photon migration in a two-layer turbid medium: a diffusion analysis,” J. Mod. Opt. 39, 1567–1582 (1992).
[CrossRef]

Delpy, D. T.

S. J. Matcher, M. Cope, D. T. Delpy, “Use of water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 38, 177–196 (1993).

Eaton, R. P.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38/9, 1618–1622 (1992).

Fantini, S.

Ferrari, M.

M. Ferrari, D. A. Wilson, D. F. Hanley, J. F. Hartmann, M. C. Rogers, R. J. Traystman, “Noninvasive determination of hemoglobin saturation in dogs by derivative near-infrared spectroscopy,” Am. J. Physiol. 256, H1493–H1499 (1989).
[PubMed]

Flock, S. T.

S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissues—II. Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
[CrossRef] [PubMed]

Franceschini, M. A.

Gratton, E.

Gries, F. A.

Haaland, D. M.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38/9, 1618–1622 (1992).

Hanley, D. F.

M. Ferrari, D. A. Wilson, D. F. Hanley, J. F. Hartmann, M. C. Rogers, R. J. Traystman, “Noninvasive determination of hemoglobin saturation in dogs by derivative near-infrared spectroscopy,” Am. J. Physiol. 256, H1493–H1499 (1989).
[PubMed]

Hartmann, J. F.

M. Ferrari, D. A. Wilson, D. F. Hanley, J. F. Hartmann, M. C. Rogers, R. J. Traystman, “Noninvasive determination of hemoglobin saturation in dogs by derivative near-infrared spectroscopy,” Am. J. Physiol. 256, H1493–H1499 (1989).
[PubMed]

Havlin, S.

Heise, H. M.

Huffman, D. R.

C. F. Bohren, D. R. Huffman, “Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Appendix A, p. 475.

Jacques, S. L.

L. H. Wang, S. L. Jacques, L. Q. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Johnson, T. M.

I. J. Bigio, J. R. Mourant, J. D. Boyer, T. M. Johnson, T. Shimada, R. L. Conn, “Noninvasive identification of bladder cancer with sub-surface backscattered light,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 26–35 (1994).
[CrossRef]

Kent, J. C.

Y. Mendelson, J. C. Kent, B. L. Yocum, M. J. Birle, “Design and evaluation of a new reflectance pulse oximeter,” Med. Instrum. 22, 167–173 (1988).
[PubMed]

Kiefer, J.

Koepp, G. W.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38/9, 1618–1622 (1992).

Koshinsky, T. H.

Kumar, G.

Maier, J. S.

Marbach, R.

Matcher, S. J.

S. J. Matcher, M. Cope, D. T. Delpy, “Use of water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 38, 177–196 (1993).

Mendelson, Y.

Y. Mendelson, J. C. Kent, B. L. Yocum, M. J. Birle, “Design and evaluation of a new reflectance pulse oximeter,” Med. Instrum. 22, 167–173 (1988).
[PubMed]

Miller, J.

J. M. Schmitt, G. X. Zhou, J. Miller, “Measurement of blood hematocrit by dual-wavelength near-IR photoplethysmography,” in Physiological Monitoring and Early Detection Diagnostic Methods, T. S. Mang, ed., Proc. SPIE1641, 150–161, 1992.
[CrossRef]

Mourant, J. R.

I. J. Bigio, J. R. Mourant, J. D. Boyer, T. M. Johnson, T. Shimada, R. L. Conn, “Noninvasive identification of bladder cancer with sub-surface backscattered light,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 26–35 (1994).
[CrossRef]

Noda, H.

S. Takatani, H. Noda, H. Takano, T. Akutsu, “A miniature hybrid reflection type optical sensor for measurement of hemoglobin content and oxygen saturation of whole blood,” IEEE Trans. Biomed. Eng. 35, 187–198 (1988).
[CrossRef] [PubMed]

Norris, K. H.

J. M. Conway, K. H. Norris, C. E. Bodwell, “A new approach for estimation of body composition: infrared interactance,” Am. J. Clin. Nutr. 40, 1123–1130 (1984).
[PubMed]

Nossal, R.

Patterson, M. S.

S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissues—II. Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
[CrossRef] [PubMed]

Robinson, M. R.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38/9, 1618–1622 (1992).

Robinson, P. L.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38/9, 1618–1622 (1992).

Rogers, M. C.

M. Ferrari, D. A. Wilson, D. F. Hanley, J. F. Hartmann, M. C. Rogers, R. J. Traystman, “Noninvasive determination of hemoglobin saturation in dogs by derivative near-infrared spectroscopy,” Am. J. Physiol. 256, H1493–H1499 (1989).
[PubMed]

Schmitt, J. M.

J. M. Schmitt, G. Kumar, “Spectral distortions in near-infrared spectroscopy of turbid media,” Appl. Spectrosc. 50, 1066–1073 (1996).
[CrossRef]

J. M. Schmitt, G. X. Zhou, E. C. Walker, R. T. Wall, “Multi-layer model of photon diffusion in skin,” J. Opt. Soc. Am. A 7, 2141–2153 (1990).
[CrossRef] [PubMed]

J. M. Schmitt, G. X. Zhou, J. Miller, “Measurement of blood hematocrit by dual-wavelength near-IR photoplethysmography,” in Physiological Monitoring and Early Detection Diagnostic Methods, T. S. Mang, ed., Proc. SPIE1641, 150–161, 1992.
[CrossRef]

Shimada, T.

I. J. Bigio, J. R. Mourant, J. D. Boyer, T. M. Johnson, T. Shimada, R. L. Conn, “Noninvasive identification of bladder cancer with sub-surface backscattered light,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 26–35 (1994).
[CrossRef]

Stallard, B. R.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38/9, 1618–1622 (1992).

Stark, E.

E. Stark, “Calibration methods for NIRS analysis,” in Analytical Applications of Spectroscopy, C. S. Creaser, A. M. C. Davies, eds. (Royal Society of Chemists, London, 1988), pp. 21–34.

Taitelbaum, H.

Takano, H.

S. Takatani, H. Noda, H. Takano, T. Akutsu, “A miniature hybrid reflection type optical sensor for measurement of hemoglobin content and oxygen saturation of whole blood,” IEEE Trans. Biomed. Eng. 35, 187–198 (1988).
[CrossRef] [PubMed]

Takatani, S.

S. Takatani, H. Noda, H. Takano, T. Akutsu, “A miniature hybrid reflection type optical sensor for measurement of hemoglobin content and oxygen saturation of whole blood,” IEEE Trans. Biomed. Eng. 35, 187–198 (1988).
[CrossRef] [PubMed]

Thomas, E. V.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38/9, 1618–1622 (1992).

Traystman, R. J.

M. Ferrari, D. A. Wilson, D. F. Hanley, J. F. Hartmann, M. C. Rogers, R. J. Traystman, “Noninvasive determination of hemoglobin saturation in dogs by derivative near-infrared spectroscopy,” Am. J. Physiol. 256, H1493–H1499 (1989).
[PubMed]

Walker, E. C.

Walker, S. A.

Wall, R. T.

Walling, P. I.

P. I. Walling, J. M. Dabney, “Moisture in skin by near-infrared reflectance spectroscopy,” J. Soc. Cosmet. Chem. 40, 151–171 (1989).

Wang, L. H.

L. H. Wang, S. L. Jacques, L. Q. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Weiss, G. H.

Wilson, B. C.

S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissues—II. Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
[CrossRef] [PubMed]

B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Wilson, D. A.

M. Ferrari, D. A. Wilson, D. F. Hanley, J. F. Hartmann, M. C. Rogers, R. J. Traystman, “Noninvasive determination of hemoglobin saturation in dogs by derivative near-infrared spectroscopy,” Am. J. Physiol. 256, H1493–H1499 (1989).
[PubMed]

Yocum, B. L.

Y. Mendelson, J. C. Kent, B. L. Yocum, M. J. Birle, “Design and evaluation of a new reflectance pulse oximeter,” Med. Instrum. 22, 167–173 (1988).
[PubMed]

Zheng, L. Q.

L. H. Wang, S. L. Jacques, L. Q. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Zhou, G. X.

J. M. Schmitt, G. X. Zhou, E. C. Walker, R. T. Wall, “Multi-layer model of photon diffusion in skin,” J. Opt. Soc. Am. A 7, 2141–2153 (1990).
[CrossRef] [PubMed]

J. M. Schmitt, G. X. Zhou, J. Miller, “Measurement of blood hematocrit by dual-wavelength near-IR photoplethysmography,” in Physiological Monitoring and Early Detection Diagnostic Methods, T. S. Mang, ed., Proc. SPIE1641, 150–161, 1992.
[CrossRef]

Am. J. Clin. Nutr. (1)

J. M. Conway, K. H. Norris, C. E. Bodwell, “A new approach for estimation of body composition: infrared interactance,” Am. J. Clin. Nutr. 40, 1123–1130 (1984).
[PubMed]

Am. J. Physiol. (1)

M. Ferrari, D. A. Wilson, D. F. Hanley, J. F. Hartmann, M. C. Rogers, R. J. Traystman, “Noninvasive determination of hemoglobin saturation in dogs by derivative near-infrared spectroscopy,” Am. J. Physiol. 256, H1493–H1499 (1989).
[PubMed]

Appl. Opt. (1)

Appl. Spectrosc. (2)

Clin. Chem. (1)

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38/9, 1618–1622 (1992).

Comput. Methods Programs Biomed. (1)

L. H. Wang, S. L. Jacques, L. Q. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (2)

S. Takatani, H. Noda, H. Takano, T. Akutsu, “A miniature hybrid reflection type optical sensor for measurement of hemoglobin content and oxygen saturation of whole blood,” IEEE Trans. Biomed. Eng. 35, 187–198 (1988).
[CrossRef] [PubMed]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissues—II. Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

I. Dayan, S. Havlin, G. H. Weiss, “Photon migration in a two-layer turbid medium: a diffusion analysis,” J. Mod. Opt. 39, 1567–1582 (1992).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Soc. Cosmet. Chem. (1)

P. I. Walling, J. M. Dabney, “Moisture in skin by near-infrared reflectance spectroscopy,” J. Soc. Cosmet. Chem. 40, 151–171 (1989).

Med. Instrum. (1)

Y. Mendelson, J. C. Kent, B. L. Yocum, M. J. Birle, “Design and evaluation of a new reflectance pulse oximeter,” Med. Instrum. 22, 167–173 (1988).
[PubMed]

Med. Phys. (1)

B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Med. Biol. (1)

S. J. Matcher, M. Cope, D. T. Delpy, “Use of water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 38, 177–196 (1993).

Other (5)

J. M. Schmitt, G. X. Zhou, J. Miller, “Measurement of blood hematocrit by dual-wavelength near-IR photoplethysmography,” in Physiological Monitoring and Early Detection Diagnostic Methods, T. S. Mang, ed., Proc. SPIE1641, 150–161, 1992.
[CrossRef]

E. Stark, “Calibration methods for NIRS analysis,” in Analytical Applications of Spectroscopy, C. S. Creaser, A. M. C. Davies, eds. (Royal Society of Chemists, London, 1988), pp. 21–34.

W. F. Cheong, “Appendix to Chapter 8: Summary of optical properties,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welsh, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 275–303.

C. F. Bohren, D. R. Huffman, “Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Appendix A, p. 475.

I. J. Bigio, J. R. Mourant, J. D. Boyer, T. M. Johnson, T. Shimada, R. L. Conn, “Noninvasive identification of bladder cancer with sub-surface backscattered light,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 26–35 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Transflectance measurement on a semi-infinite medium. The variable ρ is the separation between the source and the detector probes used in the diffusion model. The incident light from the collimated source is converted to a diffuse source located at a depth zo (one extrapolation length) below the surface. The photon fluence normal to the surface is captured by the detector, which we assume to have a small cross-sectional area Ad, according to the diffusion model.

Fig. 2
Fig. 2

Sensitivity of the surface fluence to the absorption coefficient at increasing distances between the source and the detector probes. These results were calculated by differentiating Eq. (3), with K = 2.5. One can see the influence of the transport-corrected scattering coefficient with μa constant by comparing the solid curves with the dotted curves.

Fig. 3
Fig. 3

Sensitivity of the surface fluence to the scattering coefficient at increasing distances between the source and the detector probes. These results were calculated by differentiating Eq. (3), with K = 2.5. One can see the influence of the absorption coefficient with μs constant by comparing the solid curves with the dotted curves.

Fig. 4
Fig. 4

Absolute value of the ratio of the sensitivities of the surface fluence to the scattering and the absorption coefficients, as defined in Eq. (7). The plotted values were calculated with the same data that were used for calculating the sensitivities plotted in Figs. 3 and 4. Note that a distinct minimum occurs at the source–detector separation labeled ρop.

Fig. 5
Fig. 5

Optimum spacing between the source and the detector probes, estimated for different values of the transport-corrected scattering coefficient. The plotted values were calculated by differentiating Eq. 3, with μa = 0.01 mm-1 and K = 2.5.

Fig. 6
Fig. 6

Comparison of diffusion and Monte-Carlo estimates of the sensitivities of the surface fluence with the scattering coefficient. The scattering and the absorption coefficients were set to 1.0 mm-1 and 0.05 mm-1 to represent the optical properties of tissue at near-infrared reflectance wavelengths. An extrapolation length constant used in this comparison, K = 2.5, was found to fit best over the widest range of source–detector separations.

Fig. 7
Fig. 7

Examples of fluence profiles that were measured on the surface of particle suspensions, representing biological tissues with different scattering properties. The recordings were made at a wavelength of 1135 nm, where the absorption coefficient of the water in the suspensions equals approximately 0.05 mm-1. The plotted values are in relative units but have not been normalized.

Fig. 8
Fig. 8

Experimental scattering sensitivities derived from the data plotted in Fig. 7. The measured values of ρop, the spacing between the source and the detector fibers at which Ss equaled zero, are labeled on the graph for two different baseline scattering coefficients.

Fig. 9
Fig. 9

Near-infrared spectra of particle suspensions with three different scattering coefficients. The set of spectra labeled ρ = 3.25 mm was recorded with the fiber spacing set close to ρop; the other set of spectra, labeled ρ = 1 mm, was recorded with a fiber spacing much less than the optimum. Note that the ρ = 3.25 mm spectra are not sensitive to the magnitude of background scattering.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

T=exp-μaλd,
Sa-ddμaln T=d
Rρ=zoAd2παρ2+zo2+1ρ2+zo23/2×exp-αρ2+zo21/2,
Rρ31/2Ad2πρ2μaμst1/2 exp-αρ for ρ1αzo and μaμst.
Sa-d ln Rdμa,
31/22μstμa1/2 ρ for ρ1αzo.
Ss-d ln Rdμst,
31/22μaμst1/2 ρ for ρ1αzo.
M=d ln Rdμst/μst/d ln Rdμa/μa=SsSaμstμa=1 for ρ1αzo.
R31/2Adμst22πK2 for ρ0, μaμst,
Sa0 for ρ0, μaμst,
Ss=-2μst for ρ0, μaμst.

Metrics