Abstract

The feasibility of employing fluorescent contrast agents to perform optical imaging in tissues and other scattering media has been examined through computational studies. Fluorescence lifetime and yield can give crucial information about local metabolite concentrations or environmental conditions within tissues. This information can be employed toward disease detection, diagnosis, and treatment if noninvasively quantitated from reemitted optical signals. However, the problem of inverse image reconstruction of fluorescence yield and lifetime is complicated because of the highly scattering nature of the tissue. Here a light propagation model employing the diffusion equation is used to account for the scattering of both the excitation and fluorescent light. Simulated measurements of frequency-domain parameters of fluorescent modulated ac amplitude and phase lag are used as inputs to an inverse image-reconstruction algorithm, which employs the diffusion model to predict frequency-domain measurements resulting from a modulated input at the phantom periphery. In the inverse image-reconstruction algorithm, a Newton–Raphson technique combined with a Marquardt algorithm is employed to converge on the fluorescent properties within the medium. The successful reconstruction of both the fluorescence yield and lifetime in the case of a heterogeneous fluorophore distribution within a scattering medium has been demonstrated without a priori information or without the necessity of obtaining absence images.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Sheridan, K. T. Schomaker, L. C. Lucchina, J. Hurley, L. M. Yin, R. G. Tompkins, M. Jerath, A. Torri, K. Greaves, D. Bua, N. S. Nishioka, “Burn depth estimation by use of indocyanine green fluorescence: initial human trial,” J. Burn Care Rehabil. 16, 602–604 (1995).
    [CrossRef] [PubMed]
  2. W. Poon, K. T. Schomaker, T. F. Deutsch, R. L. Martuza, “Laser-induced fluorescence: experimental intraoperative delineation of tumor resection margins,” J. Neurosurg. 76, 679–686 (1992).
    [CrossRef] [PubMed]
  3. S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Time-resolved laser-induced fluorescence spectroscopy for enhanced demarcation of human atherosclerotic plaques,” J. Photochem. Photobiol. 4, 363–369 (1990).
    [CrossRef]
  4. S. Andersson-Engels, J. Ankerst, J. Johansson, K. Svanberg, S. Svanberg, “Laser-induced fluorescence in malignant and normal tissue of rats injected with benzoporphryin derivative,” Photochem. Photobiol. 57, 978–983 (1993).
    [CrossRef] [PubMed]
  5. B. C. Wilson, E. M. Sevick, M. S. Patterson, B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80, 918–930 (1992).
    [CrossRef]
  6. S. Mordon, J. M. Devoisselle, V. Maunoury, “In vivo pH measurement and imaging of a pH-sensitive fluorescent probe (5-6-carboxyfluorescein): instrumental and experimental studies,” Photochem. Photobiol. 60, 274–279 (1994).
    [CrossRef] [PubMed]
  7. D. A. Russell, R. H. Pottier, D. P. Valenzeno, “Continuous noninvasive measurement of in vivo pH in conscious mice,” Photochem. Photobiol. 59, 309–313 (1994).
    [CrossRef] [PubMed]
  8. S. A. Vinogradov, L. W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, D. F. Wilson, “Noninvasive imaging of the distribution in oxygen in tissue in vivo using near-infrared phosphors,” Biophys. J. 70, 1609–1617 (1996).
    [CrossRef] [PubMed]
  9. E. M. Sevick-Muraca, C. L. Hutchinson, D. Y. Paithankar, “Optical tissue biodiagnostics using fluorescence lifetime,” Opt. Photon. News 7, 25–28 (1996).
    [CrossRef]
  10. B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
    [CrossRef] [PubMed]
  11. R. L. Barbour, H. L. Graber, Y. Wang, J. Chang, R. Aronson, “Perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. Vander Zee, eds. (SPIE, Bellingham, Wash., 1993), pp. 87–120.
  12. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing photon tomography,” Opt. Lett. 20, 426–428 (1995).
    [CrossRef]
  13. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. 13, 253–266 (1996).
    [CrossRef]
  14. T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
    [CrossRef] [PubMed]
  15. G. Lopez, T. L. Troy, C. L. Hutchinson, J. S. Reynolds, E. M. Sevick-Muraca, “Fluorescent contrast agents for biomedical optical imaging using frequency-domain techniques,” J. R. Lakowicz, R. B. Thompson, eds., Proc. SPIE2980 (1997).
  16. J. Wu, Y. Wang, L. Perelman, I. Itzkan, R. Dasari, M. Feld, “Three-dimensional imaging of objects embedded in turbid media with fluorescence and Raman spectroscopy,” Appl. Opt. 34, 3425–3430 (1995).
    [CrossRef] [PubMed]
  17. K. M. Yoo, Z.-H. Zang, S. A. Ahmed, R. R. Alfano, “Imaging objects hidden in scattering media using a fluorescence-absorption technique,” Opt. Lett. 16, 1252–1254 (1991).
    [CrossRef] [PubMed]
  18. A. Knuttel, J. M. Schmitt, R. Barnes, J. R. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
    [CrossRef]
  19. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60&61, 281–286 (1994).
    [CrossRef]
  20. R. Cubbedu, G. Canti, P. Taroni, G. Valentini, “Time-gated fluorescence imaging for the diagnosis of tumors in a murine model,” Photochem. Photobiol. 57, 480–485 (1993).
    [CrossRef]
  21. E. M. Sevick-Muraca, C. L. Burch, “The origin of phosphorescent and fluorescent signals in tissues,” Opt. Lett. 19, 1928–1930 (1994).
    [CrossRef] [PubMed]
  22. M. S. Patterson, B. W. Pogue, “A mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in tissues,” Appl. Opt. 33, 1963–1974 (1994).
    [CrossRef] [PubMed]
  23. C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime based sensing in tissues: a computational study,” Biophys. J. 68, 1574–1582 (1995).
    [CrossRef] [PubMed]
  24. C. L. Hutchinson, T. L. Troy, E. M. Sevick-Muraca, “Fluorescence-lifetime determination in tissues or other scattering media from measurement of excitation and emission kinetics,” Appl. Opt. 35, 2325–2332 (1996).
    [CrossRef] [PubMed]
  25. S. R. Fulton, C. E. Ciesielski, W. H. Schubert, “Multigrid methods for elliptic problems: a review,” Mon. Weather Rev. 114, 943 (1986).
    [CrossRef]
  26. J. C. Adams, “mudpack: multigrid portable Fortran software for the efficient solution of linear elliptic partial differential equations,” Appl. Math. Comp. 34, 133 (1989).
    [CrossRef]
  27. R. A. Day, A. L. Underwood, Quantitative Analysis, 6th ed. (Prentice-Hall, Englewood Cliffs, N.J., 1991), p. 446.
  28. E. M. Sevick, J. K. Frisoli, C. L. Burch, J. R. Lakowicz, “Localization of absorbers using frequency-domain measurements of time-dependent photon migration,” Appl. Opt. 33, 3562–3570 (1994).
    [CrossRef] [PubMed]
  29. X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996).
    [CrossRef] [PubMed]
  30. T. J. Yorkey, J. G. Webster, W. J. Tompkins, “Comparing reconstruction algorithms for electrical impedance tomography,” IEEE Trans. Biomed. Eng. BME-34, 843–852 (1987).
    [CrossRef]
  31. W. H. Press, S. A. Teukolsy, W. T. Vetterling, B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, New York, 1992).
  32. E. M. Sevick-Muraca, D. Y. Paithankar, C. L. Hutchinson, T. L. Troy, “Analysis of photon migration for optical diagnosis,” in Ultrasensitive Biochemical Diagnostics, G. E. Cohn, S. A. Soper, C. Chen, eds., Proc. SPIE2680, 114–123 (1996).
    [CrossRef]
  33. M. A. O’Leary, D. A. Boas, D. X. Li, B. Chance, A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996).
    [CrossRef] [PubMed]
  34. E. M. Sevick, J. R. Lakowicz, H. Szamacinski, K. Nowaczyk, M. L. Johnson, “Frequency domain imaging of absorbers obscured by scattering,” J. Photochem. Photobiol. B 16, 169–185 (1992).
    [CrossRef] [PubMed]

1996 (7)

S. A. Vinogradov, L. W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, D. F. Wilson, “Noninvasive imaging of the distribution in oxygen in tissue in vivo using near-infrared phosphors,” Biophys. J. 70, 1609–1617 (1996).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, C. L. Hutchinson, D. Y. Paithankar, “Optical tissue biodiagnostics using fluorescence lifetime,” Opt. Photon. News 7, 25–28 (1996).
[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. 13, 253–266 (1996).
[CrossRef]

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

C. L. Hutchinson, T. L. Troy, E. M. Sevick-Muraca, “Fluorescence-lifetime determination in tissues or other scattering media from measurement of excitation and emission kinetics,” Appl. Opt. 35, 2325–2332 (1996).
[CrossRef] [PubMed]

X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996).
[CrossRef] [PubMed]

M. A. O’Leary, D. A. Boas, D. X. Li, B. Chance, A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996).
[CrossRef] [PubMed]

1995 (5)

C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime based sensing in tissues: a computational study,” Biophys. J. 68, 1574–1582 (1995).
[CrossRef] [PubMed]

J. Wu, Y. Wang, L. Perelman, I. Itzkan, R. Dasari, M. Feld, “Three-dimensional imaging of objects embedded in turbid media with fluorescence and Raman spectroscopy,” Appl. Opt. 34, 3425–3430 (1995).
[CrossRef] [PubMed]

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[CrossRef] [PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing photon tomography,” Opt. Lett. 20, 426–428 (1995).
[CrossRef]

R. L. Sheridan, K. T. Schomaker, L. C. Lucchina, J. Hurley, L. M. Yin, R. G. Tompkins, M. Jerath, A. Torri, K. Greaves, D. Bua, N. S. Nishioka, “Burn depth estimation by use of indocyanine green fluorescence: initial human trial,” J. Burn Care Rehabil. 16, 602–604 (1995).
[CrossRef] [PubMed]

1994 (6)

S. Mordon, J. M. Devoisselle, V. Maunoury, “In vivo pH measurement and imaging of a pH-sensitive fluorescent probe (5-6-carboxyfluorescein): instrumental and experimental studies,” Photochem. Photobiol. 60, 274–279 (1994).
[CrossRef] [PubMed]

D. A. Russell, R. H. Pottier, D. P. Valenzeno, “Continuous noninvasive measurement of in vivo pH in conscious mice,” Photochem. Photobiol. 59, 309–313 (1994).
[CrossRef] [PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60&61, 281–286 (1994).
[CrossRef]

E. M. Sevick-Muraca, C. L. Burch, “The origin of phosphorescent and fluorescent signals in tissues,” Opt. Lett. 19, 1928–1930 (1994).
[CrossRef] [PubMed]

M. S. Patterson, B. W. Pogue, “A mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in tissues,” Appl. Opt. 33, 1963–1974 (1994).
[CrossRef] [PubMed]

E. M. Sevick, J. K. Frisoli, C. L. Burch, J. R. Lakowicz, “Localization of absorbers using frequency-domain measurements of time-dependent photon migration,” Appl. Opt. 33, 3562–3570 (1994).
[CrossRef] [PubMed]

1993 (3)

A. Knuttel, J. M. Schmitt, R. Barnes, J. R. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
[CrossRef]

R. Cubbedu, G. Canti, P. Taroni, G. Valentini, “Time-gated fluorescence imaging for the diagnosis of tumors in a murine model,” Photochem. Photobiol. 57, 480–485 (1993).
[CrossRef]

S. Andersson-Engels, J. Ankerst, J. Johansson, K. Svanberg, S. Svanberg, “Laser-induced fluorescence in malignant and normal tissue of rats injected with benzoporphryin derivative,” Photochem. Photobiol. 57, 978–983 (1993).
[CrossRef] [PubMed]

1992 (3)

B. C. Wilson, E. M. Sevick, M. S. Patterson, B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80, 918–930 (1992).
[CrossRef]

W. Poon, K. T. Schomaker, T. F. Deutsch, R. L. Martuza, “Laser-induced fluorescence: experimental intraoperative delineation of tumor resection margins,” J. Neurosurg. 76, 679–686 (1992).
[CrossRef] [PubMed]

E. M. Sevick, J. R. Lakowicz, H. Szamacinski, K. Nowaczyk, M. L. Johnson, “Frequency domain imaging of absorbers obscured by scattering,” J. Photochem. Photobiol. B 16, 169–185 (1992).
[CrossRef] [PubMed]

1991 (1)

1990 (1)

S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Time-resolved laser-induced fluorescence spectroscopy for enhanced demarcation of human atherosclerotic plaques,” J. Photochem. Photobiol. 4, 363–369 (1990).
[CrossRef]

1989 (1)

J. C. Adams, “mudpack: multigrid portable Fortran software for the efficient solution of linear elliptic partial differential equations,” Appl. Math. Comp. 34, 133 (1989).
[CrossRef]

1987 (1)

T. J. Yorkey, J. G. Webster, W. J. Tompkins, “Comparing reconstruction algorithms for electrical impedance tomography,” IEEE Trans. Biomed. Eng. BME-34, 843–852 (1987).
[CrossRef]

1986 (1)

S. R. Fulton, C. E. Ciesielski, W. H. Schubert, “Multigrid methods for elliptic problems: a review,” Mon. Weather Rev. 114, 943 (1986).
[CrossRef]

Adams, J. C.

J. C. Adams, “mudpack: multigrid portable Fortran software for the efficient solution of linear elliptic partial differential equations,” Appl. Math. Comp. 34, 133 (1989).
[CrossRef]

Ahmed, S. A.

Alfano, R. R.

Andersson-Engels, S.

S. Andersson-Engels, J. Ankerst, J. Johansson, K. Svanberg, S. Svanberg, “Laser-induced fluorescence in malignant and normal tissue of rats injected with benzoporphryin derivative,” Photochem. Photobiol. 57, 978–983 (1993).
[CrossRef] [PubMed]

S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Time-resolved laser-induced fluorescence spectroscopy for enhanced demarcation of human atherosclerotic plaques,” J. Photochem. Photobiol. 4, 363–369 (1990).
[CrossRef]

Ankerst, J.

S. Andersson-Engels, J. Ankerst, J. Johansson, K. Svanberg, S. Svanberg, “Laser-induced fluorescence in malignant and normal tissue of rats injected with benzoporphryin derivative,” Photochem. Photobiol. 57, 978–983 (1993).
[CrossRef] [PubMed]

Aronson, R.

R. L. Barbour, H. L. Graber, Y. Wang, J. Chang, R. Aronson, “Perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. Vander Zee, eds. (SPIE, Bellingham, Wash., 1993), pp. 87–120.

Barbour, R. L.

R. L. Barbour, H. L. Graber, Y. Wang, J. Chang, R. Aronson, “Perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. Vander Zee, eds. (SPIE, Bellingham, Wash., 1993), pp. 87–120.

Barnes, R.

A. Knuttel, J. M. Schmitt, R. Barnes, J. R. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
[CrossRef]

Boas, D. A.

Bua, D.

R. L. Sheridan, K. T. Schomaker, L. C. Lucchina, J. Hurley, L. M. Yin, R. G. Tompkins, M. Jerath, A. Torri, K. Greaves, D. Bua, N. S. Nishioka, “Burn depth estimation by use of indocyanine green fluorescence: initial human trial,” J. Burn Care Rehabil. 16, 602–604 (1995).
[CrossRef] [PubMed]

Burch, C. L.

Canti, G.

R. Cubbedu, G. Canti, P. Taroni, G. Valentini, “Time-gated fluorescence imaging for the diagnosis of tumors in a murine model,” Photochem. Photobiol. 57, 480–485 (1993).
[CrossRef]

Chance, B.

Chang, J.

R. L. Barbour, H. L. Graber, Y. Wang, J. Chang, R. Aronson, “Perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. Vander Zee, eds. (SPIE, Bellingham, Wash., 1993), pp. 87–120.

Ciesielski, C. E.

S. R. Fulton, C. E. Ciesielski, W. H. Schubert, “Multigrid methods for elliptic problems: a review,” Mon. Weather Rev. 114, 943 (1986).
[CrossRef]

Cubbedu, R.

R. Cubbedu, G. Canti, P. Taroni, G. Valentini, “Time-gated fluorescence imaging for the diagnosis of tumors in a murine model,” Photochem. Photobiol. 57, 480–485 (1993).
[CrossRef]

Dasari, R.

Day, R. A.

R. A. Day, A. L. Underwood, Quantitative Analysis, 6th ed. (Prentice-Hall, Englewood Cliffs, N.J., 1991), p. 446.

Deutsch, T. F.

W. Poon, K. T. Schomaker, T. F. Deutsch, R. L. Martuza, “Laser-induced fluorescence: experimental intraoperative delineation of tumor resection margins,” J. Neurosurg. 76, 679–686 (1992).
[CrossRef] [PubMed]

Devoisselle, J. M.

S. Mordon, J. M. Devoisselle, V. Maunoury, “In vivo pH measurement and imaging of a pH-sensitive fluorescent probe (5-6-carboxyfluorescein): instrumental and experimental studies,” Photochem. Photobiol. 60, 274–279 (1994).
[CrossRef] [PubMed]

Evans, S. M.

S. A. Vinogradov, L. W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, D. F. Wilson, “Noninvasive imaging of the distribution in oxygen in tissue in vivo using near-infrared phosphors,” Biophys. J. 70, 1609–1617 (1996).
[CrossRef] [PubMed]

Feld, M.

Flannery, B. P.

W. H. Press, S. A. Teukolsy, W. T. Vetterling, B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, New York, 1992).

Frisoli, J. K.

Fulton, S. R.

S. R. Fulton, C. E. Ciesielski, W. H. Schubert, “Multigrid methods for elliptic problems: a review,” Mon. Weather Rev. 114, 943 (1986).
[CrossRef]

Graber, H. L.

R. L. Barbour, H. L. Graber, Y. Wang, J. Chang, R. Aronson, “Perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. Vander Zee, eds. (SPIE, Bellingham, Wash., 1993), pp. 87–120.

Greaves, K.

R. L. Sheridan, K. T. Schomaker, L. C. Lucchina, J. Hurley, L. M. Yin, R. G. Tompkins, M. Jerath, A. Torri, K. Greaves, D. Bua, N. S. Nishioka, “Burn depth estimation by use of indocyanine green fluorescence: initial human trial,” J. Burn Care Rehabil. 16, 602–604 (1995).
[CrossRef] [PubMed]

Hurley, J.

R. L. Sheridan, K. T. Schomaker, L. C. Lucchina, J. Hurley, L. M. Yin, R. G. Tompkins, M. Jerath, A. Torri, K. Greaves, D. Bua, N. S. Nishioka, “Burn depth estimation by use of indocyanine green fluorescence: initial human trial,” J. Burn Care Rehabil. 16, 602–604 (1995).
[CrossRef] [PubMed]

Hutchinson, C. L.

E. M. Sevick-Muraca, C. L. Hutchinson, D. Y. Paithankar, “Optical tissue biodiagnostics using fluorescence lifetime,” Opt. Photon. News 7, 25–28 (1996).
[CrossRef]

C. L. Hutchinson, T. L. Troy, E. M. Sevick-Muraca, “Fluorescence-lifetime determination in tissues or other scattering media from measurement of excitation and emission kinetics,” Appl. Opt. 35, 2325–2332 (1996).
[CrossRef] [PubMed]

C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime based sensing in tissues: a computational study,” Biophys. J. 68, 1574–1582 (1995).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, D. Y. Paithankar, C. L. Hutchinson, T. L. Troy, “Analysis of photon migration for optical diagnosis,” in Ultrasensitive Biochemical Diagnostics, G. E. Cohn, S. A. Soper, C. Chen, eds., Proc. SPIE2680, 114–123 (1996).
[CrossRef]

G. Lopez, T. L. Troy, C. L. Hutchinson, J. S. Reynolds, E. M. Sevick-Muraca, “Fluorescent contrast agents for biomedical optical imaging using frequency-domain techniques,” J. R. Lakowicz, R. B. Thompson, eds., Proc. SPIE2980 (1997).

Itzkan, I.

Jenkins, W. T.

S. A. Vinogradov, L. W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, D. F. Wilson, “Noninvasive imaging of the distribution in oxygen in tissue in vivo using near-infrared phosphors,” Biophys. J. 70, 1609–1617 (1996).
[CrossRef] [PubMed]

Jerath, M.

R. L. Sheridan, K. T. Schomaker, L. C. Lucchina, J. Hurley, L. M. Yin, R. G. Tompkins, M. Jerath, A. Torri, K. Greaves, D. Bua, N. S. Nishioka, “Burn depth estimation by use of indocyanine green fluorescence: initial human trial,” J. Burn Care Rehabil. 16, 602–604 (1995).
[CrossRef] [PubMed]

Jiang, H.

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. 13, 253–266 (1996).
[CrossRef]

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[CrossRef] [PubMed]

Johansson, J.

S. Andersson-Engels, J. Ankerst, J. Johansson, K. Svanberg, S. Svanberg, “Laser-induced fluorescence in malignant and normal tissue of rats injected with benzoporphryin derivative,” Photochem. Photobiol. 57, 978–983 (1993).
[CrossRef] [PubMed]

S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Time-resolved laser-induced fluorescence spectroscopy for enhanced demarcation of human atherosclerotic plaques,” J. Photochem. Photobiol. 4, 363–369 (1990).
[CrossRef]

Johnson, M. L.

E. M. Sevick, J. R. Lakowicz, H. Szamacinski, K. Nowaczyk, M. L. Johnson, “Frequency domain imaging of absorbers obscured by scattering,” J. Photochem. Photobiol. B 16, 169–185 (1992).
[CrossRef] [PubMed]

Knutson, J. R.

A. Knuttel, J. M. Schmitt, R. Barnes, J. R. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
[CrossRef]

Knuttel, A.

A. Knuttel, J. M. Schmitt, R. Barnes, J. R. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
[CrossRef]

Koch, C.

S. A. Vinogradov, L. W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, D. F. Wilson, “Noninvasive imaging of the distribution in oxygen in tissue in vivo using near-infrared phosphors,” Biophys. J. 70, 1609–1617 (1996).
[CrossRef] [PubMed]

Lakowicz, J. R.

C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime based sensing in tissues: a computational study,” Biophys. J. 68, 1574–1582 (1995).
[CrossRef] [PubMed]

E. M. Sevick, J. K. Frisoli, C. L. Burch, J. R. Lakowicz, “Localization of absorbers using frequency-domain measurements of time-dependent photon migration,” Appl. Opt. 33, 3562–3570 (1994).
[CrossRef] [PubMed]

E. M. Sevick, J. R. Lakowicz, H. Szamacinski, K. Nowaczyk, M. L. Johnson, “Frequency domain imaging of absorbers obscured by scattering,” J. Photochem. Photobiol. B 16, 169–185 (1992).
[CrossRef] [PubMed]

Li, D. X.

Li, X. D.

Lo, L. W.

S. A. Vinogradov, L. W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, D. F. Wilson, “Noninvasive imaging of the distribution in oxygen in tissue in vivo using near-infrared phosphors,” Biophys. J. 70, 1609–1617 (1996).
[CrossRef] [PubMed]

Lopez, G.

G. Lopez, T. L. Troy, C. L. Hutchinson, J. S. Reynolds, E. M. Sevick-Muraca, “Fluorescent contrast agents for biomedical optical imaging using frequency-domain techniques,” J. R. Lakowicz, R. B. Thompson, eds., Proc. SPIE2980 (1997).

Lucchina, L. C.

R. L. Sheridan, K. T. Schomaker, L. C. Lucchina, J. Hurley, L. M. Yin, R. G. Tompkins, M. Jerath, A. Torri, K. Greaves, D. Bua, N. S. Nishioka, “Burn depth estimation by use of indocyanine green fluorescence: initial human trial,” J. Burn Care Rehabil. 16, 602–604 (1995).
[CrossRef] [PubMed]

Martuza, R. L.

W. Poon, K. T. Schomaker, T. F. Deutsch, R. L. Martuza, “Laser-induced fluorescence: experimental intraoperative delineation of tumor resection margins,” J. Neurosurg. 76, 679–686 (1992).
[CrossRef] [PubMed]

Maunoury, V.

S. Mordon, J. M. Devoisselle, V. Maunoury, “In vivo pH measurement and imaging of a pH-sensitive fluorescent probe (5-6-carboxyfluorescein): instrumental and experimental studies,” Photochem. Photobiol. 60, 274–279 (1994).
[CrossRef] [PubMed]

Mordon, S.

S. Mordon, J. M. Devoisselle, V. Maunoury, “In vivo pH measurement and imaging of a pH-sensitive fluorescent probe (5-6-carboxyfluorescein): instrumental and experimental studies,” Photochem. Photobiol. 60, 274–279 (1994).
[CrossRef] [PubMed]

Nishioka, N. S.

R. L. Sheridan, K. T. Schomaker, L. C. Lucchina, J. Hurley, L. M. Yin, R. G. Tompkins, M. Jerath, A. Torri, K. Greaves, D. Bua, N. S. Nishioka, “Burn depth estimation by use of indocyanine green fluorescence: initial human trial,” J. Burn Care Rehabil. 16, 602–604 (1995).
[CrossRef] [PubMed]

Nowaczyk, K.

E. M. Sevick, J. R. Lakowicz, H. Szamacinski, K. Nowaczyk, M. L. Johnson, “Frequency domain imaging of absorbers obscured by scattering,” J. Photochem. Photobiol. B 16, 169–185 (1992).
[CrossRef] [PubMed]

O’Leary, M. A.

Osterberg, U. L.

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. 13, 253–266 (1996).
[CrossRef]

Page, D. L.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

Paithankar, D. Y.

E. M. Sevick-Muraca, C. L. Hutchinson, D. Y. Paithankar, “Optical tissue biodiagnostics using fluorescence lifetime,” Opt. Photon. News 7, 25–28 (1996).
[CrossRef]

E. M. Sevick-Muraca, D. Y. Paithankar, C. L. Hutchinson, T. L. Troy, “Analysis of photon migration for optical diagnosis,” in Ultrasensitive Biochemical Diagnostics, G. E. Cohn, S. A. Soper, C. Chen, eds., Proc. SPIE2680, 114–123 (1996).
[CrossRef]

Patterson, M. S.

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. 13, 253–266 (1996).
[CrossRef]

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[CrossRef] [PubMed]

M. S. Patterson, B. W. Pogue, “A mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in tissues,” Appl. Opt. 33, 1963–1974 (1994).
[CrossRef] [PubMed]

B. C. Wilson, E. M. Sevick, M. S. Patterson, B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80, 918–930 (1992).
[CrossRef]

Paulsen, K. D.

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. 13, 253–266 (1996).
[CrossRef]

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[CrossRef] [PubMed]

Perelman, L.

Pogue, B. W.

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. 13, 253–266 (1996).
[CrossRef]

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[CrossRef] [PubMed]

M. S. Patterson, B. W. Pogue, “A mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in tissues,” Appl. Opt. 33, 1963–1974 (1994).
[CrossRef] [PubMed]

Poon, W.

W. Poon, K. T. Schomaker, T. F. Deutsch, R. L. Martuza, “Laser-induced fluorescence: experimental intraoperative delineation of tumor resection margins,” J. Neurosurg. 76, 679–686 (1992).
[CrossRef] [PubMed]

Pottier, R. H.

D. A. Russell, R. H. Pottier, D. P. Valenzeno, “Continuous noninvasive measurement of in vivo pH in conscious mice,” Photochem. Photobiol. 59, 309–313 (1994).
[CrossRef] [PubMed]

Press, W. H.

W. H. Press, S. A. Teukolsy, W. T. Vetterling, B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, New York, 1992).

Reynolds, J. S.

G. Lopez, T. L. Troy, C. L. Hutchinson, J. S. Reynolds, E. M. Sevick-Muraca, “Fluorescent contrast agents for biomedical optical imaging using frequency-domain techniques,” J. R. Lakowicz, R. B. Thompson, eds., Proc. SPIE2980 (1997).

Russell, D. A.

D. A. Russell, R. H. Pottier, D. P. Valenzeno, “Continuous noninvasive measurement of in vivo pH in conscious mice,” Photochem. Photobiol. 59, 309–313 (1994).
[CrossRef] [PubMed]

Schmitt, J. M.

A. Knuttel, J. M. Schmitt, R. Barnes, J. R. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
[CrossRef]

Schomaker, K. T.

R. L. Sheridan, K. T. Schomaker, L. C. Lucchina, J. Hurley, L. M. Yin, R. G. Tompkins, M. Jerath, A. Torri, K. Greaves, D. Bua, N. S. Nishioka, “Burn depth estimation by use of indocyanine green fluorescence: initial human trial,” J. Burn Care Rehabil. 16, 602–604 (1995).
[CrossRef] [PubMed]

W. Poon, K. T. Schomaker, T. F. Deutsch, R. L. Martuza, “Laser-induced fluorescence: experimental intraoperative delineation of tumor resection margins,” J. Neurosurg. 76, 679–686 (1992).
[CrossRef] [PubMed]

Schubert, W. H.

S. R. Fulton, C. E. Ciesielski, W. H. Schubert, “Multigrid methods for elliptic problems: a review,” Mon. Weather Rev. 114, 943 (1986).
[CrossRef]

Sevick, E. M.

E. M. Sevick, J. K. Frisoli, C. L. Burch, J. R. Lakowicz, “Localization of absorbers using frequency-domain measurements of time-dependent photon migration,” Appl. Opt. 33, 3562–3570 (1994).
[CrossRef] [PubMed]

E. M. Sevick, J. R. Lakowicz, H. Szamacinski, K. Nowaczyk, M. L. Johnson, “Frequency domain imaging of absorbers obscured by scattering,” J. Photochem. Photobiol. B 16, 169–185 (1992).
[CrossRef] [PubMed]

B. C. Wilson, E. M. Sevick, M. S. Patterson, B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80, 918–930 (1992).
[CrossRef]

Sevick-Muraca, E. M.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, C. L. Hutchinson, D. Y. Paithankar, “Optical tissue biodiagnostics using fluorescence lifetime,” Opt. Photon. News 7, 25–28 (1996).
[CrossRef]

C. L. Hutchinson, T. L. Troy, E. M. Sevick-Muraca, “Fluorescence-lifetime determination in tissues or other scattering media from measurement of excitation and emission kinetics,” Appl. Opt. 35, 2325–2332 (1996).
[CrossRef] [PubMed]

C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime based sensing in tissues: a computational study,” Biophys. J. 68, 1574–1582 (1995).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, C. L. Burch, “The origin of phosphorescent and fluorescent signals in tissues,” Opt. Lett. 19, 1928–1930 (1994).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, D. Y. Paithankar, C. L. Hutchinson, T. L. Troy, “Analysis of photon migration for optical diagnosis,” in Ultrasensitive Biochemical Diagnostics, G. E. Cohn, S. A. Soper, C. Chen, eds., Proc. SPIE2680, 114–123 (1996).
[CrossRef]

G. Lopez, T. L. Troy, C. L. Hutchinson, J. S. Reynolds, E. M. Sevick-Muraca, “Fluorescent contrast agents for biomedical optical imaging using frequency-domain techniques,” J. R. Lakowicz, R. B. Thompson, eds., Proc. SPIE2980 (1997).

Sheridan, R. L.

R. L. Sheridan, K. T. Schomaker, L. C. Lucchina, J. Hurley, L. M. Yin, R. G. Tompkins, M. Jerath, A. Torri, K. Greaves, D. Bua, N. S. Nishioka, “Burn depth estimation by use of indocyanine green fluorescence: initial human trial,” J. Burn Care Rehabil. 16, 602–604 (1995).
[CrossRef] [PubMed]

Stenram, U.

S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Time-resolved laser-induced fluorescence spectroscopy for enhanced demarcation of human atherosclerotic plaques,” J. Photochem. Photobiol. 4, 363–369 (1990).
[CrossRef]

Svanberg, K.

S. Andersson-Engels, J. Ankerst, J. Johansson, K. Svanberg, S. Svanberg, “Laser-induced fluorescence in malignant and normal tissue of rats injected with benzoporphryin derivative,” Photochem. Photobiol. 57, 978–983 (1993).
[CrossRef] [PubMed]

S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Time-resolved laser-induced fluorescence spectroscopy for enhanced demarcation of human atherosclerotic plaques,” J. Photochem. Photobiol. 4, 363–369 (1990).
[CrossRef]

Svanberg, S.

S. Andersson-Engels, J. Ankerst, J. Johansson, K. Svanberg, S. Svanberg, “Laser-induced fluorescence in malignant and normal tissue of rats injected with benzoporphryin derivative,” Photochem. Photobiol. 57, 978–983 (1993).
[CrossRef] [PubMed]

S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Time-resolved laser-induced fluorescence spectroscopy for enhanced demarcation of human atherosclerotic plaques,” J. Photochem. Photobiol. 4, 363–369 (1990).
[CrossRef]

Szamacinski, H.

E. M. Sevick, J. R. Lakowicz, H. Szamacinski, K. Nowaczyk, M. L. Johnson, “Frequency domain imaging of absorbers obscured by scattering,” J. Photochem. Photobiol. B 16, 169–185 (1992).
[CrossRef] [PubMed]

Taroni, P.

R. Cubbedu, G. Canti, P. Taroni, G. Valentini, “Time-gated fluorescence imaging for the diagnosis of tumors in a murine model,” Photochem. Photobiol. 57, 480–485 (1993).
[CrossRef]

Teukolsy, S. A.

W. H. Press, S. A. Teukolsy, W. T. Vetterling, B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, New York, 1992).

Tompkins, R. G.

R. L. Sheridan, K. T. Schomaker, L. C. Lucchina, J. Hurley, L. M. Yin, R. G. Tompkins, M. Jerath, A. Torri, K. Greaves, D. Bua, N. S. Nishioka, “Burn depth estimation by use of indocyanine green fluorescence: initial human trial,” J. Burn Care Rehabil. 16, 602–604 (1995).
[CrossRef] [PubMed]

Tompkins, W. J.

T. J. Yorkey, J. G. Webster, W. J. Tompkins, “Comparing reconstruction algorithms for electrical impedance tomography,” IEEE Trans. Biomed. Eng. BME-34, 843–852 (1987).
[CrossRef]

Torri, A.

R. L. Sheridan, K. T. Schomaker, L. C. Lucchina, J. Hurley, L. M. Yin, R. G. Tompkins, M. Jerath, A. Torri, K. Greaves, D. Bua, N. S. Nishioka, “Burn depth estimation by use of indocyanine green fluorescence: initial human trial,” J. Burn Care Rehabil. 16, 602–604 (1995).
[CrossRef] [PubMed]

Troy, T. L.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

C. L. Hutchinson, T. L. Troy, E. M. Sevick-Muraca, “Fluorescence-lifetime determination in tissues or other scattering media from measurement of excitation and emission kinetics,” Appl. Opt. 35, 2325–2332 (1996).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, D. Y. Paithankar, C. L. Hutchinson, T. L. Troy, “Analysis of photon migration for optical diagnosis,” in Ultrasensitive Biochemical Diagnostics, G. E. Cohn, S. A. Soper, C. Chen, eds., Proc. SPIE2680, 114–123 (1996).
[CrossRef]

G. Lopez, T. L. Troy, C. L. Hutchinson, J. S. Reynolds, E. M. Sevick-Muraca, “Fluorescent contrast agents for biomedical optical imaging using frequency-domain techniques,” J. R. Lakowicz, R. B. Thompson, eds., Proc. SPIE2980 (1997).

Underwood, A. L.

R. A. Day, A. L. Underwood, Quantitative Analysis, 6th ed. (Prentice-Hall, Englewood Cliffs, N.J., 1991), p. 446.

Valentini, G.

R. Cubbedu, G. Canti, P. Taroni, G. Valentini, “Time-gated fluorescence imaging for the diagnosis of tumors in a murine model,” Photochem. Photobiol. 57, 480–485 (1993).
[CrossRef]

Valenzeno, D. P.

D. A. Russell, R. H. Pottier, D. P. Valenzeno, “Continuous noninvasive measurement of in vivo pH in conscious mice,” Photochem. Photobiol. 59, 309–313 (1994).
[CrossRef] [PubMed]

Vetterling, W. T.

W. H. Press, S. A. Teukolsy, W. T. Vetterling, B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, New York, 1992).

Vinogradov, S. A.

S. A. Vinogradov, L. W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, D. F. Wilson, “Noninvasive imaging of the distribution in oxygen in tissue in vivo using near-infrared phosphors,” Biophys. J. 70, 1609–1617 (1996).
[CrossRef] [PubMed]

Wang, Y.

J. Wu, Y. Wang, L. Perelman, I. Itzkan, R. Dasari, M. Feld, “Three-dimensional imaging of objects embedded in turbid media with fluorescence and Raman spectroscopy,” Appl. Opt. 34, 3425–3430 (1995).
[CrossRef] [PubMed]

R. L. Barbour, H. L. Graber, Y. Wang, J. Chang, R. Aronson, “Perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. Vander Zee, eds. (SPIE, Bellingham, Wash., 1993), pp. 87–120.

Webster, J. G.

T. J. Yorkey, J. G. Webster, W. J. Tompkins, “Comparing reconstruction algorithms for electrical impedance tomography,” IEEE Trans. Biomed. Eng. BME-34, 843–852 (1987).
[CrossRef]

Wilson, B. C.

B. C. Wilson, E. M. Sevick, M. S. Patterson, B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80, 918–930 (1992).
[CrossRef]

Wilson, D. F.

S. A. Vinogradov, L. W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, D. F. Wilson, “Noninvasive imaging of the distribution in oxygen in tissue in vivo using near-infrared phosphors,” Biophys. J. 70, 1609–1617 (1996).
[CrossRef] [PubMed]

Wu, J.

Yin, L. M.

R. L. Sheridan, K. T. Schomaker, L. C. Lucchina, J. Hurley, L. M. Yin, R. G. Tompkins, M. Jerath, A. Torri, K. Greaves, D. Bua, N. S. Nishioka, “Burn depth estimation by use of indocyanine green fluorescence: initial human trial,” J. Burn Care Rehabil. 16, 602–604 (1995).
[CrossRef] [PubMed]

Yodh, A. G.

Yoo, K. M.

Yorkey, T. J.

T. J. Yorkey, J. G. Webster, W. J. Tompkins, “Comparing reconstruction algorithms for electrical impedance tomography,” IEEE Trans. Biomed. Eng. BME-34, 843–852 (1987).
[CrossRef]

Zang, Z.-H.

Appl. Math. Comp. (1)

J. C. Adams, “mudpack: multigrid portable Fortran software for the efficient solution of linear elliptic partial differential equations,” Appl. Math. Comp. 34, 133 (1989).
[CrossRef]

Appl. Opt. (5)

Biophys. J. (2)

S. A. Vinogradov, L. W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, D. F. Wilson, “Noninvasive imaging of the distribution in oxygen in tissue in vivo using near-infrared phosphors,” Biophys. J. 70, 1609–1617 (1996).
[CrossRef] [PubMed]

C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime based sensing in tissues: a computational study,” Biophys. J. 68, 1574–1582 (1995).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

T. J. Yorkey, J. G. Webster, W. J. Tompkins, “Comparing reconstruction algorithms for electrical impedance tomography,” IEEE Trans. Biomed. Eng. BME-34, 843–852 (1987).
[CrossRef]

J. Biomed. Opt. (1)

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

J. Burn Care Rehabil. (1)

R. L. Sheridan, K. T. Schomaker, L. C. Lucchina, J. Hurley, L. M. Yin, R. G. Tompkins, M. Jerath, A. Torri, K. Greaves, D. Bua, N. S. Nishioka, “Burn depth estimation by use of indocyanine green fluorescence: initial human trial,” J. Burn Care Rehabil. 16, 602–604 (1995).
[CrossRef] [PubMed]

J. Lumin. (1)

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60&61, 281–286 (1994).
[CrossRef]

J. Neurosurg. (1)

W. Poon, K. T. Schomaker, T. F. Deutsch, R. L. Martuza, “Laser-induced fluorescence: experimental intraoperative delineation of tumor resection margins,” J. Neurosurg. 76, 679–686 (1992).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. 13, 253–266 (1996).
[CrossRef]

J. Photochem. Photobiol. (1)

S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Time-resolved laser-induced fluorescence spectroscopy for enhanced demarcation of human atherosclerotic plaques,” J. Photochem. Photobiol. 4, 363–369 (1990).
[CrossRef]

J. Photochem. Photobiol. B (1)

E. M. Sevick, J. R. Lakowicz, H. Szamacinski, K. Nowaczyk, M. L. Johnson, “Frequency domain imaging of absorbers obscured by scattering,” J. Photochem. Photobiol. B 16, 169–185 (1992).
[CrossRef] [PubMed]

Mon. Weather Rev. (1)

S. R. Fulton, C. E. Ciesielski, W. H. Schubert, “Multigrid methods for elliptic problems: a review,” Mon. Weather Rev. 114, 943 (1986).
[CrossRef]

Opt. Lett. (4)

Opt. Photon. News (1)

E. M. Sevick-Muraca, C. L. Hutchinson, D. Y. Paithankar, “Optical tissue biodiagnostics using fluorescence lifetime,” Opt. Photon. News 7, 25–28 (1996).
[CrossRef]

Photochem. Photobiol. (4)

S. Andersson-Engels, J. Ankerst, J. Johansson, K. Svanberg, S. Svanberg, “Laser-induced fluorescence in malignant and normal tissue of rats injected with benzoporphryin derivative,” Photochem. Photobiol. 57, 978–983 (1993).
[CrossRef] [PubMed]

S. Mordon, J. M. Devoisselle, V. Maunoury, “In vivo pH measurement and imaging of a pH-sensitive fluorescent probe (5-6-carboxyfluorescein): instrumental and experimental studies,” Photochem. Photobiol. 60, 274–279 (1994).
[CrossRef] [PubMed]

D. A. Russell, R. H. Pottier, D. P. Valenzeno, “Continuous noninvasive measurement of in vivo pH in conscious mice,” Photochem. Photobiol. 59, 309–313 (1994).
[CrossRef] [PubMed]

R. Cubbedu, G. Canti, P. Taroni, G. Valentini, “Time-gated fluorescence imaging for the diagnosis of tumors in a murine model,” Photochem. Photobiol. 57, 480–485 (1993).
[CrossRef]

Phys. Med. Biol. (1)

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[CrossRef] [PubMed]

Proc. IEEE (1)

B. C. Wilson, E. M. Sevick, M. S. Patterson, B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80, 918–930 (1992).
[CrossRef]

Rev. Sci. Instrum. (1)

A. Knuttel, J. M. Schmitt, R. Barnes, J. R. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
[CrossRef]

Other (5)

G. Lopez, T. L. Troy, C. L. Hutchinson, J. S. Reynolds, E. M. Sevick-Muraca, “Fluorescent contrast agents for biomedical optical imaging using frequency-domain techniques,” J. R. Lakowicz, R. B. Thompson, eds., Proc. SPIE2980 (1997).

R. L. Barbour, H. L. Graber, Y. Wang, J. Chang, R. Aronson, “Perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. Vander Zee, eds. (SPIE, Bellingham, Wash., 1993), pp. 87–120.

R. A. Day, A. L. Underwood, Quantitative Analysis, 6th ed. (Prentice-Hall, Englewood Cliffs, N.J., 1991), p. 446.

W. H. Press, S. A. Teukolsy, W. T. Vetterling, B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, New York, 1992).

E. M. Sevick-Muraca, D. Y. Paithankar, C. L. Hutchinson, T. L. Troy, “Analysis of photon migration for optical diagnosis,” in Ultrasensitive Biochemical Diagnostics, G. E. Cohn, S. A. Soper, C. Chen, eds., Proc. SPIE2680, 114–123 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the circular simulated tissue phantom interrogated by four sources, one source at a time. Twenty detectors are located on the periphery with uniform separation. A circular object that mimics a hidden diseased tissue volume, located within the tissue phantom, is also shown.

Fig. 2
Fig. 2

Log plot of fluorescent light ac amplitude at 150 MHz at various detectors for a heterogeneous tissue phantom with a 30-mm-diameter object located at the center of the phantom for various object ημaxm values. Absorption coefficient ημaxm is 1 × 10-5 mm-1 for the background; lifetimes τ for both the object and the background are 1 ns.

Fig. 3
Fig. 3

Plot of fluorescent light phase shift at 150 MHz at various detectors for a heterogeneous tissue phantom with a 30-mm-diameter object located at the center of the phantom for various object ημaxm values. Absorption coefficients and lifetimes are the same as in Fig. 2.

Fig. 4
Fig. 4

Log plot of fluorescent light ac amplitude at 150 MHz at various detectors for a heterogeneous tissue phantom with a 30-mm-diameter object located at the center of the phantom for various object τ values. Background lifetime τ is 1 ns and absorption coefficients ημaxm are 1 × 10-5 mm -1 for the background and 1 × 10-3 mm-1 for the object.

Fig. 5
Fig. 5

Plot of fluorescent light phase shift at 150 MHz at various detectors for a heterogeneous tissue phantom with a 30-mm-diameter object located at the center of the phantom for various object τ values. Background lifetime τ is 1 ns and absorption coefficients ημaxm are 1 × 10-5 mm -1 for the background and 1 × 10-3 mm-1 for the object.

Fig. 6
Fig. 6

Graphs depicting the convergence of (a) ημaxm, (b) τ versus the number of iterations during the image reconstruction for the case described in Subsection 5.A. Convergence is seen to be achieved within 20 iterations for (a) and 50 iterations for (b).

Fig. 7
Fig. 7

Reconstructed spatial map of fluorescence (a) yield, ημaxm, (b) lifetime, τ, on a two-dimensional, 17 × 17 grid for the case described in Subsection 5.A. μax at the excitation wavelength not accounting for fluorophore absorption is zero; μam at the emission wavelength is also zero. The average values of ημaxm and τ within the object were 1 × 10-3 mm-1 and 1 ns, respectively (expected) and 0.93 × 10-3 mm-1 and 1.03, respectively (reconstructed). Spurious unphysically high values of ημaxm and τ have been replaced by the average background fluorescence yield and lifetime, respectively, obtained from the inversion.

Fig. 8
Fig. 8

Reconstructed spatial map of fluorescence (a) yield, ημaxm, (b) lifetime, τ, on a two-dimensional, 17 × 17 grid for the case described in Subsection 5.B. μax at the excitation wavelength not accounting for fluorophore absorption is 1 × 10-3 mm-1; μam at the emission wavelength is zero. The average values of ημaxm and τ within the object were 1 × 10-3 mm-1 and 1 ns, respectively (expected) and 0.8 × 10-3 mm-1 and 0.7 ns, respectively (reconstructed). Spurious unphysically high values of ημaxm and τ have been replaced by the average background fluorescence yield and lifetime, respectively, obtained from the inversion.

Fig. 9
Fig. 9

Reconstructed spatial map of fluorescence yield, ημaxm, on a two-dimensional, 33 × 33 grid for the case described in Subsection 5.C. μax at the excitation wavelength not accounting for fluorophore absorption is zero; μam at the emission wavelength is also zero. The Gaussian noise that was introduced in the phase had a standard deviation of 1°. The object locations and sizes are recovered correctly. The average values of ημaxm within the two objects were top left, 1 × 10-3 mm-1 (expected) and 2 × 10-3 mm-1 (reconstructed); bottom right, 2 × 10-3 mm-1 (expected) and 1.8 × 10-3 mm-1 (reconstructed). Spurious unphysically high values of ημaxm have been replaced by the average background fluorescence yield obtained from the inversion.

Fig. 10
Fig. 10

Reconstructed spatial map of fluorescence yield, ημaxm, on a two-dimensional, 33 × 33 grid for the case described in Subsection 5.D. μax at the excitation wavelength not accounting for fluorophore absorption is 1 × 10-3 mm-1; μam at the emission wavelength is the same. The average value of ημaxm within the object was 2 × 10-4 mm-1 (expected) and 7.0 × 10-4 mm-1 (reconstructed). Spurious unphysically high values of ημaxm have been replaced by the average background fluorescence yield obtained from the inversion.

Fig. 11
Fig. 11

Jacobian (a) J¯¯ (θ, τ), (b) J¯¯ (M, τ), (c) J¯¯ (M, ημaxm) for the case described in Subsection 5.A for source A, detector 16, and iteration 1. During the computation of the Jacobians, the values of τ for (a) and (b) and ημaxm for (c) at each individual grid point were increased by 5%, 5%, and 1%, respectively.

Tables (4)

Tables Icon

Table 1 Optical Properties and Experimental Parameters for the Forward Problem

Tables Icon

Table 2 Optical Properties Used to Generate the Simulated Experimental Data as Inputs to the Inverse Image-Reconstruction Algorithm

Tables Icon

Table 3 Location and Area of the Simulated Heterogeneities: Comparison of Expected and Reconstructed Values

Tables Icon

Table 4 Fluorescence Lifetime τ and Yield ημaxm of the Simulated Heterogeneities: Comparison of Expected and Reconstructed Values

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

·DxrΦxr, ω-μaxr+iω/cn×Φxr, ω+Sxr, ω=0,
·DmrΦmr, ω-μamr+iω/cn×Φmr, ω+Smr, ω=0.
Dx,m=3μax,m+μsx,m-1,
Smr, ω=ημaxmrΦxr, ω1-iωτr1+ω2τr2.
χμ2=14k=14120i=120Mmobs,i-Mm,iσM2,
χτ2=14k=14120i=120Mmobs,i-Mm,iσM2+θmobs,i-θm,iσθ2,
J¯¯M, ημaxmTJ¯¯M, ημaxmσM2+λ1I¯¯Δημ¯axm=J¯¯M, ημaxmTσM2M¯mobs-M¯m,
J¯¯M, τTJ¯¯M, τσM2+J¯¯θ, τTJ¯¯θ, τσθ2+λ2I¯¯Δτ¯=J¯¯M, τTσM2M¯mobs-M¯m+J¯¯θ, τTσθ2θ¯mobs-θ¯m,

Metrics